Principali distribuzioni di probabilità continue

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Principali distribuzioni di probabilità continue"

Transcript

1 Capitolo 5 Principali distribuzioni di probabilità continu In qusto capitolo prsntiamo alcun distribuzioni di probabilità assolutamnt continu 51 La distribuzion uniform La distribuzion uniform è la distribuzion di vnti quiprobabili Nl caso continuo una variabil alatoria si dic ch sgu una distribuzion uniform nll intrvallo con s ha la sgunt funzion di dnsità: Scrivrmo allora #"$ #"$ s altrimnti La spranza matmatica la varianza di una variabil alatoria sono dat rispttivamnt da: + Var ) - Figura 51: Funzion di dnsità di distribuzion uniform continua su 119

2 120 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Il paradosso di Brtrand Si scgli a caso una corda di un crchio di raggio cntro Qual è la probabilità ch sia maggior dl lato dl triangolo quilatro inscritto? Il problma ha più di una soluzion in quanto non risulta chiaro il significato dlla fras scglir una corda a caso Indichiamo con la lunghzza dl lato dl triangolo quilatro inscritto 1 Considrata una corda sia il punto intrmdio La corda è più lunga dl lato dl triangolo quilatro s il punto ricad all intrno dl crchio di raggio cntro Il rapporto fra tali ar è 14 prtanto risulta 2 In bas alla simmtria un strmo dlla corda può ssr sclto sulla circonfrnza dl crchio in corrispondnza di uno di vrtici dl triangolo I vrtici dl triangolo dividono la circonfrnza in tr archi di ugual lunghzza prtanto si ha 3 Sclto un punto a caso uniformmnt sul raggio dl crchio considriamo la corda prpndicolar a tal raggio passant pr Allora la corda casual ha lunghzza maggior di di s il punto appartin alla mtà dl raggio più vicina al cntro In bas alla simmtria non importa qual raggio vin sclto prtanto si ha Spigazion Ciascuno di tr mtodi utilizza una divrsa distribuzion uniform: 1) sul crchio 2) sulla circonfrnza 3) sul raggio dl crchio 52 La distribuzion sponnzial ngativa Abbiamo visto in prcdnza ch sotto opportun ipotsi il numro di volt in cui un crto vnto si vrifica in un intrvallo di tmpo di lunghzza può dscrivrsi mdiant una distribuzion di Poisson: S si indica con la va ch rapprsnta il tmpo ncssario affinchè l vnto si manifsti pr la prima volta allora è una va continua La distribuzion di si chiama distribuzion sponnzial ngativa scrivrmo #" la sua funzion di dnsità è data da: pr altrov 51) Si noti ch la 51) può ssr scritta sintticamnt com: La vrifica dlla 43) porg: "$# ) "$# ) d d + -

3 52 LA DISTRIBUZIONE ESPONENZIALE NEGATIVA 121 La funzion di ripartizion è data da: La funzion: "$# ) d + ) + - vin chiamata funzion di sopravvivnza Essa sprim la probabilità ch la va valor suprior a La spranza matmatica intgrando pr parti è data da: "$# ) d + - d assuma un In manira analoga si ottin: Var quindi la distribuzion sponnzial ngativa è carattrizzata dal fatto ch la spranza matmatica è ugual allo scarto quadratico mdio Al pari dlla distribuuzion gomtrica la distribuzion sponnzial ngativa possid la proprità di assnza di mmoria infatti: ssndo Si noti ch la distribuzion sponnzial ngativa può ssr anch intrprtata invc ch com tmpo d attsa di un vnto anch com lgg di dnsità dll intrvallo di tmpo ch spara gli istanti in cui si vrificano du vnti alatori in accordo ad una lgg di Poisson Esrcizio 51 Un sistma è composto da du componnti in sri i cui tmpi di durata fino al guasto sono quantità alatori indipndnti dnotat rispttivamnt con Il vttor alatorio ha una dnsità di probabilità pr Calcolar 1 Il valor dlla costant 2 La funzion di sopravvivnza dl tmpo di guasto di 3 la prvision di

4 122 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Soluzion In bas all ipotsi la funzion di dnsità di In bas all ipotsi dv risultar: cioè: da cui quindi La va è data da pr altrimnti quindi: è data da: " quindi sgu una distribuzion sponnzial di paramtro cioè quindi Proposizion 52 Siano du va indipndnti avnti distribuzion sponnzial di paramtro Allora 53 La distribuzion normal sgu una distribuzion $ La distribuzion normal o gaussiana è la distribuzion ch più di ogni altra trova applicazion in statistica La ragion principal di ciò risid nl fatto ch ssa costituisc un modllo ch approssima numros altr distribuzioni possid notvoli proprità matmatich Distribuzion normal standard Dirmo ch una variabil alatoria sgu una distribuzion normal standard o gaussiana standard scrivrmo " s ha la sgunt funzion di dnsità: 52) Pr dimostrar ch ffttivamnt la 52) è ffttivamnt una funzion di dnsità dobbiamo dimostrar ch val la proprità 43) A tal scopo dimostriamo la sgunt rlazion: 53)

5 53 LA DISTRIBUZIONE NORMALE 123 Considriamo la quantità: Considrata la trasformazion in coordinat polari considrato ch il modulo dllo jacobiano 1 è ugual a si ottin: Si ha quindi la 53) da cui sgu: La spranza è data da: Pr quanto riguarda la varianza poichè torma di intgrazion pr parti si ha: Var dfinita da allora sgu Var in bas al La funzion di ripartizion dlla distribuzion normal standard vin usualmnt dnotata col simbolo cioè Si noti ch pr la simmtria dlla distribuzion normal standard si ha: pr ogni In particolar dalla rlazion prcdnt si ottin la sgunt rlazion fra i quantili con di una distribuzion normal standard: 54) ch risulta molto util nl calcolo pratico di quantili di una distribuzion normal standard 1 Pr il calcolo dllo Jacobiano si rimanda ai tsti di analisi matmatica

6 124 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Famiglia dll distribuzioni normali Sia " Considriamo la va siano 55) In bas alla 424) la va ha funzion di dnsità: - 56) In qusto caso dirmo ch la va sgu una distribuzion normal di paramtri " scrivrmo Ossrviamo ch pr dalla 56) si ottin la dnsità dlla normal standard 52) In bas alla 424) dalla 55) si ottin la funzion di ripartizion di : 57) Con ragionamnti analoghi al caso standard ottniamo la spranza matmatica la varianza di " una variabil alatoria : Var pr sono va indipndnti avnti distribuzion rispttivamnt sono numri rali allora la variabil alatoria Proposizion 53 Siano va indipndnti con " Allora il va sgu una distribuzion Più in gnral s con ha distribuzion Al- Proposizion 54 Siano va indipndnti con distribuzion lora sono indipndnti Esrcizio 55 Sia Calcolar a) b) c) una va avnt distribuzion normal con mdia d) varianza

7 53 LA DISTRIBUZIONE NORMALE 125 Soluzion Essndo dov " pr i punti a) b) si ha rispttivamnt dnota la va normal standard Pr quanto riguarda il trzo punto ossrviamo prlim- è quivalnt a inarmnt ch la rlazion da cui sgu: quindi: Infin tnndo conto ch d ssndo in bas al punto a) dobbiamo ricavar prliminarmnt solo da cui sgu Esrcizio 56 Sia 1 la varianza 2 3 una va normal avnt spranza matmatica di sapndo ch Calcolar:

8 126 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Soluzion Pr quanto riguarda il primo punto dall quazion da cui: sgu: Indicato con il quantil cioè il valor pr cui la funzion di ripartizion assum valor 06293) dall tavol si ottin da cui: " Prtanto Pr quanto concrn il scondo punto prliminarmnt convin scrivr l insim com cioè Si ha quindi: quindi Infin si ha: Esrcizio 57 Un industria produc su commission dll sbarr di acciaio cilindrich il cui diamtro dv ssr di 4 cm ma ch tuttavia sono accttabili s hanno un diamtro comprso fra 3995 cm 4005 cm Il clint nl controllar l sbarr fornitgli constata ch il 5 sono di diamtro infrior a qullo tollrato d il 12 sono di diamtro suprior Supponndo ch l misur di diamtri sguano una distribuzion normal calcolarn i paramtri Dtrminar inoltr il valor di affinchè la probabilità ch l sbarr abbiano un diamtro suprior a qullo tollrato sia infrior al 2 Soluzion Valutando la probabilità con la frqunza in bas ai dati dl problma possiamo impostar il sistma:

9 54 ALTRI ESERCIZI 127 cioè: Da tali quazioni si ottin: dov sono rispttivamnt i quantili dlla distribuzion normal standard ottnuti dall tavol dlla stssa distribuzion Ottniamo prtanto il sistma: da cui si ottngono i valori: Pr quanto riguarda l ultimo punto si richid di calcolar il valor dllo scarto cioè: ovvro: da cui tal ch: Dall tavol dlla normal si ricava il quantil 098 cioè da cui si ottin infin 54 Altri srcizi Esrcizio 58 Siano quattro variabili alatori indipndnti d idnticamnt distribuit con lgg uniform nll intrvallo Considrata la variabil alatoria calcolar la dnsità di probabilità d il valor attso dlla va

10 128 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Soluzion Prliminarmnt ossrviamo ch pr ipotsi ciascuna dll variabili ha funzion di dnsità: pr altrimnti Pr calcolar la funzion di dnsità di calcoliamo dapprima la funzion di ripartizion: Pr l ipotsi di indipndnza dll va pr l ipotsi di lgg uniform in La funzion di ripartizion di è data da: si ha: si ha prtanto: pr pr pr Sgu allora la funzion di dnsità di : pr pr Nota la funzion di dnsità possiamo calcolar il valor attso di :

11 54 ALTRI ESERCIZI 129 Esrcizio 59 Un sistma è composto da 4 componnti Il componnt è in sri con mntr è in sri con Inoltr sono in paralllo con I tmpi alatori) fino al guasto di quattro componnti sono rispttivamnt Il vttor alatorio ha com dnsità la funzion: pr altrov Calcolar: 1 la dnsità congiunta dl vttor pr ogni 2 il valor attso dl tmpo di guasto dl sottosistma costituito dai componnti in sri 3 la probabilità ch il sistma non si guasti fino ad un dtrminato tmpo Soluzion l va Ossrviamo immdiatamnt ch poichè: sono indipndnti sguono una distribuzion sponnzial di paramtro Si ha inoltr: d Indicato con il tmpo di guasto dl sottosistma costituito dai componnti si ha: d ssndo va indipndnti si ha: quindi " da cui sgu: Pr lo stsso motivo posto sgu " Si ha quindi:

12 130 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Esrcizio 510 Si considrino una variabil alatoria avnt distribuzion uniform sull insim d una va indipndnt da avnt distribuzion normal standard dtrminar: Posto 1 il cofficint di corrlazion di 2 la funzion di ripartizion 3 il valor tal ch Soluzion In bas all ipotsi ssndo uniform su quindi Cov si ha: Prtanto in bas all proprità dl cofficint di corrlazion risulta: Cov Inoltr poichè sono indipndnti anch Cov Cov in quanto sgu una distribuzion normal standard quindi sono indipndnti quindi: Prtanto sgu: Pr quanto concrn la funzion di ripartizion di si ha: Prtanto " quindi il valor tal ch è dato dal valor tal ch cioè $#

13 54 ALTRI ESERCIZI 131 Esrcizio 511 Un impigato abita all strma prifria dlla città la strada più brv pr raggiungr il suo ufficio passa pr il cntro in qusto caso il tmpo richisto pr prcorrr tragitto può ssr dscritto mdiant una variabil alatoria di mdia minuti scarto minuti 20 scondi Sono possibili altr du strad altrnativ il cui tragitto può ssr dscritto mdiant rispttivamnt una va con mdia minuti scarto minuti 30 scondi d una va con mdia minuti scarto minuto 10 scondi Assumndo ch l tr va abbiano tutt distribuzion normal calcolar qual sia tragitto più opportuno da prcorrr nl caso in cui: i) l impigato dbba ssr in ufficio ntro 30 minuti ii) l impigato dbba ssr in ufficio ntro 35 minuti? Soluzion Prliminarmnt scriviamo gli scarti quadratici in trmini di unità di misura omogn: 30 scondi quivalgono a 05 minuti 20 scondi quivalgono a minuti 10 scondi quival a 0167 minuti pr cui in bas all ipotsi dl problma si ha: " " " Nl primo caso il tragitto da scglir è qullo pr cui risulta maggior la quantità con mntr nl scondo caso si scglirà il tragitto pr cui risulta maggior òln bas all ipotsi dl problma si ha con Valutiamo prtanto: In qusto caso risulta opportuno prcorrr il tragitto più brv Nl scondo caso si ha: In qusto caso è più opportuno prcorrr il trzo tragitto Esrcizio 512 Sia d avnt dnsità: Calcolar il valor dlla costant una va doppia a valori in pr altrov l funzioni di dnsità

14 132 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Soluzion Essndo la funzion Calcoliamo la funzion di dnsità : una funzion di dnsità dv risultar: quindi da cui quindi Ed infin Esrcizio 513 Sia una va continua avnt funzion di distribuzion funzion di è ancora continua d sprimr la dnsità Dimostrar ch la variabil alatoria sua funzion di distribuzion la sua funzion di dnsità in trmini di Inoltr calcolar la funzion di dnsità di ni casi in cui: 1 sgu una distribuzion normal 2 sgu una distribuzion di Laplac avnt dnsità 3 sgu una distribuzion di Cauchy avnt dnsità Soluzion La funzion di distribuzion di èp data da: Poichè la funzion di distribuzion è pr ipotsi diffrnziabil infatti sist la funzion di dnsità ) allora anch è diffrnziabil è una va continua con funzion di dnsità Applicando la formula sopra ricavata ni tr casi richisti si ricava: 1 pr

15 54 ALTRI ESERCIZI pr pr Esrcizio 514 Siano du va indipndnti avnti distribuzion normal con mdi rispttivamnt d avnti la stssa varianza a) b) c) d) Soluzion Poichè pr ipotsi " " allora posto $ si ha $ " $ $ dov sono va normali indipndnti quindi sgu: dnota la va normal standard Pr quanto riguarda il punto succssivo si ha: Pr quanto riguarda il trzo punto posto " si ha Infin posto " si ha quindi: quindi Esrcizio 515 Si considri un ngozio in cui arrivano a caso mdiamnt 20 clinti l ora

16 134 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE 1 Calcolar la probabilità ch gli intrvalli di tmpo fra du arrivi conscutivi siano infriori a tr minuti 2 Calcolar la probabilità ch gli intrvalli di tmpo fra du arrivi conscutivi siano supriori a quattro minuti 3 Supponndo ch il 10 di clinti compri un crto oggtto ricavar la distribuzion di probabilità dl numro di clinto ch acquistano un oggtto in un ora Soluzion Sia l intrvallo di tmpo in minuti) ch intrcorr fra l arrivo di du clinti conscutivi Allora sgu una distribuzion sponnzial di paramtro d ha quindi dnsità: pr Indicata con 1 2 altrov la funzion di ripartizion sgu prtanto: Pr quanto riguarda il trzo punto indichiamo con il numro di clinti ch ntrano nl ngozio in un ora con il numro di qulli fra di ssi ch ffttuano acquisti La variabil sgu allora una distribuzon di Poisson di paramtro : pr altrov sgu una dis- In bas all ipotsi dl problma si ha poi ch la variabil dato tribuzion binomial di paramtri : pr altrov Si ha prtanto:

17 54 ALTRI ESERCIZI 135 tnndo conto ch Prtanto la variabil sgu una distribuzion di Poisson di paramtro 2 du funzioni di dnsità sponnziali di paramtro risptti- Si considri la funzion dfinita com sgu: Esrcizio 516 Siano vamnt 1 Dimostrar ch la funzion è anch ssa una funzion di dnsità 2 Calcolar la spranza matmatica di 3 Dnotata con una va avnt lgg calcolar il valor dlla costant tal ch Soluzion In bas all ipotsi dl problma l funzioni sponnziali di paramtri : pr pr altrov sono funzioni di dnsità altrov N sgu ch è dfinita su tutto l ass ral ssndo una combinazion linar di Pr quanto riguarda il primo punto bisogna vrificar ch soddisfa l du ipotsi richist pr la funzion di dnsità: 1 2 pr ogni La vrifica dlla prima condizion è immdiata in quanto è una combinazion linar di funzioni di dnsità risptto ai psi ch sono ntrambi positivi Anch la sconda condizion è vrificata poichè: La spranza matmatica di si ottin da un applicazion dlla proprità di linarità ricordando ch la spranza matmatica di una va sponnzial di paramtro è ugual a

18 136 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Pr quanto riguarda l ultimo punto calcoliamo dapprima Analogamnt a quanto visto in prcdnza ricordando ch la funzion di sopravvivnza di una dnsità sponnzial di paramtro è si ha: Prtanto il valor di tal ch da cui si ricava com soluzion dll quazion: Esrcizio 517 Sia la vita in or di un crto tipo di lampadin Da ossrvazioni passat è noto ch sgu una distribuzion normal S un acquirnt vuol ch almno il 95 di una partita di tali lampadin abbia una vita suprior all 150 or calcolar qual può ssr la massima varianza dlla popolazion di lampadin ch il comprator sia disposto ad accttar Soluzion varianza Dai dati dl problma si assum ch in modo tal ch " Si richid di valutar la in particolar la varianza massima ch l acquirnt è disposto a tollrar è qulla pr cui Dnotiamo al solito con " la 58) è quivalnt a Indicato con il quantil risulta $# 58) la variabil alatoria normal standard allora di una distribuzion normal standard cioè il quantil pr cui in particolar dall tavol di valori dll ar dlla distribuzion normal standard si ha ch Il valor di richisto si ottin prtanto da: da cui sgu quindi $#

19 " 54 ALTRI ESERCIZI 137 Esrcizio 518 Dtrminar i paramtri dlla distribuzion di una variabil alatoria sapndo ch il primo quartil di è ugual a 40 d il trzo quartil è ugual a 60 Succssivamnt calcolar Soluzion Il problma richid la dtrminazion di paramtri di una distribuzion normal noti i valori dl primo dl trzo quartil rispttivamnt Si tratta di impostar un sistma di du quazioni nll du incognit in dipndnza di paramtri noti : 59) dov In tal sistma la prima quazion si ottin considrando ch la distribuzion normal è simmtrica risptto alla mdia prtanto qusta è data dalla smisomma dl primo trzo quantil la " sconda quazion sprim la rlazion fra una variabil la corrispondnt dnota il trzo quartil di una variabil normal standard " variabil standard " Indicato con il quantil di una distribuzion normal standard cioè il quantil pr cui si risulta in bas all tavol si ottin: inoltr in bas ai dati dl problma si ha si scriv da cui si ottin la soluzion Si ha poi: Poichè sgu: prtanto il sistma 59)

20 138 CAPITOLO 5 PRINCIPALI DISTRIBUZIONI DI PROBABILITÀ CONTINUE Tavola di quantili dlla distribuzion normal standard:

Principali distribuzioni di probabilità continue

Principali distribuzioni di probabilità continue 22222222222222222222 22222222222222222222 3 Capitolo 5 Principali distribuzioni di probabilità continu In qusto capitolo prsntiamo alcun distribuzioni di probabilità assolutamnt continu 5 La distribuzion

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

PREMIO EQUO E PREMIO NETTO. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti PREMIO EQUO E PREMIO NETTO Prof. Crchiara Rocco Robrto Matrial Rifrimnti. Capitolo dl tsto Tcnica attuarial dll assicurazioni contro i Danni (Daboni 993) pagg. 5-6 6-65. Lucidi distribuiti in aula La toria

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Principali distribuzioni di probabilità discrete

Principali distribuzioni di probabilità discrete Capitolo Principali distribuzioni di probabilità discrt Vogliamo ora prsntar alcun distribuzioni di probabilità notvoli ch costituiscono lo schma torico di fnomni naturali di vario tipo In qusto capitolo

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 10 TEOREMA DI RIDUZIONE DEGLI INTEGRALI IN DUE DIMENSIONI TORMA I RIUZION GLI INTGRALI IN U IMNSIONI S è misurabil f : è limitata continua, valgono l sgunti proprità: s A è un dominio normal risptto all ass, cioè,, con continu A a b pr ogni a, b, allora la funzion

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Esercitazione 5 del corso di Statistica 2

Esercitazione 5 del corso di Statistica 2 Esrcitazion 5 dl corso di Statistica 2 Prof. Domnico Vistocco Dott.ssa Paola Costantini 9 Maggio 2008 Esrcizio n Il diamtro in millimtri di bulloni prodotti da un azinda ha una distribuzion normal con

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Generazione di distribuzioni di probabilità arbitrarie

Generazione di distribuzioni di probabilità arbitrarie Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

II Prova - Matematica Classe V Sez. Unica

II Prova - Matematica Classe V Sez. Unica Lico Scintifico Paritario R Bruni Padova, loc Pont di Brnta, /9/7 II Prova - Matmatica Class V Sz Unica Soluzion Problmi Risolvi uno di du problmi: Problma L azinda pr cui lavori vuol aprir in città una

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Laboratorio di Calcolo B 79

Laboratorio di Calcolo B 79 Gnrazion di distribuzioni di probabilità arbitrari Abbiamo visto com gnrar vnti con distribuzion di probabilità uniform, d abbiamo anch visto in qual contsto tali vnti sono utili. Tuttavia la maggior part

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1/A

Modelli e Metodi Matematici della Fisica. Scritto 1/A Modlli Mtodi Matmatici dlla Fisica. Scritto 1/A Csi/Prsilla A.A. 007 08 Nom Cognom Il voto dllo scritto sostituisc gli sonri 1 problma voto 1 4 5 6 7 total voto in trntsimi Rgolamnto: 1) Tutti gli srcizi,

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Danila TONDINI Parzial n. - Compito I A. A.

Dettagli

Geometria per Fisica e Fisica e Astrofisica

Geometria per Fisica e Fisica e Astrofisica Gomtria pr Fisica Fisica Astrofisica {z } val la proprità associativa? (no) Soluzioni srcizi - Foglio 5 - Buon complanno, Eulro! (300 anni) Esrcizio 1. Nl piano, si considrino i punti A (0,0), B (, 0),

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2)

Facciamo riferimento al piano di Nyquist, nel quale rappresentiamo la G(jω) come: = (2) # LUOHI E CARTE NELLA SINTESI PER TENTATIVI IN ω # Rifrimnto: A.Frrant, A.Lpschy, U.Viaro Introduzion ai Controlli Automatici. Editric UTET, Cap. 9. Prima dll ra di PC la sintsi pr tntativi nl dominio

Dettagli

MATEMATICA CORSO A III APPELLO 19 Settembre 2011

MATEMATICA CORSO A III APPELLO 19 Settembre 2011 MATEMATICA CORSO A III APPELLO 9 Sttmbr 0 Soluzioni. Calcola (Suggrimnto: x lnx = (/x) lnx ) x lnx dx x lnx dx = /x dx = [ln lnx ] = ln ln ln ln = ln ln = ln lnx. Dtrmina l sprssion analitica di una funzion

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1 " k " 3) e

( ) = 8x 1 + x 2 + 8x 3 con i vincoli x k! 0 ( 1  k  3) e Elmnti di Analisi Matmatica Ricrca Oprativa prova dl 5 gnnaio 06 ) Discutr il sgunt problma di Programmazion Linar: Trovar il massimo di p,, = 8 + + 8 con i vincoli k 0 ( " k " ) " + + 5 # + + = % 7 +

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x

x = QAR ˆ calcola il seguente limite: lim 0 x 180 con x 90 OA r = = cos x cos x lim = lim = lim = 0 2 r sen 2 AP = 2sen sen 2 r sen 2 sen x x Problma Sia P un punto di un arco AB di una smicirconfrnza di cntro O raggio r. Sia T il punto in cui la smirtta OP incontra la tangnt in A all arco. Porr AOT ˆ PT AP P A AT P A AT AOT ˆ Limitazioni gomtrich

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza

Soluzioni delle Esercitazioni XI 10-14/12/2018. A. Funzioni di 2 variabili Insiemi di esistenza Soluzioni dll Esrcitazioni XI 0-4//08 A. Funzioni di variabili Insimi di sistnza Si tratta di porr la (o l) condizioni pr cui risulta dfinita la funzion f.. La funzion è f(, ) = ln( +). L unica condizion

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

x ( sin x " ha una unica soluzione x " 0. 0,0

x ( sin x  ha una unica soluzione x  0. 0,0 PROBLEMA ESAME DI STATO CORSO DI ORDINAMENTO ANNO 8-9 ) L ara richista è la diffrnza dll ara dl sttor circolar qulla dl triangolo AOB, cioè S r ( r sin " r & ( sin ) Posto r= si ha S$ % " & ( sin$ % '.

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II

ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II ELEMENTI DI CALCOLO DIFFERENZIALE. PARTE II FAUSTO FERRARI Matrial propdutico all lzioni di Analisi Matmatica pr i corsi di Laura in Inggnria Chimica pr l Ambint il Trritorio dll Univrsità di Bologna.

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Moneta e Finanza Internazionale. Teoria delle aspettative

Moneta e Finanza Internazionale. Teoria delle aspettative Monta Finanza Intrnazional Toria dll aspttativ L aspttativ adattiv x t : Aspttativa dl valor ch la variabil x assumrà in t Aspttativ strapolativ: il valor attso è funzion di valori storici x t = x t-1

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli