Corso Propedeutico di Matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso Propedeutico di Matematica"

Transcript

1 POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati e a 0. Ogi sigolo addedo a x si dice moomio di grado ed il umero a si dice coefficiete del termie di grado. Il grado di u poliomio è determiato dalla massima poteza di x il cui coefficiete è o ullo. Proposizioe (Pricipio di idetità dei poliomi): due poliomi soo uguali se hao lo stesso grado e hao ordiatamete uguali i coefficieti dei moomi di uguale grado. A Defiizioe: dati due poliomi A e Bm, la fuzioe f B fratta); essa è defiita i tutto R esclusi gli evetuali puti x i cui B = viee detta fuzioe razioale (o fuzioe razioale m = 0. Teorema: siao A e Bm due poliomi, rispettivamete di grado ed m, co m. Esistoo due poliomi ( ) R tali che : il grado di R è strettamete miore di m; vale la relazioe A = Bm Q + R. (1) Il poliomio Q( x ), di grado -m, è detto quoziete della divisioe e il poliomio R resto della divisioe. Q x e Pagia 1 di 1 Data ultima revisioe 10/05/00

2 Defiizioe: se ella relazioe (1) il poliomio R è il poliomio ullo allora si dice che A è divisibile per B Bm è divisore di A. Teorema: codizioe ecessaria e sufficiete affiché u poliomio A sia divisibile per x c è che A ( c) Defiizioe: u umero c tale che A ( c) = 0 è detto radice o zero del poliomio A. Le radici di A radici o soluzioi dell'equazioe A = 0. Defiizioe: u poliomio A di grado 1 si dice irriducibile se o esiste essu divisore di A co 0<m<. = 0.() m o che si dicoo ache che abbia grado m Teorema: ell'isieme dei poliomi a coefficieti reali vi soo due tipi di fattori irriducibili: i biomi di primo grado e i triomi di secodo grado a discrimiate egativo. Ogi poliomio ammette ua fattorizzazioe del tipo m1 m l1 ( ) = ( 1 ) ( ) ( ) ( + h + h ) A x a x c x c x p x q x p x q I umeri c 1 c c A x di molteplicità, rispettivamete, m 1, m,..., m, metre i triomi di secodo grado della () hao discrimiate egativo e vale la relazioe m + m + + m + l + l =.,,..., soo le radici reali distite di ( ) lh () 1 1 h Pagia di 1 Data ultima revisioe 10/05/00

3 ESEMPI Ricordiamo che: a x + b x = a + b x somma di due moomi di uguale grado (moomi simili) ( ) a x b x = a b x differeza di due moomi di uguale grado ( ) p a x c x = a c x p p + p prodotto di due moomi ax c x p p = a c x p p (se p e c p 0) quoziete di due moomi Pagia di 1 Data ultima revisioe 10/05/00

4 1. Eseguire le segueti operazioi tra poliomi ( x x 4) ( 5x x x ) = x x 4 10x x 4x 6 = 7x 4x + 4x. ( ) + + = ( 10) + ( ) ( 4 6) { [ + + ]} = 6x 6 4ax [ 4 x ax 5 ax 7x] 6 x 6 4 ax 4 x ax 5 ax 7 x = 6x 6 4ax 4 x ax 5 ax 7x = = ( 6 + ) x + ( 4a a + a + 7) x = ( ) 4 ( + 4 ) 4 x x x x = ( 4 ) ( ) ( x x ) ( x 1) x x x x x x x = x 6x + 1x + 9x + = x ( x 1) x ( x 1) ( x 1) ( x ) ( x ) ( x ) 6 5 x x x = 9x + 5a + 7 x 7 + = x x x + x + x = x 5x + 5x 1 5 = ( x x x + ) ( x 5) = ( x 5x ) ( x 5) 6x 5x + 4x = 6x 10x 5x + 5x + 9x 15 = 4x + x 5x x 5 = 4 x x 5 x 5x + = x + x x = x x x + x 5 Pagia 4 di 1 Data ultima revisioe 10/05/00

5 Prodotti otevoli ( x a) ( x a) + = x a differeza di quadrati ( x + a) = x + ax + a quadrato di u biomio ( x + a) = x + ax + a x + a cubo di u biomio ( x + a) ( x ax + a ) ( x a) ( x + ax + a ). Calcolare i segueti prodotti otevoli: ( x 4a) ( x + 4a) = ( x) ( 4a) [ ] = x + a somma di cubi = x a differeza di cubi = 9x 16a ( x 5) = x + ( 5) = ( x) ( x) ( 5) ( 5) [ ] + + = 4x 0x + 5 ( x ) = x + ( ) = ( x) ( x) ( ) ( x)( ) ( ) ( x )( x + x + 4) ( x a) ( 4x ax a ) = x = x = = 7x 54x + 6x 8 a + = 8x + a Pagia 5 di 1 Data ultima revisioe 10/05/00

6 . Eseguire le segueti divisioi applicado, se è possibile la regola di Ruffii. ( x 4 4x + 7x x + 1) ( x x + 1) No è possibile applicare l'algoritmo di Ruffii, i quato il poliomio divisore o è della forma x c; eseguiamo, quidi, la divisioe : ( ) 4 x 4x + 7x x + 1 x x + 1 x x + x 4 / / x + 4x x + 1 Q x = x x + x + x x / / x / / + 1 x x + / / + x, R = x. x x + 1. I poliomi A 4 (x) (dividedo) e B (x) (divisore) soo ordiati secodo poteze decresceti.. Calcoliamo il quoziete tra i moomi di grado massimo di A 4 (x) e B (x): x 4 /x =x.. Calcoliamo il prodotto x B (x) = x 4 -x +x. 4. Calcoliamo R (x) = A 4 (x)- x B (x)= -x +4x -x Ripetiamo il procedimeto dividedo il moomio di grado più elevato di R (x) co il moomio di grado massimo di B (x), otteedo il quoziete parziale Q 1 (x)= -x ed il resto parziale R (x) = x L'algoritmo termia quado il grado del resto otteuto è miore del Pagia 6 di 1 Data ultima revisioe 10/05/00

7 ( x 7x + 6) ( x + 1) ( ) Il poliomio divisore è di primo grado, ricoducibile alla forma ( x c) : ( x + ) = x ( ) divisioe utilizzado l'algoritmo di Ruffii : 1 1 ; possiamo, quidi, effettuare la coefficieti del dividedo termie oto c = coefficieti quoziete Q x = x x 6 ( ) resto R = 1 Pagia 7 di 1 Data ultima revisioe 10/05/00

8 4. Scrivere la seguete fuzioe razioale come somma di u poliomio e di ua fuzioe razioale il cui umeratore ha grado miore del deomiatore. f Cosideriamo la fuzioe razioale f Dalla la relazioe dividedo ambo i membri per B 5 x + 10x + x + = x A = e suppoiamo m. B ( ) = ( ) ( ) + ( ) A x B x Q x R x m ( ) f x dove il grado di R(x) è miore di m. m, otteiamo: ( ) A R x = = Q + B B 5 Nel ostro caso A = x + 10x + x + e B 5 Dividedo A 5 per B, otteiamo Q m = x + 10 e R m = x. = 7x + Quidi : f = x x + x Pagia 8 di 1 Data ultima revisioe 10/05/00

9 5. Dire se il poliomio ( ) ( x ) Applicado il teorema (), abbiamo: ( ) ( ) ( ) ( ) ( ) A A x = 1x 11x + 5x 14x + 8 è divisibile per i segueti poliomi di primo grado: 4 = = = A 4 o è divisibile per ( x ) ( x + 1 ) ( ) ( ) ( ) ( ) ( ) A = = = 50 0 A 4 o è divisibile per ( x + 1 ) ( x 1 ) ( ) ( ) ( ) ( ) ( ) A = = = 0 A 4 è divisibile per ( x 1) Pagia 9 di 1 Data ultima revisioe 10/05/00

10 6. Scomporre i fattori i segueti poliomi ( x 4 + x + x ) = x ( x + x + 1) Abbiamo effettuato u raccoglimeto a fattore totale. Il triomio di secodo grado ( x x 1) discrimiate = egativo. + + è irriducibile avedo il ( x x 4x 1) + = x ( x ) 4 ( x ) = x ( x ) 4 ( x ) = ( x ) ( x 4) = ( x ) ( x ) ( x + ). Abbiamo effettuato u raccoglimeto a fattore parziale e, successivamete, abbiamo usato il prodotto otevole differeza di quadrati. x 6 64 Ricordiamo la seguete Proposizioe: il biomio x a è sempre divisibile per x a ; se è pari è divisibile ache per x + a. Pertato x 6 64 = x 6 6 risulta divisibile per x e per x +. Possiamo scomporre il biomio utilizzado, ad esempio, l'algoritmo di Ruffii oppure vededolo prima come differeza di quadrati e poi come somma e differeza di cubi: Pagia 10 di 1 Data ultima revisioe 10/05/00

11 ( x 6 64) = ( x 8) ( x + 8) = ( x ) ( x + x + 4) ( x + ) ( x x + 4) I triomi di secodo grado soo irriducibili avedo etrambi il discrimiate egativo. = ( x ) ( x + ) ( x + x + 4) ( x x + 4) x Ricordiamo la seguete: Proposizioe: il biomio x + a è divisibile per x + a ; se è dispari; se è pari o è divisibile é per x a é per x + a. Pertato x = x risulta divisibile per x +. Eseguiamo la divisioe co l'algoritmo di Ruffii: Quidi x 5 4 ( ) 4 + = ( x + ) ( x x + 9x 7x + 81) 4 Q x = x x + 9x 7x R = 0 Pagia 11 di 1 Data ultima revisioe 10/05/00

12 A x = x + x 5x + 1 Ricordiamo le segueti regole : ( ) Regola 1: le evetuali radici itere di ( ) 1 A x = x + a x + + a 1 0, dove a a 1,..., 0 sottomultipli di a0, compresa l'uità, presi sia co il sego positivo, sia co il sego egativo. soo iteri, soo da cercare tra i Regola : le evetuali radici razioali di ( ) razioali della forma ± p l'uità. 1 A x = a x + a 1x + + a 0, dove a,..., a 0 soo iteri, soo da cercare tra i / q, dove p è u sottomultiplo di a 0, compresa l'uità, metre q è u sottomultiplo di a, compresa Applicado la regola 1: i sottomultipli del termie oto a 0 = 1 soo ±1, ±, ±7, ±1; Abbiamo A ( 1) = 0, A ( ) = 0, A ( 7) = 0, vale a dire 1,, 7 soo radici di A ; quidi A è divisibile per i poliomi di primo grado x-1, x-, x-7: x x 5x = ( x 1)( x )( x 7 ) Pagia 1 di 1 Data ultima revisioe 10/05/00

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

U.D. N 05 La fattorizzazione dei polinomi

U.D. N 05 La fattorizzazione dei polinomi Uità Didattica N 05 La fattorizzazioe dei poliomi 1 U.D. N 05 La fattorizzazioe dei poliomi 01) La messa i evideza totale 0) La messa i evideza parziale 03) La differeza di due quadrati 04) Somma e differeza

Dettagli

MAPPE DI MATEMATICA PER LA PRIMA LICEO

MAPPE DI MATEMATICA PER LA PRIMA LICEO MAPPE DI MATEMATICA PER LA PRIMA LICEO Gli insiemi numerici (pagina ) Le operazioni (pagina ) I criteri di divisibilità (pagina ) Le frazioni e le loro operazioni (pagina 5) Percentuali e proporzioni (pagina

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredaa Maario INDICE 1. Scomposizioe di poliomi 1.1 Raccoglimeto totale a fattor comue..3 1. Raccoglimeto parziale a fattor comue 3 1.3 Triomio scompoibile el

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50 Ua delle applicazioi della teoria delle proporzioi è la divisioe di u umero (o di ua gradezza) i parti direttamete o iversamete proporzioali a più umeri o a più serie di umeri dati. Tale tipo di problema

Dettagli

06 LE SUCCESSIONI DI NUMERI REALI

06 LE SUCCESSIONI DI NUMERI REALI 06 LE SUCCESSIONI DI NUMERI REALI Ua successioe è ua fuzioe defiita i. I simboli ua f : A tale che f ( ) è ua successioe di elemeti di A. Se poiamo f ( i) ai co i,...,,..., ua successioe può essere rappresetata

Dettagli

L ultimo Teorema di Fermat

L ultimo Teorema di Fermat L ultimo Teorema di Fermat L ultimo teorema di Fermat afferma che l equazioe x + y = z o può avere soluzioi itere di x + y = z co x, y, z > 2 e > 2 itero. La dimostrazioe di questa cogettura è stata sviluppata

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Matematiche Complementari 24 gennaio 2012

Matematiche Complementari 24 gennaio 2012 Matematiche Complemetari 4 geaio 01 1. Euciare gli assiomi di Peao e dimostrare che due sistemi che li soddisfao soo fra loro isomorfi.. Data la successioe (di Fiboacci): a = 0 a a 0 1 = 1 = a 1 + a per

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI U equazioe i cui l icogita compare almeo ua volta sotto il sego di radice si dice equazioe irrazioale Soo irrazioali le segueti equazioi: 3 x

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 3 3.1 Defiizioi e proprietà La comparsa dei umeri complessi è legata, da u puto di vista storico, alla risoluzioe delle equazioi di secodo grado. L equazioe ammette le soluzioi x 2 + 2px + q =

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

Algebra Polinomiale. Capitolo S-02. Indice del capitolo. Autore: Mirto Moressa.

Algebra Polinomiale. Capitolo S-02. Indice del capitolo. Autore: Mirto Moressa. Capitolo S-0 Algebra Poliomiale Autore: Mirto Moressa Cotatto: mirtomo@tiscali.it Sito: www.mirtomoressa.altervista.org Data iizio: 0/09/009 Data fie: 3/09/009 Ultima modifica: 5//0 Versioe:.5 Idice del

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN Giulio Cesare Barozzi: Primo Corso di Aalisi Matematica Zaichelli (Bologa), 998, ISBN 88-08-069-0 Capitolo NUMERI REALI Soluzioe dei problemi posti al termie di alcui paragrafi. Numeri aturali, iteri,

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

SECONDO ESONERO DI AM1 10/01/ Soluzioni

SECONDO ESONERO DI AM1 10/01/ Soluzioni Esercizio. Calcolare i segueti iti: Razioalizzado si ottiee SECONDO ESONERO DI AM 0/0/2008 - Soluzioi 2 + 2, 2 + 2 = 2 + 2 + 2 + 2 = Per il secodo ite ci soo vari modi, e mostro tre. Ora ( ) ( + si = +

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi

Esercizi sui numeri complessi per il dodicesimo foglio di esercizi Esercizi sui umeri complessi per il dodicesimo foglio di esercizi 6 dicembre 2010 1 Numeri complessi radici ed equazioi Ricordiamo iazitutto che dato u umero complesso z = x + iy, il suo coiugato, idicato

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Forme Bilineari 1 / 34

Forme Bilineari 1 / 34 Forme Bilieari 1 / 34 Defiizioe applicazioe Dicesi forma bilieare su uo spazio vettoriale V, ua ϕ : V V R che è lieare i etrambi gli argometi, ossìa tale che u,v,w V e a,b R si abbia: ϕ(au + bv,w) =aϕ(u,w)

Dettagli

Prova scritta del 9/1/2003

Prova scritta del 9/1/2003 Prova scritta del 9//00 Soluzioe degli esercizi N. Le quattro serie proposte soo a termii positivi. Per studiare la covergeza delle serie a termii positivi è possibile utilizzare uo dei segueti criteri

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s

Corso di ordinamento Liceo della Comunicazione- Sessione ordinaria - a.s Corso di ordiameto Liceo della Comuicazioe- Sessioe ordiaria - as 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE Tema di: MATEMATICA a s 9- Corso di ordiameto Liceo

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Esercitazione due: soluzioni

Esercitazione due: soluzioni Esercitazioe due: soluzioi. Sia il ricavo r i pk i ti, p, k, t i > applicado la defiizioe di media di Chisii il tempo medio t che lascia ivariato il ricavo totale é quel valore tale che pk i ti pk i t

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Capitolo equazioi e disequazioi Disequazioi e pricìpi di equivaleza Le disuguagliaze soo euciati fra espressioi che cofrotiamo mediate le segueti relazioi d ordie: (miore), (maggiore), # (miore o uguale),

Dettagli

Soluzioni prova scritta del

Soluzioni prova scritta del Soluzioi prova scritta del 5.09.07 Esercizio : Calcolare il ite log Ñ 8? plog q? plog q e? plog q? p q log e? e plog q 4? plog q. Soluzioe. Cosideriamo il umeratore. Si ha??? log plog q plog q p plog q

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne.

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne. Matrici Geeralità sulle matrici I matematica, ua matrice è uo schierameto rettagolare di oggetti; le matrici di maggiore iteresse soo costituite da umeri come, per esempio, la seguete: 1 s 6 4 4 2 v t

Dettagli

Serie numeriche. Esercizi

Serie numeriche. Esercizi Serie umeriche. Esercizi Mauro Saita, aprile 204. Idice Serie umeriche.. Serie a termii defiitivamete positivi..............................2 Serie a termii di sego altero.................................

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

TEORIA DEI NUMERI DIVISIBILITA

TEORIA DEI NUMERI DIVISIBILITA TEORIA DEI NUMERI DIVISIBILITA Cosideriamo l isieme Z dei umeri iteri Metre è sempre possibile sommare, sottrarre e moltiplicare due umeri iteri, o sempre esiste la divisioe Itroduciamo quidi u operazioe

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Limiti di successioni

Limiti di successioni Limiti di successioi Aalisa Cesaroi, Paola Maucci e Alvise Sommariva Uiversità degli Studi di Padova Dipartimeto di Matematica 20 ottobre 2015 Aalisa Cesaroi, Paola Maucci e Alvise Sommariva Itroduzioe

Dettagli

Lezione 2 - Algebra. Problema 1 Sia dato il polinomio

Lezione 2 - Algebra. Problema 1 Sia dato il polinomio Lezioe - Algebra Problema 1 Sia dato il poliomio p(x) = x 3 8x 1 e siao λ 1, λ, λ 3 le sue radici. Calcolare λ 3 1 + λ 3 + λ 3 3. Dalle formule di Viete sappiamo che σ 1 = λ 1 + λ + λ 3 = 0 σ = λ 1 λ +

Dettagli

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO

A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO A. EQUAZIONI LINEARI IN DUE INCOGNITE E SISTEMI DI 1 GRADO 1. I sistemi di equazioi di primo grado U problema può coivolgere più icogite, ma soprattutto può coivolgere più codizioi riferite ad esse, che

Dettagli

x 1 + x 2 + x 3 = 0 (a) 2x 2 + x 3 = 1 x 1 + x 2 = 2 Poichè la matrice incompleta 1 1 1

x 1 + x 2 + x 3 = 0 (a) 2x 2 + x 3 = 1 x 1 + x 2 = 2 Poichè la matrice incompleta 1 1 1 Uiversità degli Studi Roma Tre Corso di Laurea i Ottica ed Optometria Tutorato di Istituzioi di Matematica - AA206/207 Docete: Profssa E Scoppola Tutore: Giaclaudio Pietrazzii Esercizio Risolvere i segueti

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni

Studio di funzione. Rappresentazione grafica di una funzione: applicazioni Studio di fuzioe Tipi di fuzioi Le fuzioi si possoo raggruppare i alcue tipologie di base: Razioali: se le operazioi che vi si effettuao soo addizioe, sottrazioe, prodotto, divisioe ed elevameto a poteza

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh.

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh. Prerequisiti: Lezioe Gruppi Lezioe 2 Z Gruppi isomorfi Gruppi S e A Riferimeti ai testi: [FdG] Sezioe ; [H] Sezioe 26; [PC] Sezioe 58 Sottogruppi ormali Gruppi quoziete L Esempio 7 giustifica la seguete

Dettagli

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzioe del primo compitio di Aalisi e 2 A.A. 20/205 Luca Ghidelli, Giovai Paolii, Leoardo Tolomeo 5 dicembre 20 Esercizio Testo. Calcolare, se esiste, + 3 + 5 + + (2 ). 2 + + 6 + + 2 Soluzioe. Al deomiatore

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli