SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A"

Transcript

1 SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo aver messo i evideza il termie domiate, otteiamo a := log x x + log x x = log x x = log x x log x. Quidi la serie coverge per log x <, cioè < log x <, che forisce t { log x < / log x > / = { log x < / log x > / = e / < x < e / ; metre diverge per x < e / oppure x > e /. Ifie, per x = e /, a = / x + / x che diverge per cofroto co la serie armoica geeralizzata di espoete x = e / <, metre per x = e /, a = /ˆx + /ˆx che coverge per cofroto co la serie armoica geeralizzata di espoete x = e / >. Esercizio Per α =, effettuado la sostituzioe y = x, da cui x dx = dy, otteiamo x + xe x dx = x + e x x dx = y + e y dy = ye y = ye y ey x + ey + C = e x + + C. 8 e y dy + ey + C Ivece, teedo coto che, per ogi α R, f α è dispari cioè f α x = f α x e l itervallo d itegrazioe è simmetrico rispetto all origie, si ricava subito che l itegrale proposto è ullo. Esercizio L equazioe differeziale proposta risulta essere u equazioe lieare del secodo ordie a coefficieti costati e o omogeea. Cosideriamo dapprima il caso α. L equazioe caratteristica associata è λ + α = 0 che ha per soluzioi α λ = α λ = ± se α <, = α λ = ± i se α >. Pertato, l itegrale geerale dell equazioe omogeea associata è y 0 x = C e x α/ + C e x α/ se α <, y 0 x = C cosx α / + C six α / se α >. Per determiare ua soluzioe particolare dell equazioe completa utilizziamo il metodo di somigliaza che forisce y p x = Ax + Bx + C, da cui y px = Ax + B e y x = A. Iseredo ell equazioe completa e ricordado il pricipio di idetità dei poliomi, ricaviamo 8A + α Ax + Bx + C = x, da cui α A =, α B = 0, 8A + α C = 0, = A = α, B = 0, C = 6 α.

2 Quidi l itegrale geerale è dato da yx = C e x α/ + C e x α/ + 6 α x α se α <, yx = C cosx α / + C six α / + 6 α x α se α >. Ivece per α =, l equazioe differeziale si riduce a y x = x /, da cui, itegrado due volte, otteiamo che l itegrale geerale è dato da yx = x + C x + C. Esercizio Per determiare gli estremati di f studiamoe la mootoia attraverso la derivata. Da ciò ricaviamo f x = ex e x e x e x + e x e x = e x ex 8e x. Quidi il sego della derivata è determiato dal sego del fattore e x 8e x il quale, co il cambio di variabile t = e x, si trasforma el triomio di secodo grado t 8t. Tale triomio si aulla per t = ± 8, ma essedo t = e x, l uica radice ammissibile è quella positiva, data da t = + 8, ovvero x = log + 8 [log, log 5]. Pertato, otteiamo Quidi x = log + 8 > 0 se x > log + 8, f x = 0 se x = log + 8, < 0 se x < log + 8. è puto di miimo assoluto, metre gli estremi dell itervallo, cioè i puti x = log e x = log 5, soo puti di massimo relativo. Per stabilire quale dei due sia ache puto di massimo assoluto, valutiamo la fuzioe agli estremi, otteedo flog = 9 ed flog 5 = 5/ = 7. Pertato, x = log è puto di massimo assoluto, metre x = log 5 è puto di massimo relativo. Cocludiamo osservado che la fuzioe proposta è cotiua sull itervallo chiuso e limitato [log, log 5], pertato l esisteza di estremati assoluti è garatita dal Teorema di Weierstrass. Esercizio 5 Osserviamo che le affermazioi C e D soo false; ifatti, prededo a = b = = o/, si ottiee che la serie a = e la serie b = soo etrambe covergeti. Ivece, le affermazioi A e B soo corrette. Ifatti, poiché a b, si ottiee che a b la covergeza o è soddisfatta e la serie a b 0, quidi la codizioe ecessaria per diverge, metre a b a = o/, cioè a b / 0, quidi a b = a b / e la serie a b coverge per cofroto co la serie armoica geeralizzata di espoete >.

3 TEMA B Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo aver messo i evideza il termie domiate, otteiamo a := ex 5 5 x + ex 5 5 x = ex 5 5 x = ex 5 5 x ex 5. Quidi la serie coverge per e x 5 <, cioè < e x 5 <, che forisce { { e x < 6 e x < e x = > e x = log < x < log ; > metre diverge per x < log oppure x > log. Ifie, per x = log, a = /5 x + /5 x che diverge per cofroto co la serie armoica geeralizzata di espoete x = log <, metre per x = log, a = /5ˆx + /5ˆx che coverge per cofroto co la serie armoica geeralizzata di espoete x = log >. Esercizio Per α =, effettuado la sostituzioe y = x, da cui x dx = dy, otteiamo x + x six dx = x + six x dx = y + siy dy = y cosy + cosy dy cosy + C = y cosy + cosy siy + C = x cosx + six cosx + C. 8 Ivece, teedo coto che, per ogi α R, f α è dispari cioè f α x = f α x e l itervallo d itegrazioe è simmetrico rispetto all origie, si ricava subito che l itegrale proposto è ullo. Esercizio L equazioe differeziale proposta risulta essere u equazioe lieare del secodo ordie a coefficieti costati e o omogeea. Cosideriamo dapprima il caso α. L equazioe caratteristica associata è λ α + = 0 che ha per soluzioi { λ = α + = λ = ± α + se α >, λ = ± α i se α <. Pertato, l itegrale geerale dell equazioe omogeea associata è y 0 x = C e x α+ + C e x α+ se α >, y 0 x = C cosx α + C six α se α <. Per determiare ua soluzioe particolare dell equazioe completa utilizziamo il metodo di somigliaza che forisce y p x = Ax + Bx + C, da cui y px = Ax + B e y x = A. Iseredo ell equazioe completa e ricordado il pricipio di idetità dei poliomi, ricaviamo A α + Ax + Bx + C = x +, da cui α + A =, α + B = 0, = A = α +, B = 0, C = α + α +. A α + C =, Quidi l itegrale geerale è dato da yx = C e x α+ + C e x α+ yx = C cosx α + C six α α + x α + α + se α >, α + x α + α + se α <. Ivece per α =, l equazioe differeziale si riduce a y x = x +, da cui, itegrado due volte, otteiamo che l itegrale geerale è dato da yx = x 6 + x + C x + C.

4 Esercizio Per determiare gli estremati di f studiamoe la mootoia attraverso la derivata. Da ciò ricaviamo f x = x log xlog x + x log x + log x + = xlog x + log x + log x. Quidi il sego della derivata è determiato dal sego del fattore log x + log x il quale, co il cambio di variabile t = log x, si trasforma el triomio di secodo grado t + t. Tale triomio si aulla per t = ±, ovvero x = e ±, ma l uica radice ammissibile è x = e + [ e, e]. Pertato, otteiamo > 0 se x > e +, f x = 0 se x = e +, < 0 se x < e +. Quidi x = e + è puto di miimo assoluto, metre gli estremi dell itervallo, cioè i puti x = e e x = e, soo puti di massimo relativo. Per stabilire quale dei due sia ache puto di massimo assoluto, valutiamo la fuzioe agli estremi, otteedo f e = / = fe. Pertato, etrambi i puti x = e e x = e soo puti di massimo assoluto. Cocludiamo osservado che la fuzioe proposta è cotiua sull itervallo chiuso e limitato [ e, e], pertato l esisteza di estremati assoluti è garatita dal Teorema di Weierstrass. Esercizio 5 Osserviamo che le affermazioi B e C soo false; ifatti, prededo a = b = = o/, si ottiee che la serie b = e la serie a = soo etrambe covergeti. Ivece, le affermazioi A e D soo corrette. Ifatti, poiché a b, si ottiee che b a 0, quidi la codizioe ecessaria per la covergeza o è soddisfatta e la serie b a diverge, metre a b b = b = o/, cioè a b / 0, quidi ab a b = / e la serie a b coverge per cofroto co la serie armoica geeralizzata di espoete >.

5 TEMA C Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo aver messo i evideza il termie domiate, otteiamo a := ex 8 x + 5 ex 8 x = ex 8 x = ex 8 x ex 8. Quidi la serie coverge per e x 8 <, cioè < e x 8 <, che forisce { { e x < 9 e x < e x = > 7 e x = log7/ < x < log ; > 7/ metre diverge per x < log7/ oppure x > log. Ifie, per x = log7/, a = / x + 5 / x che diverge per cofroto co la serie armoica geeralizzata di espoete x = log7/ <, metre per x = log, a = /ˆx + 5 /ˆx che coverge per cofroto co la serie armoica geeralizzata di espoete x = log >. Esercizio Per α =, effettuado la sostituzioe y = x, da cui x dx = dy, otteiamo x + x six dx = x + six x dx = y + si y dy = y cos y + cos y dy cos y + C = y cos y + si y cos y + C = x cosx + six cosx + C. Ivece, teedo coto che, per ogi α R, f α è dispari cioè f α x = f α x e l itervallo d itegrazioe è simmetrico rispetto all origie, si ricava subito che l itegrale proposto è ullo. Esercizio L equazioe differeziale proposta risulta essere u equazioe lieare del secodo ordie a coefficieti costati e o omogeea. Cosideriamo dapprima il caso α /. L equazioe caratteristica associata è λ 9α + = 0 che ha per soluzioi { λ 9α + λ = ± α + / se α > /, = = λ = ± α i/ se α < /. Pertato, l itegrale geerale dell equazioe omogeea associata è y 0 x = C e x α+/ + C e x α+/ y 0 x = C cosx α / + C six α / se α > /, se α < /. Per determiare ua soluzioe particolare dell equazioe completa utilizziamo il metodo di somigliaza che forisce y p x = Ax + Bx + C, da cui y px = Ax + B e y x = A. Iseredo ell equazioe completa e ricordado il pricipio di idetità dei poliomi, ricaviamo A 9α + Ax + Bx + C = x +, da cui 9α + A =, 9α + B = 0, 8A 9α + C =, = A = 9α +, B = 0, C = 6α α +. Quidi l itegrale geerale è dato da yx = C e xα+/ + C e xα+/ 6α α + x 8α + se α > /, yx = C cosx α / + C six 6α + 50 α / 9α + x 8α + se α < /. Ivece per α = /, l equazioe differeziale si riduce a y x = x +, da cui, itegrado due volte, otteiamo che l itegrale geerale è dato da yx = x + x + C x + C. 5

6 Esercizio Per determiare gli estremati di f studiamoe la mootoia attraverso la derivata. Da ciò ricaviamo f x = x log x + x log x log x + log x + = xlog x + log x + log x 6. Quidi il sego della derivata è determiato dal sego del fattore log x + log x 6 il quale, co il cambio di variabile t = log x, si trasforma el triomio di secodo grado t + t 6. Tale triomio si aulla per t = ± 9, ovvero x = e ± 9, ma l uica radice ammissibile è x = e + 9 [e, e ]. Pertato, otteiamo < 0 se x > e + 9, f x = 0 se x = e + 9, > 0 se x < e + 9. Quidi x = e + 9 è puto di massimo assoluto, metre gli estremi dell itervallo, cioè i puti x = e e x = e, soo puti di miimo relativo. Per stabilire quale dei due sia ache puto di massimo assoluto, valutiamo la fuzioe agli estremi, otteedo fe = / ed fe = 0/. Pertato, x = e è puto di miimo assoluto, metre x = e è puto di miimo relativo. Cocludiamo osservado che la fuzioe proposta è cotiua sull itervallo chiuso e limitato [e, e ], pertato l esisteza di estremati assoluti è garatita dal Teorema di Weierstrass. Esercizio 5 Osserviamo che le affermazioi A e D soo false; ifatti, prededo a = b = = o/, si ottiee che la serie b = e la serie a = soo etrambe covergeti. Ivece, le affermazioi B e C soo corrette. Ifatti, poiché a b, si ottiee che b a 0, quidi la codizioe ecessaria per la covergeza o è soddisfatta e la serie b a diverge, metre a b b = b = o/, cioè a b / 0, quidi a a b = b / e la serie a b coverge per cofroto co la serie armoica geeralizzata di espoete >. 6

7 TEMA D Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo aver messo i evideza il termie domiate, otteiamo a := log x + x + log x + x = log x + x = log x + x log x +. Quidi la serie coverge per log x + <, cioè < log x + <, che forisce { log x < / log x > / = { log x < /9 log x > /9 = e /9 < x < e /9 ; metre diverge per x < e /9 oppure x > e /9. Ifie, per x = e /9, a = / x + / x che diverge per cofroto co la serie armoica geeralizzata di espoete x = e /9 <, metre per x = e /9, a = /ˆx + /ˆx che coverge per cofroto co la serie armoica geeralizzata di espoete x = e /9 >. Esercizio Per α = 0, effettuado la sostituzioe y = x, da cui x dx = dy, otteiamo x + xe x / dx = x + e x / x dx = y + e y/ dy = ye y/ e y/ dy + e y/ + C = ye y/ 8e y/ + e y/ + C = e x / x + C. Ivece, teedo coto che, per ogi α R, f α è dispari cioè f α x = f α x e l itervallo d itegrazioe è simmetrico rispetto all origie, si ricava subito che l itegrale proposto è ullo. Esercizio L equazioe differeziale proposta risulta essere u equazioe lieare del secodo ordie a coefficieti costati e o omogeea. Cosideriamo dapprima il caso α /. L equazioe caratteristica associata è 9λ + α = 0 che ha per soluzioi α λ = α λ = ± se α < /, = 9 α λ = ± i se α > /. Pertato, l itegrale geerale dell equazioe omogeea associata è y 0 x = C e x α/ + C e x α/ se α < /, y 0 x = C cosx α / + C six α / se α > /. Per determiare ua soluzioe particolare dell equazioe completa utilizziamo il metodo di somigliaza che forisce y p x = Ax + Bx + C, da cui y px = Ax + B e y x = A. Iseredo ell equazioe completa e ricordado il pricipio di idetità dei poliomi, ricaviamo 8A + α Ax + Bx + C = x, da cui α A =, α B = 0, 8A + α C = 0, = A = 7 α, B = 0, C = 7 α.

8 Quidi l itegrale geerale è dato da yx = C e x α/ + C e x α/ + 7 α x α se α < /, yx = C cosx α / + C six α / + 7 α x α se α > /. Ivece per α = /, l equazioe differeziale si riduce a y x = x /9, da cui, itegrado due volte, otteiamo che l itegrale geerale è dato da yx = x 7 + C x + C. Esercizio Per determiare gli estremati di f studiamoe la mootoia attraverso la derivata. Da ciò ricaviamo f x = ex e x + e x e x + e x + = e x + ex + e x 9. Quidi il sego della derivata è determiato dal sego del fattore e x + e x 9 il quale, co il cambio di variabile t = e x, si trasforma el triomio di secodo grado t + t 9. Tale triomio si aulla per t = ±, ma essedo t = e x, l uica radice ammissibile è quella positiva, data da t = +, ovvero x = log + Quidi x = log [log/, log ]. Pertato, otteiamo + < 0 se x > log f x = 0 se x = log > 0 se x < log e x +, + + è puto di massimo assoluto, metre gli estremi dell itervallo, cioè i puti x = log/ e x = log, soo puti di miimo relativo. Per stabilire quale dei due sia ache puto di miimo assoluto, valutiamo la fuzioe agli estremi, otteedo flog/ = / ed flog = /. Pertato, x = log è puto di miimo assoluto, metre x = log/ è puto di miimo relativo. Cocludiamo osservado che la fuzioe proposta è cotiua sull itervallo chiuso e limitato [log/, log ], pertato l esisteza di estremati assoluti è garatita dal Teorema di Weierstrass. Esercizio 5 Osserviamo che le affermazioi B e C soo false; ifatti, prededo a = b = = o/, si ottiee che la serie a = e la serie b = soo etrambe covergeti. Ivece, le affermazioi A e D soo corrette. Ifatti, poiché a b, si ottiee che a b la covergeza o è soddisfatta e la serie a b,. 0, quidi la codizioe ecessaria per diverge, metre a b a = o/, cioè a b / 0, quidi a b = a b / e la serie a b coverge per cofroto co la serie armoica geeralizzata di espoete >. 8

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del //4 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Poedo z = x + iy, otteiamo iz + z = ix y + x xy y, da cui si ricava e iz +z = 3 e xy y = 3 xy y = log 3 Pertato, avremo

Dettagli

SOLUZIONI COMPITO del 13/02/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 13/02/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del 13/0/017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio 1 Iazitutto poiamo le codiziooi di esisteza dell equazioe che soo z 3; 3i; facciamo, poi, il comu deomiatore e otteiamo

Dettagli

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A

SOLUZIONI COMPITO del 5/06/2014 ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A SOLUZIONI COMPITO del 5/6/ ANALISI MATEMATICA I - 9 CFU MECCANICA - ENERGETICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è a termii di sego arbitrario (i fuzioe del parametro reale

Dettagli

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1 SOLUZIONI COMPITO del /0/07 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio i Osserviamo che effettuado la divisioe si ottiee w = 9+4α iα +iα +iα = i α Poiché 9+4α 9+4α w = 9+4α + α 9+4α =, si

Dettagli

Compito di Matematica II - 12 Settembre 2017

Compito di Matematica II - 12 Settembre 2017 Compito di Matematica II - Settembre 7 Corso di Laurea i Ottica e Optometria - A.A. 6/7 Soluzioi degli esercizi. Esercizio. a) Il domiio C è il cerchio di raggio uitario. La fuzioe fx y) = x + y è defiita

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia PROVA SCRIA DI ANALISI MAMAICA Corso di laurea i Matematica 6 Settembre 6 Risoluzioe a cura di N. Fusco & G. Floridia ) Discutere la covergeza putuale e uiforme della serie π arctg )). ) Svolgimeto ):

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

(x log x) n2. (14) n + log n

(x log x) n2. (14) n + log n Facoltà di Scieze Matematiche Fisiche e Naturali- Aalisi Matematica A (c.l.t. i Fisica) Prova parziale del 8 Novembre 20 Svolgere gli esercizi segueti. Studiare il domiio ed il comportameto della serie

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

Soluzioni prova scritta del

Soluzioni prova scritta del Soluzioi prova scritta del 5.09.07 Esercizio : Calcolare il ite log Ñ 8? plog q? plog q e? plog q? p q log e? e plog q 4? plog q. Soluzioe. Cosideriamo il umeratore. Si ha??? log plog q plog q p plog q

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 5 Settembre 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 5 Settembre 2019 Uiversità di Roma Tor Vergata - Corso di Laurea i Igegeria Aalisi Matematica I - Prova scritta del 5 Settembre 019 Esercizio 1. [5 puti] Calcolare lo sviluppo di Taylor dell ordie = 6 co cetro x 0 = 0

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

Riassunto delle Esercitazioni di Analisi Matematica II

Riassunto delle Esercitazioni di Analisi Matematica II Riassuto delle Esercitazioi di Aalisi Matematica II C.d.L. i Matematica e Matematica per le Applicazioi - A. A. 2006-2007 Prof. Kevi R. Paye e Dott. Libor Vesely 1 Serie Numeriche - Mer. 28 marzo - due

Dettagli

Svolgimento degli esercizi del Capitolo 4

Svolgimento degli esercizi del Capitolo 4 4. Michiel Bertsch, Roberta Dal Passo, Lorezo Giacomelli Aalisi Matematica 2 a edizioe Svolgimeto degli esercizi del Capitolo 4 Il limite segue dal teorema del cofroto: e / 0 per. 4.2 0

Dettagli

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9 Esercizi di Aalisi - Alberto Valli - AA 5/6 - Foglio. Calcolate tramite cambiameto di variabile ciascuo dei segueti itegrali : i / six + dx ii log log e 6x e x dx iii / π/ cos 5 xsix cos x dx. Soluzioe.

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n ANALISI VETTORIALE COMPITO IN CLASSE DEL 22//23 Esercizio Calcolare la 2esima derivata del logaritmo el puto. Risposta Si tratta di calcolare d 2 dx 2 log( + x) x= = a 2 2! dove a 2 è il termie di idice

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci, C. Marchi, M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza (Viee dato u ceo di soluzioe del Tema. I Temi, 3 e 4 possoo essere svolti i modo del tutto simile) TEMA cos(3x) + π cos(3x) + 3. (a) Determiare il domiio di f, evetuali simmetrie, periodicità e sego. (b)

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2004/05

PROVE SCRITTE DI ANALISI MATEMATICA II(N.O.), ANNO 2004/05 PROVE SRITTE DI ANALISI MATEMATIA II(N.O.), ANNO 4/5 Prova scritta del 3/3/5 Esercizio Deotato co A il umero delle lettere del ome, si studi, al variare di α >, l itegrabilita della fuzioe g(x, y) = (x

Dettagli

4 - Le serie Soluzioni. n + 3. n + 3. n + 2

4 - Le serie Soluzioni. n + 3. n + 3. n + 2 4 - Le serie Soluzioi Esercizio. Studiare la covergeza delle serie: + + 2 + cos!) 2 cosπ). Per la prima serie si ha 0 + + 2 + = 2. Dal mometo che la serie di termie geerico 2 è covergete serie armoica

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

Soluzione della prova scritta di ANALISI MATEMATICA di GENNAIO. Soluzione: Risolviamo prima l omogenea associata, cioè: y + y = 0

Soluzione della prova scritta di ANALISI MATEMATICA di GENNAIO. Soluzione: Risolviamo prima l omogenea associata, cioè: y + y = 0 Compito A Soluzioe della prova scritta di ANALISI MATEMATICA di GENNAIO. Trovare l itegrale geerale di y + y si x. Soluzioe: Risolviamo prima l omogeea associata, cioè: y + y Per far ciò, scriviamo e risolviamo

Dettagli

MATEMATICA GENERALE MODULO B 13 giugno 2003

MATEMATICA GENERALE MODULO B 13 giugno 2003 MATEMATICA GENERALE MODULO B 3 giugo 003 cogome : ome : matricola : Ecocomm A-D (Carcao) Ecocomm E-O (Carcao) Ecocomm P-Z (Valaperta) Ecoba (Zambruo) Ecoit-soc-pub (Mauri) Ecotur-sti (Moti) Ecoamm (Grassi)

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Siamo interessati a studiare la convergenza della serie e porremo come al solito:

Siamo interessati a studiare la convergenza della serie e porremo come al solito: SERIE DI POTENZE Soo particolari serie di fuzioi, i cui termii soo moomi, evetualmete traslati: f (x) co f (x) =a (x x 0 ), a R, x 0 R, ossia dove a (x x 0 ) = a 0 + a 1 (x x 0 )+a 2 (x x 0 ) 2 +... x

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

Risoluzione del compito n. 2 (Gennaio 2017/2)

Risoluzione del compito n. 2 (Gennaio 2017/2) Risoluzioe del compito. (Geaio 017/ PROBLEMA 1 Trovate tutte le soluzioi (z, w, co z, w C,del sistema { i z + w =0 z + z + w +1=0;. Dalla prima equazioe, w = i z e quidi w = iz, che sostituito ella secoda

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) )

Matematica - Ingegneria Gestionale - Prova scritta del 25 giugno SOLUZIONI - (a n ) 1 + n ha limite + 1 = cos(πn) 1 cos(πn) ) Matematica - Igegeria Gestioale - Prova scritta del 5 giugo 007 - SOLUZIONI -. Si idichio le frasi corrette PUNTI: /-/0 per ogi domamda). se a := + cosπ) a ) è limitata iferiormete cosπ) se a := a ) è

Dettagli

ANALISI MATEMATICA 1-15/07/2019 Corso di Laurea in Ingegneria Meccanica. Terzo Appello - Test 1

ANALISI MATEMATICA 1-15/07/2019 Corso di Laurea in Ingegneria Meccanica. Terzo Appello - Test 1 ANALISI MATEMATICA - 5/07/209 Corso di Laurea i Igegeria Meccaica Il cadidato deve riportare ella griglia le risposte che ritiee corrette. Al termie della prova il cadidato deve ricosegare questo foglio.

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott.

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. e Uiversità di Trieste Facoltà d Igegeria. Esercizi sulle serie umeriche e sulle successioi e serie di fuzioi Dott. Fraco Obersel Esercizio Rispodere alle segueti questioi: a) Siao a 0 + a + a +... b 0

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 18 gennaio 2016 omada ) ) 4 cos si = 0 + e 4 C) 0 ) + omada La fuzioe f : (0, + ) R defiita da f() = si ( ) cos ) ha sia massimo che miimo ) è itata ma o ha é massimo é miimo C) o è itata e o ha asitoti ) ha u asitoto

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x Prova scritta di Aalisi Matematica I () //5 Euciare e dimostrare il teorema della permaeza del sego Fare u esempio Defiizioe di fuzioe ifiitesima per Motivado la risposta, dire qual è l ordie di ifiitesimo

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Prova scritta del 9/1/2003

Prova scritta del 9/1/2003 Prova scritta del 9//00 Soluzioe degli esercizi N. Le quattro serie proposte soo a termii positivi. Per studiare la covergeza delle serie a termii positivi è possibile utilizzare uo dei segueti criteri

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1.

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1. Esecitazioe AM.-A.A. 006-007- 0/0/06 Successioi di fuzioi Studiare la covergeza putuale ed uiforme delle segueti successioi di fuzioi:. f (x) = x +, x A R.. f (x) = si(x) +, x R. 3. f (x) = xe x, x [0,

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE

Ingegneria Aerospaziale. Corso di Analisi Matematica 1. Compito del 3 giugno 2008 SOLUZIONE Igegeria Aerospaziale. Corso di Aalisi Matematica. Compito del 3 giugo 8 SOLUZIONE. Se a := 3 + 3 domada. idicare quali delle segueti affermazioi soo vere puti /- a a a è itata; b a ha ite; c a ha ua sottosuccessioe

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Successioi di fuzioi: covergeza putuale Defiizioe Sia I u isieme di umeri reali e sia ua successioe di fuzioi reali defiite i I : I R, I R. Si dice che Cioè f : I R, risulta coverge

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n

n + 2n 3 ; (1) lim n 2 log n + n (2) lim 2 n + 5 n = (3) lim Soluzione. (1). Riscrivendo oppportunamente la successione, si ha n2 (1 + 1/n 2 ) = n Limiti di Successioi Ifiiti ed Ifiitesimi Esercizio Calcolare se esistoo i segueti iti: + + ; log + + + 5 ;! + +! Soluzioe Riscrivedo oppportuamete la successioe si ha + a = = + / = + Poichè + = + + =

Dettagli

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3

SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1. Ingegneria per l Ambiente e il Territorio - III appello, 11 luglio 2012 TEMA 3 SOLUZIONI - FONDAMENTI di ANALISI MATEMATICA 1 Igegeria per l Ambiete e il Territorio - III appello, 11 luglio 212 Riportiamo lo svolgimeto dei temi 3 e 4 e le sole soluzioi dei temi 1 e 2. I temi pari

Dettagli

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018

Universitá di Roma Tor Vergata Analisi 1, Ingegneria (CIO-FR), Prof. A. Porretta Esame del 19 febbraio 2018 Uiversitá di Roma Tor Vergata Aalisi, Igegeria CIO-FR), Prof. A. Porretta Esame del 9 febbraio 08 Esame orale : Esercizio [7 puti] Studiare la fuzioe f) = + 4 ) disegadoe u grafico qualitativo e idicado:

Dettagli

CdL in Fisica Prova scritta di Analisi Matematica I del giorno C1

CdL in Fisica Prova scritta di Analisi Matematica I del giorno C1 del gioro 07-02-2007. C1 1) Studiare la successioe defiita per ricorreza a 1 1, a +1 = 1 + loga N 2) Studiare la serie umerica al variare del parametro reale positivo α 3) Calcolare il ite seguete 4) Data

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Prova scritta di Analisi Matematica I 15/09/2010

Prova scritta di Analisi Matematica I 15/09/2010 Prova scritta di Aalisi Matematica I VO 5/09/00 ) Data la fuzioe f ( ) + a) disegare il grafico illustrado i passaggi fodametali b) Euciare e dimostrare il Teorema di Rolle e se possibile applicarlo a

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1

y f x x x 1 0;1 y 1 (l equazione deve essere invariante per trasformazioni x x, f x ax x 1 0;1 f x x x 1 0;1 S x dx x % f x ax bx cx d x 0;1 Esame di Stato 8 Problema ; y f x x x L equazioe della curva che descrive il profilo sull itera mattoella si ottiee simmetrizzado tale fuzioe rispetto agli assi e all origie (ovviamete o è l equazioe di

Dettagli

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni

EQUAZIONI E DISEQUAZIONI IRRAZIONALI. Prof.ssa Maddalena Dominijanni EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI U equazioe i cui l icogita compare almeo ua volta sotto il sego di radice si dice equazioe irrazioale Soo irrazioali le segueti equazioi: 3 x

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 008/009 Docete: R Argiolas Cogome Matricola 6 Geaio 009 ore 9 Aula C Nome Corso voto Esercizio Assegata la uzioe a Si determii il suo

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Programma di Analisi Matematica II Corso di Laurea in Ingegneria Edile-Architettura (Corso A) a.a (Prof. Basile Nicola)

Programma di Analisi Matematica II Corso di Laurea in Ingegneria Edile-Architettura (Corso A) a.a (Prof. Basile Nicola) Programma di Aalisi II Programma di Aalisi Matematica II Corso di Laurea i Igegeria Edile-Architettura (Corso A) a.a. 009-10 (Prof. Basile Nicola) --010 ( ore) Il primo e il secodo teorema del calcolo

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli