Circuiti a tempo discreto Raffaele Parisi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti a tempo discreto Raffaele Parisi"

Transcript

1 Uiversità di Roma La Sapiea Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Trasformata Defiiioi geerali, legami co la DTFT, regioe di covergea (ROC), proprietà, trasformata iversa, risoluioe dell equaioe alle differee tramite la trasformata.

2 LA TRASFORMATA Corrispode alla trasformata di Laplace per i circuiti a tempo-cotiuo (TC) Rappreseta ua geeraliaioe della trasformata di Fourier per i circuito a tempo discreto (TD). Motivaioi per l itroduioe della trasformata ei circuiti TD:. Cosete ua otaioe più semplice.. Semplifica l aalisi. 3. Ha validità più geerale della trasformata di Fourier (che o coverge per tutte le sequee). 4. Cosete di utiliare la teoria delle variabili complesse.

3 Defiiioe Si defiisce trasformata bilatera della sequea x[] la seguete fuioe (ovvero operatore): Z { [ ]} [ ] x = X = # x =" " metre la trasformata moolatera è: Z { [ ]} [ ] è ua variabile complessa. x = X = # x = N.B. Per sequee causali (x[]= per <) ha iteresse la trasformata uilatera. " 3

4 Legame co la trasformata di Fourier (DTFT) La trasformata di Fourier di ua sequea x[] è data da: I base alla defiiioe di trasformata, esprimedo i j forma polare si può scrivere: = re ( j ) [ ]( j ) j X = X re = x re = Im X(e j" ) = = re = +$ % =#$ # x[]e # j" # ( [ ] x r ) e " " j (DTFT) " Piao = " j = e Re = Cerchio uitario la trasformata calcolata sulla circoferea uitaria (r =) coicide co la DTFT 4

5 Regioe di covergea della trasformata ( Regio of covergece, ROC) La trasformata coverge per quei valori di tali che la sequea è assolutamete sommabile: [ ] x r [ ] $ x r " c < # I valori di per cui X() coverge, defiiscoo ua regioe del piao complesso che viee detta Regioe di covergea (ROC). r N.B. a causa della moltiplicaioe per l espoeiale è possibile che la trasformata coverga quado la DTFT o coverge. 5

6 I geerale la serie X() coverge solo per certi valori di. Ifatti: " [ ] " [ ] % % x r # x < $ X < =" cioè la covergea (assoluta) dipede da. I altre parole se X() coverge per =, allora coverge per tutti i valori tali che = e quidi la ROC è i geerale ua coroa circolare del piao. I particolare se la ROC comprede la circoferea di raggio uitario, allora esiste la trasformata di Fourier (cioè coverge assolutamete). 6

7 Esempi x [] Coverge [ ] [ ] [ ] K [ ] = x x " 6 =, x " 5 =,, x = X trae che per il valore = x [] [ ] [ ] [ ] K [ ] = x " x 3 =, x =,, x 3 = X = = Coverge trae che per i valori e 7

8 x 3 [] [ ] [ ] [ ] K [ ] = x " x =, x =,, x 6 = X 3 Coverge trae che per il valore = 8

9 Esempio: gradio uitario x[] = u[] x[] L u[] o è assolutamete sommabile. Ifatti: [ ] # =" [ ] u = r u ivece è assolutamete sommabile se r >. Ciò sigifica che per il gradio uitario la trasformata esiste, co ua ROC data da >. 9

10 Esempi di calcolo. Sequea espoeiale destra [ ] = a u[ ] x Im [ ] X " ( = # a ) = = " " a " a = " = a u = # =" a Re Si ha covergea se: a < " > a ROC

11 . Sequea espoeiale siistra [ ] = [ ] x a u " " " [ ] X = " a u " " = " a = " " = "# a = " #( a ) = " = " " a = = = = " " # # =" =" " a a Im a Re Si ha covergea se: a < < a ROC

12 3. " " x $ % u $ % u & ' & 3 ' [ ] = [ ] + # [ ] # $ % " & # " $ # " $ X = ' ( )% & + )% " & = + = 3 = ' ( = ' ( " " " + # $# $ " + 3 % &% & ' (' 3 ( " " < > # # ROC : % $ % $ > # < # > #& 3 #& 3 4. [ ] = + K+ ( ) x a a a = + K + ROC : > max ( a, K, an ) X N a N

13 Trasformate otevoli [ ] [ ] # $ u[ ] # > " " a u[ ] # > a " " a " a a u # > a ( " " a ) 3

14 Rappresetaioi della trasformata X() - U caso importate è quello i cui X() è ua fuioe raioale reale ella ROC: ' N N ( ) X = = ' D D ( ) N(), D() soo poliomi i e N'( - ), D'( - ) soo poliomi i -. - X() può essere cosiderata fuioe di o -. Esempio X ( ) ( ) ( )( ) = = Per sequee causali coviee usare la forma i -. Le due rappresetaioi soo equivaleti. N.B. X() è ua fuioe raioale se x[] è ua combiaioe di espoeiali (reali o complessi). 4

15 Forma raioale di X() X M M " k N M k ( b ) k " bk b # ck = = = k = k = k = N N N " k M N k ( a ) k " ak a # dk k = k = k = M I valori di tali che X() = soo gli eri. I valori di tali che X() soo i poli. I particolare i poli di valore fiito e diverso da ero soo le radici del deomiatore di X() e i più si possoo avere ache poli i = e =. 5

16 Proprietà della ROC. X() è ua fuioe aalitica ella ROC: X() e tutte le sue derivate soo fuioi cotiue di.. La Trasformata di Fourier di x[] (DTFT) coverge assolutamete se e solo se la ROC di X() cotiee la circoferea uitaria. 3. La ROC o può coteere poli. 4. La ROC è coessa. 5. Se x[] ha durata fiita (" < # # < " ) la ROC comprede tutto il piao, trae evetualmete i puti = e =. 6

17 " 6. Per sequee uilatere destre ( x, # ) la ROC è del tipo più grade. > $ = [ ], dove è il polo di modulo Moolatera destra: Polo = > 7. Per sequee uilatere siistre ( x, < ) la ROC è del tipo più piccolo. < # =" [ ], dove è il polo di modulo Moolatera siistra: 3 < 3 Polo =3 8. Per sequee bilatere la ROC è del tipo < <, cioè è u aello delimitato da poli. 3 Bilatera: < < 3 7

18 Proprietà della trasformata Liearità [ ] + [ ] + ax bx ax bx ROC = ROC X I ROC X Traslaioe el tempo [ ] " x X = ROC = ROC ( X ) eccetto evetualmete " $ = # 8

19 Moltiplicaioe per ua sequea espoeiale [ ] " # $ % & ' x X ROC = ROC X = costate (complessa) Si itroduce u fattore di scala ella ROC d k è u polo di X() d k è u polo X(/ ) reale positivo j = e = a + jb poli e eri ruotao di poli e eri si muovoo radialmete spostameto radiale + rotaioe (traslaioe i frequea) 9

20 Derivaioe rispetto a [ ] x " dx d Coiugaioe di ua sequea complessa [ ] = x * X * * ROC ROC X Rovesciameto el tempo " x[ # ] $ X % & ROC = ' ( ROC X Covoluioe di sequee x[ ] y[ ] " X Y Teorema del valore iiiale ROC = ROC ( X ) eccetto ev. = e = I ROC cotiee ROC X ROC Y [ ] = # < [ ] = Se x allora x lim X "

21 Trasformata iversa. Metodo per ispeioe I questo caso l atitrasformata è immediata (si usao tabelle). Esempio k X = > a " ka u a [ ] N.B. Nel caso di trasformata bilatera occorre specificare ache la ROC. Ifatti si ha: k X = < a " ka u a [ ]

22 . Metodo dell espasioe i serie Si cerca di scrivere uo sviluppo i serie di potee di o -. Esempio: X =, > a a Si può fare la divisioe tra poliomi: a a a a a a + a + a +... Si ha: X a a a = = e quidi: x[ ] = a u[ ] N.B. Nel caso X =, < a a si cosidera uo sviluppo i serie di (<).

23 3. Metodo dello sviluppo i fraioi pariali Si usa per fuioi X() raioali: X M M M k N M k " bk " bk b# ( ck ) = = = k = k = k = N N N k M N k " ak " ak a# ( dk ) k = k = k = c k : eri o ulli d k : poli o ulli X() ha M eri e N poli o ulli e i aggiuta M-N poli i = se M>N oppure N-M eri i = se N>M. Si possoo avere ache poli o eri per =. Il procedimeto è simile a quello usato per l atitrasformata di Laplace. 3

24 Se M<N e i poli soo semplici si ha: N k = X " k = A d i cui i residui A k si ottegoo dalla formula: k k ( k ) A = d X Se M N bisoga aggiugere u poliomio di grado M-N (si fa la divisioe tra poliomi): M N N Se ci soo poli multipli di molteplicità m k, si ha: = d r k = Br + X " " r= k = k k A d X M N N " A A A # = + $ % poli r k k kmk ( Br ( K r k ( dk = = ) ( dk ) ( dk ) mk $ % & ' 4

25 Esempio ROC > a X Si trova: Esempio 3 5 C C = = = ROC > a X C " # C = 3 = = = = 3+ [ ] = + u[ ] x # $ % $ % 3 " # & '. #, * + * 3 + #- [ ] = " 3 [ ] + 3# [ ] x u 5

26 Esercii sulle atitrasformate A) H = ) Si esprime H() i fuioe delle potee positive di : H = N.B. i termii elemetari che si voglioo idividuare soo del tipo: k " a [ ] ka u 6

27 H Coviee allora cosiderare la fuioe : H + + = 3 " $ # + % & 4 8 ' ) Calcolo dei poli = Si ha:, = 3 3 " 4 + ± $ % # 4 & 4 ' 8 4 H A B C H A B C = + + = + + " " " " 4 4 7

28 3) Calcolo dei residui di H A = = = 8 = 8 " H + + B = $ # % = = 8 & ' " = $ # % & 4 ' H = " H + + C = $ # % = = # 5 & 4 ' " = 4 $ # % & ' 4) Calcolo di h[] = 4 H 8 5 = " $ % & % & # $ h ( * + * + ) u $., -, 4 - $ / [ ] = 8 [ ] + 8 ' 5 [ ] 8

29 B) H H a = ( 3) = = b b = ( 3)( 5) ( 5) = 3 = 5 ( 5) = 5 = 3 H = ( 5) = = 4 3 ( 3)( 5) d " H # = $ ( 5) % = = d & ' ( 3) = 5 = 3 poli : " # = 5 H a b b = = = 5 semplice doppio H 4 4 = + = ( 5) ( 5 ) 4 " h[ ] = + u = + u 5 (3 5 5 ) [ ] ( ) [ ] N.B. Ipotesi: h[] causale) 9

30 C) Atitrasformata mediate sviluppo i serie di potee X a + a + a + L+ a = = b b b b N N M L+ N [ ] [ ] [ ] = x + x + x + L Esempio X + + = " +.3 Divisioe luga co potee positive o egative 3

31 Potee egative Potee positive L M L 3

32 N.B. La divisioe luga può essere calcolata i modo ricorsivo: [ ] x = a / b [ ] = # [ ] x $ a x b "% / b [ ] = # [ ] # [ ] x $ a x b x b "% / b [ ] = # [ ] # [ ] # [ ] x 3 $ a x b x b x b "% / b

33 D) Esercii o svolti Calcolare l atitrasformata delle segueti fuioi H + = +.5. (Ipotesi: x[] causale) ( + )( ) =. (Ipotesi: x[] causale) H =, (Calcolare x[] per le varie possibili ROC) H 33

34 Risoluioe di equaioi alle differee fiite lieari tramite la trasformata (ovvero calcolo della risposta di u circuito TD) Si fa riferimeto all equaioe: N M " " [ ] = [ ] a y k b x k k k = k = co (x[] causale) e codiioi iiiali y[-],, y[-n] ote. Si può ache scrivere (ormaliado rispetto a a ): N k [ ] [ ] y[ ] = a y k + b x k M " " k k = k = Si applica ora la trasformata uilatera: # $ # $ N M " " " ) y[ ] = ")%) ak y[ " k] & + )%) bk x[ " k] & = = k = = k = Y ' ( ' ( k 34

35 Si ottiee: N M # " $ # " $ Y = ") ak %) y[ " k] & + ) bk %) x[ " k] & k = ' = ( k = ' = ( Poedo -k=l si può scrivere: N M # " k " l $ # " k " l $ Y = ") ak % ) y[ l] & + ) bk %) x[ l] & k = ' l=" k ( k = ' l= ( dove si è teuto coto del fatto che x[]= per <. Raccogliedo -k : N M " k # " l $ " k # " l $ Y = ") ak % ) y[ l] & + ) bk %) x[ l] & k = ' l=" k ( k = ' l= ( " l l # y[ l] + # y[ l] l= k l= Y X 35

36 Si ha: N k M k " # k Y = ( ak $ ( y[ ] + Y % + ( bk X k = & = ' k = # # [ ] # # N k N M k k k k k k k = = k = k = Y = a y Y " a + X " b Isolado Y(): M N k k k " bk " ak " y[ ] k = k = = X N N k k " ak " ak k = k = Y = + + dipede dall igresso x[] dipede dalle codiioi iiiali 36

37 I forma compatta: Atitrasformado: Y = H X + y[ ] = y [ ] + y [ ] for. lib. N A Y Y. for. Osservaioe. I poli di Y() soo l uioe dei poli di H() (cioè le radici di A(), idicati co p k ) e dei poli di X() (idicati co q k e supposti i umero di L). L uscita avrà quidi la seguete forma: N L k k k k k = k = y[ ] = A p u[ ] + B q u[ ] lib risposta a stato ero o risposta forata risposta a igresso ero o risposta libera 37

38 Risposta trasitoria e risposta permaete Suppoedo ulle le codiioi iiiali si ha: Y = H X I tal caso l uscita avrà l espressioe: N L k k k k k = k = y[ ] = C p u[ ] + D q u[ ] Se per i poli p k di H() si ha p k <, allora: N tras. " k k k = y [ ] = C p u[ ] risposta trasitoria Se ioltre l igresso è ua sequea siusoidale, allora ache: L y [ ] = D q u[ ] perm. k k k = sarà siusoidale co la stessa pulsaioe. risposta permaete 38

39 Eserciio Calcolare la risposta al gradio uitario del circuito rappresetato dalla seguete equaioe: y[ ] = y[ " ] + x[ ] co la codiioe iiiale y[-]=. Soluioe. Calcolado la trasformata uilatera di etrambi i membri dell equaioe si ottiee: { } Y = " Y + y[ " ] + X Y y X " ( " ) = [" ] + y[ " ] Y = + # " " " Atitrasformado si ottiee: " " " " " y[ ] = u[ ] + u[ ] = u[ ] " " Trasformata del gradio uitario: 39

Convergenza della trasformata zeta. Trasformata Zeta. Trasformata zeta. Definizione. Per noi la convergenza sarà sempre assoluta

Convergenza della trasformata zeta. Trasformata Zeta. Trasformata zeta. Definizione. Per noi la convergenza sarà sempre assoluta Covergea della trasformata eta Defiiioe Trasformata Zeta Per oi la covergea sarà sempre assoluta Covergea leggermete più forte 3 Trasformata eta Defiiioe September 25, 2003 Bilatera Noi usiamo questa!

Dettagli

LA TRASFORMATA Z. Nel caso di segnali (sistemi) tempo-continui: La trasformata di Laplace generalizza quella di Fourier

LA TRASFORMATA Z. Nel caso di segnali (sistemi) tempo-continui: La trasformata di Laplace generalizza quella di Fourier LA TRASFORMATA Z Nel caso di segali (sistemi) tempo-cotiui: La trasformata di Laplace geeralizza quella di Fourier per s= jω ( ω) ( ) + ( ) ( ) st X s = x t e dt + = jωt co ω = 2π f X xte dt Nel caso di

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Richiami su sistemi lineari discreti IGEGERIA E ECOLOGIE DEI SISEMI DI COROLLO su sistemi lieari discreti Prof. Carlo Rossi DEIS - Uiversità di Bologa el: 5 93 email: crossi@deis.uio.it Sistemi empo-discreti I questi sistemi i segali hao

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

Esercizi di Variabile complessa - 5 (possibili soluzioni) cos(kθ) = sen((n )θ) z k = 1 z(n+1) 1 z

Esercizi di Variabile complessa - 5 (possibili soluzioni) cos(kθ) = sen((n )θ) z k = 1 z(n+1) 1 z Esercii di Variabile complessa - 5 possibili soluioi. Sfruttado le idetità Ree iθ = cos θ e Ime iθ = se θ dimostrare l idetità trigoometrica coskθ = + se + θ seθ/ Soluioe. Sia = e iθ. Allora dall uguagliaa

Dettagli

Corso di Teoria dei Circuiti 1 - II modulo

Corso di Teoria dei Circuiti 1 - II modulo Uiversità di Roma La Sapieza - Sede di Latia - Laurea i Igegeria dell Iformazioe Corso di Teoria dei Circuiti 1 - II modulo Docete: Fabio Massimo Frattale Mascioli : Esempi di Sequeze e di Circuiti TD

Dettagli

Circuiti a tempo discreto

Circuiti a tempo discreto Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

Filtri a tempo discreto: Introduzione

Filtri a tempo discreto: Introduzione October, 23 Filtri a tempo discreto: Itroduioe Filtri a memoria fiita L uscita y è otteuta combiado valori passati dell igresso x e dell uscita y N k a k y k M r b r x r Si suppoe x moolatera x Il filtro

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

REGRESSIONE LINEARE E POLINOMIALE

REGRESSIONE LINEARE E POLINOMIALE REGRESSIONE LINEARE E POLINOMIALE Nota ua tabella di dati relativi alle osservazioi di due gradezze X e Y, è aturale formulare ipotesi su quale possa essere ua ragioevole fuzioe che rappreseti o che approssimi

Dettagli

D.F.T. Discrete Fourier Transform Trasformata discreta di Fourier

D.F.T. Discrete Fourier Transform Trasformata discreta di Fourier D.F.. Discrete Fourier rasform rasformata discreta di Fourier Si cosideri ua fuzioe tempo-discreta periodica, cioè che esista solo i determiati istati di tempo *c co umero itero variabile da a - i u periodo

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Lezione 4 Corso di Statistica. Francesco Lagona

Lezione 4 Corso di Statistica. Francesco Lagona Lezioe 4 Corso di Statistica Fracesco Lagoa Uiversità Roma Tre F. Lagoa (fracesco.lagoa@uiroma3.it) 1 / 23 obiettivi della lezioe familiarizzare co il calcolo e le proprietà della media aritmetica familiarizzare

Dettagli

Analisi armonica. Angelo Bisceglia

Analisi armonica. Angelo Bisceglia Aalisi armoica Agelo Bisceglia Teorema: U sistema lieare stazioario co fuzioe di trasferimeto (f.d.t.) razioale fratta co poli a parte reale egativa, soggetto ad u forzameto siusoidale, a regime, ha ua

Dettagli

Appunti di Matematica 4 - I numeri complessi - I numeri complessi

Appunti di Matematica 4 - I numeri complessi - I numeri complessi I umeri complessi Abbiamo visto come dall isieme N dei umeri aturali si passi all isieme Z dei umeri relativi per poter effettuare sempre la sottraioe e poi all isieme Q dei umeri raioali per poter effettuare

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

Università degli Studi di Napoli Parthenope. STATISTICA per il Turismo

Università degli Studi di Napoli Parthenope. STATISTICA per il Turismo Uiversità degli Studi di Napoli Partheope Corso di Laurea i Maagemet per le Imprese Turistiche STATISTICA per il Turismo Docete: Sergio Logobardi sergio.logobardi@uipartheope.it Stima itervallare Stima

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Siamo interessati a studiare la convergenza della serie e porremo come al solito:

Siamo interessati a studiare la convergenza della serie e porremo come al solito: SERIE DI POTENZE Soo particolari serie di fuzioi, i cui termii soo moomi, evetualmete traslati: f (x) co f (x) =a (x x 0 ), a R, x 0 R, ossia dove a (x x 0 ) = a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +... x

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

2.5 Calcolo dello stato di deformazione e sforzo in corrispondenza ad una concentrazione di tensione con superamento del limite di plasticizzazione

2.5 Calcolo dello stato di deformazione e sforzo in corrispondenza ad una concentrazione di tensione con superamento del limite di plasticizzazione .5 Calcolo dello stato di deformazioe e sforzo i corrispodeza ad ua cocetrazioe di tesioe co superameto del limite di plasticizzazioe Dato u elemeto co ua cocetrazioe di tesioe pari a K t = 3 L elemeto

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Trasformata Z, linearizzazione

Trasformata Z, linearizzazione Trasformata Z, liearizzazioe La soluzioe della diamica mediate trasformate Liearizzazioi Cei sulla trasformata Z Esempio: problema 1 Esempio: problema 2: Esempio: problema 3: Cotrollo come problema di

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Analisi Matematica 5

Analisi Matematica 5 Uiversità degli Studi di Udie Ao Accademico /5 Cogome e Nome: Facoltà di Sciee Matematiche, Fisiche e Naturali Corso di Laurea i Matematica Aalisi Matematica 5 Prova Scritta del 9 dicembre Matricola: Documeto

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Metodi Matematici per l Ingegneria

Metodi Matematici per l Ingegneria Metodi Matematici per l Igegeria Agelo Alvio A.A.2016-17 2 Idice 1 Fuzioi olomorfe 5 1.1 La fuzioe exp i campo complesso................ 5 1.2 Derivabilità i campo complesso.................. 8 1.3 Serie

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott.

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. e Uiversità di Trieste Facoltà d Igegeria. Esercizi sulle serie umeriche e sulle successioi e serie di fuzioi Dott. Fraco Obersel Esercizio Rispodere alle segueti questioi: a) Siao a 0 + a + a +... b 0

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ).

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ). 14. Le tesioi soo lo strumeto della meccaica dei cotiui per rappresetare lo stato di sforo i u puto. Defiiioe della tesioe secodo Cauch. f A V f Cosideriamo u geerico puto. uppoiamo di seioare idealmete

Dettagli

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI

ANALISI 2 ESERCITAZIONE DEL 15/11/2010 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI ANALISI ESERCITAZIONE DEL 15/11/1 PUNTUALIZZAZIONE SUL CALCOLO DEI LIMITI Nel corso dell esercitazioe della settimaa scorsa abbiamo utilizzato diverse volte il calcolo di lim cos, si L i modo uiorme, cioè,

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

Lezione 4 Corso di Statistica. Domenico Cucina

Lezione 4 Corso di Statistica. Domenico Cucina Lezioe 4 Corso di Statistica Domeico Cucia Uiversità Roma Tre D. Cucia (domeico.cucia@uiroma3.it) 1 / 22 obiettivi della lezioe familiarizzare co il calcolo e le proprietà della media aritmetica familiarizzare

Dettagli

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO 1. I sistemi di equazioi di primo grado U problema può coivolgere più icogite, ma soprattutto può coivolgere più codizioi riferite ad esse, che

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) )

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) ) Matematica - Igegeria Gestioale - Prova scritta del 5 giugo 007 - SOLUZIONI -. Si idichio le frasi corrette PUNTI: /-/0 per ogi domamda). se a := + cosπ) a ) è limitata iferiormete cosπ) se a := a ) è

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006

METODI MATEMATICI DELLA FISICA A.A. 2005/2006 Prof. C. Presilla. Prova di recupero 11 settembre 2006 METODI MATEMATII DELLA FISIA A.A. 2005/2006 Prof.. Presilla Prova di recupero settembre 2006 ogome Nome i sostituzioe delle prove i itiere (segare) 2 pealità esercizio voto 2 3 4 5 6 Esercizio Determiare

Dettagli

Il Metodo del cerchio

Il Metodo del cerchio Il Metodo del cerchio Problemi additivi cogettura di Goldbach ig. Rosario Turco Itroduioe Uo dei temi tipici della Teoria dei umeri, che facilmete attira tutti gli appassioati di Matematica, ache per la

Dettagli

APPENDICE 1 Richiami di algebra lineare

APPENDICE 1 Richiami di algebra lineare APPENDICE Richiami di algebra lieare vettore: isieme ordiato di elemeti (umeri reali, umeri complessi, variabili, fuzioi,...) B = b b M b 2 { } = b, co i =, L, i il vettore sopra defiito è detto ache vettore

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

06 LE SUCCESSIONI DI NUMERI REALI

06 LE SUCCESSIONI DI NUMERI REALI 06 LE SUCCESSIONI DI NUMERI REALI Ua successioe è ua fuzioe defiita i. I simboli ua f : A tale che f ( ) è ua successioe di elemeti di A. Se poiamo f ( i) ai co i,...,,..., ua successioe può essere rappresetata

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

Applicazioni in economia

Applicazioni in economia Le uioi di più variabili Applicaioi i ecoomia Deiiioe di uioe a più variabili Deiiioe di uioe a più variabili Ua uioe di più variabili è caratteriata dalla presea di due o più variabili reali idipedeti.

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

Sistema lineare stazionario TC:

Sistema lineare stazionario TC: Cotrolli Automatici (AUT) - 9AKSBL Regime permaete armoico Risposta i frequeza Rappresetazioi grafiche della risposta i frequeza Risposta i frequeza () Sistema lieare stazioario TC: q q bqs + bq s + +

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

si ha: giacciano all interno del cerchio unitario. Inoltre, poiché:

si ha: giacciano all interno del cerchio unitario. Inoltre, poiché: 2.4 PROCESSI STOCASTICI A MEDIA MOBILE (MA) U processo MA di ordie p esprime il valore correte del processo come ua somma fiita di p campioi di rumore biaco pesati secodo dei coefficieti θ i ossia 1 1

Dettagli

Trasformata discreta di Fourier Ingegneria Clinica A.A

Trasformata discreta di Fourier Ingegneria Clinica A.A Uiversità di Roma La Sapieza Corso di Elaborazioe di Dati e Segali Biomedici Facoltà di Igegeria Trasformata discreta di Fourier Igegeria Cliica A.A. 7-8 Fracesco Ifariato, PhD Laboratorio di Bioigegeria

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Oscillatore controllato in tensione (VCO)

Oscillatore controllato in tensione (VCO) //6 Oscillatore cotrollato i tesioe (O) Frequeza di oscillazioe jl Z jl[ L() L()] [L L ()] L () T L //6 3 Guadago del O / f () L () L 4 () L 4 / Logf f f 3 Lf f () () L 4 Log Logf 4 Guadago del O / j /

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

ESERCIZI - FASCICOLO 1

ESERCIZI - FASCICOLO 1 ESERCIZI - FASCICOLO 1 Esercizio 1 Sia (Ω, A) uo spazio misurabile. Se (A ) 1 è ua successioe di eveti (= elemeti di A), defiiamo lim sup A := A k lim if A = A k. Mostrare che =1 k= (lim sup A ) c = lim

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI U equazioe i cui l icogita compare almeo ua volta sotto il sego di radice si dice equazioe irrazioale Soo irrazioali le segueti equazioi: 3 x

Dettagli