Equazioni di ricorrenza e Ordinamenti lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equazioni di ricorrenza e Ordinamenti lineari"

Transcript

1 Equazioi di ricorreza e Ordiameti lieari Iformatica@SEFA 0/0 - Lezioe Massimo Lauria <massimo.lauria@uiroma.it> Veerdì, Novembre 0 Ricorsioe ed equazioi di ricorreza Aalizzado il Mergesort abbiamo visto che il tempo di esecuzioe di u algoritmo ricorsivo può essere espresso come u equazioe di ricorreza, ovvero u equazioe del tipo () C whe c 0 () i a i (g i ()) + f () whe > c 0 dove a i, C e c 0 costati positive itere e g i e f soo fuzioi da N a N, e vale sempre che g i () <. Ad esempio il ruig time di Mergesort è () (/)+Θ(). Metre il ruig time della ricerca biaria è: () (/) + Θ() Ci soo diversi metodi per risolvere le equazioi di ricorreza, o comuque per determiare se () è O(g) oppure Θ(g) per qualche fuzioe g. I molti casi o è ecessario essere precisi el quatificare (), oppure quali soo i valori esatti di C e c 0. Nella maggior parte quei valori codizioao () solo di u fattore costate, che viee comuque igorato dalla otazioe asitotica. Lo stesso vale per la fuzioe f (): riscalarla icide sulla soluzioe della ricorreza per u fattore costate.

2 Spesso ci iteressa solo l asitotica e per di più a volte ci iteressa solo ua limitazioe superiore dell ordie di crescita.. Metodo di sostituzioe Si tratta di idoviare la soluzioe della ricorreza e verificarla dimostradoe la correttezza via iduzioe matematica. Ad esempio risolviamo la ricorreza del Mergesort utilizzado come tetativo di soluzioe () c log per c grade abbastaza. Il caso base è verificato scegliedo c > (). Assumiamo poi che merge utilizzi d operazioi e che c > d. E utilizziamo l ipotesi iduttiva per sostituire ella ricorreza. () (/)+d c(/) log(/)+d c log c+d c log L uso dell iduzioe per risolvere la ricorreza può portare ad errori legati alla otazioe asitotica. Facciamo coto che vogliamo dimostrare che () O(), ovvero () c per qualche c. () (/) + d c/ + d c + d Si sarebbe tetati di dire che (c + d) O() e che quidi ci siamo riusciti. uttavia la dimostrazioe usa l ipotesi iduttiva che ( ) c per < e quidi se da questa ipotesi o deduciamo la stessa forma () c l iduzioe o procede correttamete.. Metodo iterativo e alberi di ricorsioe É il metodo che abbiamo utilizzato durate l aalisi delle performace di Mergesort. L idea è quella di iterare l applicazioe della ricorreza fio al caso base, sviluppado la formula risultate e utilizzado maipolazioi algebriche per determiare il tasso di crescita. Esempio: Aalizziamo la ricorreza () ( / ) +

3 ()... + ( / ) + / + 9( / ) + / + 9 / + ( / ) + / + 9/ + / log () Θ() i + Θ( log () ) i 0 + o() O() Per visualizzare questa maipolazioe è utile usare u albero di ricorsioe. Ovvero ua struttura ad albero che descrive l evoluzioe dei termii della somma. Vediamo ad esempio () (/) + ) ) () ) ) ) ) ) ) Θ() Θ() Θ() Θ() Θ() Θ() Θ() Θ() L albero ha log livelli Il primo livello ha operazioi, il secodo e ha /, il terzo e ha /,... L ultimo ha Θ() operazioi. il umero totale di operazioi è Θ() + ( ) Θ( )

4 . Master heorem Questi due metodi richiedoo u po di abilità e soprattutto u po di improvvisazioe, per sfruttare le caratteristiche di ogi esempio. Esiste u teorema che raccoglie i casi più comui e forisce la soluzioe della ricorreza direttamete. eorema. Siao a e b costati e f () ua fuzioe, e () defiito sugli iteri o egativi dalla ricorreza: () a(/b) + f (), dove /b rappreseta /b o /b. Allora () può essere asitoticamete limitato come segue. Se f () O( log b (a) ɛ ) per qualche costate ɛ > 0, allora () Θ( log b (a) );. Se f () Θ( log b (a) ) allora () Θ( log b (a) log );. Se f () Ω( log b (a)+ɛ ), per qualche costate ɛ > 0, e se a f (/b) < c f () per qualche c < e per ogi sufficietemete grade, allora () Θ( f ()). Notate che il teorema o copre tutti i casi. Esistoo versioi molto più sofisticate che coproo molti più casi, ma questa versioe è più che sufficiete per i ostri algoritmi. Mergesort è il caso, co a b e f () Θ(). Ricerca biaria è il caso, co a, b e f () Θ(). () (/) + è il caso. No vedremo la dimostrazioe ma è sufficiete fare uo sketch dell abero di ricorsioe per vedere che questo ha altezza log b ; ogi odo ha a figli; al livello più basso ci soo a log b () log b (a) odi che costao Θ() ciascuo; i odi a distaza i da quello iiziale costao, complessivamete, a i f (/b i ).

5 Duque il costo totale è: Θ( log b (a) ) + log b () a j f (/b j ). I oguo dei j 0 tre casi euciati dal teorema, l asitotica è quella idicata. Ordiameti i tempo lieare Esistoo modi di ordiare che impiegao solo Θ(), ma questi metodi o soo, ovviamete, ordiameti per cofroto. Sfruttao ivece il fatto che gli elemeti da ordiare appartegao ad u domiio limitato.. Esempio: Coutig Sort Il couti sort si basa su u idea molto semplice: se ad esempio dobbiamo ordiare ua sequeza di elemeti, dove oguo dei quali è u umero da a 0, possiamo farlo facilmete i tempo lieare:. teedo 0 cotatori,..., 0 ;. fare ua scasioe della lista aggiorado i cotatori;. riporre ella lista copie di, copie di, ecc... def coutigsort(seq): if le(seq)==0: retur # operazioi a = mi(seq) b = max(seq) # creazioe dei cotatori couter =[0]*(b-a+) for x i seq: couter[x-a] += # costruzioe dell output output=[] for v,v i eumerate(couter,start=a): output.exted( [v]*v ) retur output prit( coutigsort([,,,,,9,,,,,,,,,9,9,,,,,,,,,,])) 9 0 [,,,,,,,,,,,,,,,,,,,,,,, 9, 9, 9] Ovviamete qualuque tipo di dato ha u miimo e u massimo, i ua lista fiita. uttavia se la lista cotiee elemeti i u domiio molto grade (e.g. umeri tra 0 e 0 dove è la lughezza dell iput) allora questo algoritmo è meo efficiete degli algoritmi per cofroti.

6 . Dati cotestuali Negli algoritmi di ordiameto per cofroto ci i dati origiali vegoo spostati o copiati all itero della sequeza, e tra la sequeza ed evetuali liste temporaee. Si immagii ad esempio il caso i cui ogi elemeto ella lista di iput sia ua tupla (i,dati) dove i è la chiave rispetto a cui ordiare, ma dati ivece è iformazioe cotestuale arbitraria. Negli ordiameti per cofroto l iformazioe cotestuale viee spostata isieme alla chiave. La ostra implemetazioe del coutigsort o gestisce questo caso, e va modificata.. Dati i cotatori i, calcoliamo i quale itervallo della sequeza di output vadao iseriti gli elemeti i iput co chiave i. L itervallo è tra le due quatità i j 0 j (icluso) e i j 0 j (escluso).. Scorriamo l iput uovamete e copiamo gli elemeti i iput ella lista di output. def coutigsort(seq): if le(seq)==0: retur # operazioi a = mi(k for k,_ i seq) b = max(k for k,_ i seq) # creazioe dei cotatori couter =[0]*(b-a+) for k,_ i seq: couter[k-a] += # posizioi fiali di memorizzazioe posizioi =[0]*(b-a+) for i i rage(,le(couter)): posizioi[i]=posizioi[i-]+ couter[i-] # costruzioe dell output for k,data i seq[:]: seq[ posizioi[k-a]]=(k,data) posizioi[k-a] += sequeza=[(,"paul"),(,"rigo"),(,"george"),(,"pete"),(,"stuart"),(,"joh") ] coutigsort(sequeza) prit(sequeza) [(, george ), (, pete ), (, paul ), (, stuart ), (, rigo ), (, joh )]

7 Ordiameto stabile Nell esempio precedete abbiamo visto che ci soo elemeti diversi che hao la stessa chiave di ordiameto. I geerale ua lista da ordiare può coteere elemeti "uguali" el seso che seppure distiti, per quato riguarda l ordiameto possoo essere scambiati di posizioe seza problemi, ad esempio (, george ) e (,"pete") possoo essere ivertiti ella ordiata, seza che l ordiameto sia ivalidato. Si dice che u ordiameto è stabile se o modifica l ordie relativo degli elemeti che hao la stessa chiave. U iversioe ell ordiameto di ua sequeza S è ua coppia di posizioi i, j ella lista, 0 i < j < le(s), tali che il valori i S[i] si trova dopo il valore i S[j] ua volta fiito l ordiameto. U ordiameto stabile miimizza il umero di iversioi. utti gli ordiameti che abbiamo visto fio ad ora soo stabili. Per esempio el caso di ordiameti per cofroto è capitato di dover fare operazioi del tipo if S[i] <= S[j]: operazioi che o causao u iversioe tra S[i] e S[j] else: operazioi che causao u iversioe tra S[i] e S[j] dove i è miore di j. Se ivece dell operatore <= avessimo utilizzato l operatore < allora il comportameto dell algoritmo sarebbe cambiato solo el caso i cui S[i] fosse stato uguale a S[j]. L ordiameto sarebbe stato comuque valido ma o sarebbe più stato u ordiameto stabile.. Ordiameti multipli a cascata Se avete ua lista di brai el vostro lettore musicale tipicamete avrete i vostri brai ordiati, semplificado, per. Artista. Album. raccia el seso che i brai soo ordiati per Artista, quelli dello stesso artista soo ordiati per Album, e quelli ello stesso album soo ordiati

8 U modo per otteere questo risultato è ordiare prima per raccia, poi per Album, e poi per Artista. Questo avviee perché gli ordiameti usati soo stabili. Quado si ordia per Album, gli elemeti co lo stesso Album verrao mateuti elle loro posizioi relative, che erao ordiate per raccia. Successivamete ua volta ordiati per Artista, i brai dello stesso Artista mategoo il loro ordie relativo, ovvero per Album e raccia. I geerale è possibile ordiare rispetto a ua serie di chiavi differeti, key, key,... keyn, i maiera gerarchica, ordiado prima rispetto keyn e poi adado su fio a key. Modifichiamo coutisort per farlo lavorare su ua chiave di ordiameto arbitraria. def default_key(x): retur x def coutigsort(seq,key=default_key): if le(seq)==0: retur # operazioi a = mi(key(x) for x i seq) b = max(key(x) for x i seq) # creazioe dei cotatori couter =[0]*(b-a+) for x i seq: couter[key(x)-a] += # posizioi fiali di memorizzazioe posizioi =[0]*(b-a+) for i i rage(,le(couter)): posizioi[i]=posizioi[i-]+ couter[i-] # costruzioe dell output for x i seq[:]: seq[ posizioi[key(x)-a]]=x posizioi[key(x)-a] += Ordiare sequeze di iteri gradi Radixsort Abbiamo già detto che il coutigsort è u ordiameto i tempo lieare, adatto a ordiare elemeti le cui chiavi di ordiameto hao u rage molto limitato. Ma se i umeri soo molto gradi che possiamo fare? No possiamo ordiare ua lista di di umeri positivi da bit co il coutig sort, perché la lista dei cotatori sarebbe eorme (e piea di zeri). Però possiamo cosiderare u umero di come ua tupla di elemeti b... b 0 i {0, } ed utilizzare u ordiameto stabile per ordiare rispetto a b 0

9 ordiare rispetto a b... ordiare rispetto a b Ivece di lavorare bit per bit possiamo cosiderare u umero di come ua tupla di elemeti b b b b 0 i {0,..., } ed utilizzare u ordiameto stabile per ordiare rispetto a b 0 ordiare rispetto a b ordiare rispetto a b ordiare rispetto a b Naturalmete usare ua decomposizioe più fitta richiede più chiamate ad ordiameto, ma oguo su u domiio più piccolo. Il giusto compromesso dipede dalle applicazioi. Ora calcoliamo le chiavi b i utilizzado quattro fuzioi. def key0(x): retur x & def key(x): retur (x//) & def key(x): retur (x//(*)) & def key(x): retur (x//(**)) & x =** + ** + ** - prit(key0(x), key(x), key(x), key(x)) 9 0 Duque possiamo implemetare radixsort (che ricordiamo, per come è stato realizzato fuzioa solo su umeri positivi di bit). def radixsort(seq): for my_key i [key0,key,key,key]: coutigsort(seq,key=my_key) sequeza=[,,,,,9,,,,,,,,,9,9,,,,,,] radixsort(sequeza) prit(sequeza) [,,,,,,,,,,,,, 9, 9, 9,,,,,, ] 9

10 . Plot di esempio I questo plot vediamo il tempo impiegato da questi algoritmi per ordiare ua lista di umeri tra 0 e Questi algoritmi soo molto più veloci di bubblesort e isertiosort e questo si vede ache i pratica. Le liste di umeri o soo particolarmete lughe (solo elemeti), ma impossibili da ordiare utilizzado ordiameti Θ( ). Vediamo tre algoritmi: Mergesort Coutigsort co itervallo [0,0000] e [0,000000] Radixsort co chiavi da bit e co chiavi da bit Il ruig time di coutigsort è molto più codizioato dall itervallo di valori che dalla lughezza della sequeza da ordiare (almeo per soli elemeti da ordiare). Radixsort utilizza più chiamate a coutigsort ma su u domiio più piccolo. Due chiavi a bit soo più efficieti di chiavi a bit, e bit producoo uo spazio delle chiavi di elemeti. Uo spazio più semplice da gestire per coutigsort rispetto ad u domiio di elemeti. 0

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

3 Ricorrenze. 3.1 Metodo iterativo

3 Ricorrenze. 3.1 Metodo iterativo 3 Ricorreze Nel caso di algoritmi ricorsivi ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Ricorrenze. 3 1 Metodo iterativo

Ricorrenze. 3 1 Metodo iterativo 3 Ricorreze 31 Metodo iterativo Il metodo iterativo cosiste ello srotolare la ricorreza fio ad otteere ua fuzioe dipedete da (dimesioe dell iput). L idea è quella di reiterare ua data ricorreza T () u

Dettagli

CAPITOLO 3. Quicksort

CAPITOLO 3. Quicksort CAPITOLO 3 Quicksort I questa lezioe presetiamo l algoritmo di ordiameto Quicksort(vedi []). L algoritmo Quicksort riceve i iput u array A e idici p r ed ordia l array A[p,, r] el modo seguete. L array

Dettagli

Algoritmi e Strutture Dati Esercizi Prima parte

Algoritmi e Strutture Dati Esercizi Prima parte Algoritmi e Strutture Dati Esercizi Prima parte Esercizio 1 Si cosideri il seguete codice: 1 i 1 2 k 0 3 while i 4 do if A[i] s 5 the k k + 1 6 A[k] A[i] 7 i i + 1 e si dimostri la sua correttezza rispetto

Dettagli

Ancora con l induzione matematica

Ancora con l induzione matematica Acora co l iduzioe matematica Iformatica@SEFA 017/018 - Lezioe 9 Massimo Lauria Veerdì, 1 Ottobre 017 L iduzioe matematica sembra, per come vi è stata presetata la scorsa lezioe,

Dettagli

i-esima statistica d ordine di un insieme = i-esimo elemento più piccolo

i-esima statistica d ordine di un insieme = i-esimo elemento più piccolo Geeralità i-esima statistica d ordie di u isieme i-esimo elemeto più piccolo prima statistica d ordie di u isieme miimo -esima statistica d ordie di u isieme di elemeti massimo Mediao di u isieme di elemeti

Dettagli

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento.

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento. Iformatica 3 Iformatica 3 LEZIONE 18: Ordiameto Lezioe 18 - Modulo 1 Modulo 1: Algoritmi di base Modulo 2: Shellshort Modulo 3: Quicksort Algoritmi di base Politecico di Milao - Prof. Sara Comai 1 Politecico

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore(

Tempo di calcolo. , per cui x è un caso più sfavorevole quando T. peggiore( Tempo di calcolo. Tempo di calcolo di u algoritmo La complessità computazioale è ua misura della difficoltà di risolvere problemi di calcolo co algoritmi. Per misurare la complessità di u algoritmo si

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Selezioe e statistiche di ordie Problemi di statistiche d ordie Estrarre da gradi quatità di dati u piccolo isieme di idicatori che e rappresetio caratteristiche statisticamete

Dettagli

Algoritmi e Strutture di Dati

Algoritmi e Strutture di Dati Algoritmi e Strutture di Dati Complessità degli algoritmi m.patrigai Nota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

algoritmi e strutture di dati

algoritmi e strutture di dati algoritmi e strutture di dati complessità degli algoritmi m.patrigai ota di copyright queste slides soo protette dalle leggi sul copyright il titolo ed il copyright relativi alle slides (iclusi, ma o limitatamete,

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni)

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni) Corso di Liguaggi e Traduttori 1 AA 2004-05 TEORIA DELLA COMPUTAZIONE cei) 1 Sommario Iterazioe e ricorsioe Relazioi di ricorreza Complessità computazioale 2 Iterazioe e Ricorsioe Dato u problema, la sua

Dettagli

Stima di somme: esercizio

Stima di somme: esercizio Stima di somme: esercizio Valutare l'ordie di gradezza della somma k l (1 + 3 k ) Quado x

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e aalisi di algoritmi Roberto Cordoe DTI - Uiversità degli Studi di Milao Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordoe@dti.uimi.it Ricevimeto: su apputameto Web page:

Dettagli

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I)

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I) Algoritmi e Strutture Dati (Mod. B) Programmazioe Diamica (Parte I) Numeri di Fiboacci Defiizioe ricorsiva (o iduttiva) F() = F() = F() = F() + F() Algoritmo ricorsivo Fib(: itero) if = or = the retur

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Soluzioi degli esercizi di Aalisi Matematica I (Prof. Pierpaolo Natalii) Roberta Biachii 6 ovembre 2016 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x2 1 x + 1 π/3. 2. Dimostrare,

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

Delimitazioni inferiori e superiori alla complessita di un problema

Delimitazioni inferiori e superiori alla complessita di un problema Delimitazioi iferiori e superiori alla complessita di u problema Alcue teciche Nozioi prelimiari Ua ozioe prelimiare: albero k-ario completo U U albero k-ario è completo se se tutti i i odi iteri hao k

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Teoria della Calcolabilità

Teoria della Calcolabilità Teoria della Calcolabilità Si occupa delle questioi fodametali circa la poteza e le limitazioi dei sistemi di calcolo. L'origie risale alla prima metà del vetesimo secolo, quado i logici matematici iiziaroo

Dettagli

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1

T n = f n log n = log n. 1 ] 1 ] 1 = sono verificate le disuguaglianze c 1 A.A. 00 05 Esame di Algoritmi e strutture dati luglio 005 Esercizio (6 puti) Risolvere co almeo due metodi diversi la seguete relazioe di ricorreza T = T =T Master Theorem a= b= per cui log b a = log /

Dettagli

Es. di Ordine di crescita. Di quanto aumenta il running time se la taglia ~nlog(n) operazioni. dell input)

Es. di Ordine di crescita. Di quanto aumenta il running time se la taglia ~nlog(n) operazioni. dell input) Ricomiciamo da quato fatto Riflettiamo su quato fatto Problemi icotrati Algoritmi Problemi icotrati Algoritmi Max Subarray Stable Matchig Max Subarray Stable Matchig 2 possibilità! possibilità Algoritmo

Dettagli

Accenni al calcolo combinatorio

Accenni al calcolo combinatorio Accei al calcolo combiatorio Dario Malchiodi e Aa Maria Zaaboi ottobre 2017 Pricipio fodametale del calcolo combiatorio: se ci soo s 1 modi per operare ua scelta e, per ciascuo di essi, ci soo s 2 modi

Dettagli

Note per la Lezione 11 Ugo Vaccaro

Note per la Lezione 11 Ugo Vaccaro Progettazioe di Algoritmi Ao Accademico 2017 2018 Note per la Lezioe 11 Ugo Vaccaro Abbiamo visto ella lezioe scorsa u argometo ituitivo secodo il quale il tempo medio di esecuzioe di QuickSort è O( log

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi mesi i u allevameto! Si

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Appedice B Cei di calcolo combiatorio B Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare degli

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09, CANALE E-O) DISPENSA N. 1 1. Limiti superiori, iferiori ed esatti, O, Ω, Θ Defiizioe 1.1 (Limitazioe Superiore). Diciamo che g() è ua itazioe superiore

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

= = 32

= = 32 Algabra lieare (Matematica CI) - 9 Algebra delle matrici - Moltiplicazioe Euple, righe e coloe Notazioe I algebra lieare giocao u ruolo importate le coppie, tere,, ple ordiate di umeri reali; cosi come

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

TECNICA DIVIDE ET IMPERA

TECNICA DIVIDE ET IMPERA TECNICA DIVIDE ET IMPERA 1. Itroduzioe Data l istaza di u problema, la strategia del divide-et-impera suggerisce di partizioarla i k sotto-istaze i modo da otteere k uove istaze per lo stesso problema

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a.

Esercizi Determinare il dominio di de nizione delle seguenti funzioni: a. Esercizi -. Determiare il domiio di deizioe delle segueti fuzioi a. () = log jj p (jj ) b. () = µ 5 c. d. e. f. g. h. i. j. () =log jj () = 4p j j! Ã () =arcsi () = log 3 + () =log(jj ) p jj () =log(jcos

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Programmazione dinamica vs. divide-et-impera

Programmazione dinamica vs. divide-et-impera Programmazioe diamica vs. divide-et-impera Aalogia Soo etrambi paradigmi di sitesi di algoritmi che risolvoo problemi combiado le soluzioi di sottoproblemi Differeza Secodo divide-et-impera si suddivide

Dettagli

Relazioni di ricorrenza

Relazioni di ricorrenza Relazioi di ricorreza Teciche di soluzioe e teorema del metodo pricipale Ugo de' Liguoro - Algoritmi e Sperimetazioi 03/04 - Lez. Relazioi di ricorreza Ci soo metodi geerali per trovare l ordie di gradezza

Dettagli

Esercizi: analisi asintotica delle funzioni di complessità ricorsive. January 31, 2007

Esercizi: analisi asintotica delle funzioni di complessità ricorsive. January 31, 2007 Esercizi: aalisi asitotica delle fuzioi di complessità ricorsive Jauary, 007 Il Metodo di Sostituzioe: esercizi risolti Si utilizzi il metodo di sostituzioe per studiare le segueti ricorreze (per le ricorreze,

Dettagli

Progettazione di Algoritmi - lezione 23

Progettazione di Algoritmi - lezione 23 Progettazioe di Algoritmi - lezioe 23 Discussioe dell'esercizio [palidroma] Dobbiamo trovare u algoritmo efficiete che data ua striga s di caratteri trova la più luga sottostriga di s che sia palidroma.

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI

7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI 7 LE PROPRIETÀ DEI NUMERI NATURALI. SUCCES- SIONI Abbiamo usato alcue proprietà dei umeri aturali che coviee mettere i evideza. Per prima cosa otiamo che N gode delle due proprietà (i 0 N; (ii se N allora

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE

FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE. Le Fuzioi L'operazioe di prodotto cartesiao relazioe biaria La relazioe biaria fuzioe Fuzioi iiettive, suriettive, biuivoche Fuzioi ivertibili. Le Successioi

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18.

Soluzioni di esercizi del secondo esonero di Analisi Matematica /18. Esercizio. Sia Soluzioi di esercizi del secodo esoero di Aalisi Matematica 207/8. a 3 2 + π si si +. a Determiare, al variare di a > 0, se esiste, lim 0 + u a. b Determiare, al variare di a > 0, se esiste,

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50

Scritto da Maria Rispoli Domenica 09 Gennaio :32 - Ultimo aggiornamento Domenica 20 Febbraio :50 Ua delle applicazioi della teoria delle proporzioi è la divisioe di u umero (o di ua gradezza) i parti direttamete o iversamete proporzioali a più umeri o a più serie di umeri dati. Tale tipo di problema

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

v = ( v 1,..., v n ).

v = ( v 1,..., v n ). Lezioe del 21 ovembre. Sistemi lieari 1. Spaio vettoriale R Sia u itero positivo. ssatoمح Cosideriamo lلاiisieme R delle ple ordiate di umeri reali u (u 1, u 2,..., u ), u i R. Al posto di pla ordiata

Dettagli

Esercizi: analisi asintotica delle funzioni di complessitá ricorsive

Esercizi: analisi asintotica delle funzioni di complessitá ricorsive Esercizi: aalisi asitotica delle fuzioi di complessitá ricorsive Jauary, 00 Cotets 0. Il Metodo di Sostituzioe: esercizi risolti............ 0. Il Metodo di Iterazioe: esercizi risolti............. 7 0.

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

11 IL CALCOLO DEI LIMITI

11 IL CALCOLO DEI LIMITI IL CALCOLO DEI LIMITI Il calcolo di u ite spesso si ricodurrà a trattare separatamete iti più semplici, su cui poi si farao operazioi algebriche. Dato che uo o più di questi iti possoo essere ±, bisoga

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Algoritmi e Programmazione Avanzata - teoria. Questa lezione si occupa di ordinamenti: gli algoritmi iterativi di ordinamento

Algoritmi e Programmazione Avanzata - teoria. Questa lezione si occupa di ordinamenti: gli algoritmi iterativi di ordinamento lgoritmi e Programmazioe vazata - teoria 1/232 Che cosa c è ella lezioe Questa lezioe si occupa di ordiameti: gli algoritmi iterativi di ordiameto gli algoritmi ricorsivi di ordiameto. 2/232 lgoritmi e

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 1 12/03/2015 Soluzioi del primo foglio di esercizi Esercizio 0.1. Ua classe di studeti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vegoo esposti i ua graduatoria

Dettagli

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica Uiversità di Fireze Corso di Laurea i Statistica Statistica Leoardo Grilli Stima Cicchitelli cap. 6 Argometi Defiizioe di stimatore Proprietà degli stimatori (campioi fiiti): No distorsioe Efficieza relativa

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 2018/19 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X =

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato

Divide et Impera. Minimo e Massimo. Minimo e Massimo. Risoluzione di problemi per partizione con lavoro bilanciato Divide et Imera Risoluzioe di roblemi er artizioe co lavoro bilaciato Miimo e Massimo L algoritmo Mi-Max calcola il miimo ed il massimo tra i valori di u vettore A. Mi-Max A least A[] greatest A[] for

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Ottavio Serra La costante C di Eulero-Mascheroni e la funzione Gamma. 1. =

Ottavio Serra La costante C di Eulero-Mascheroni e la funzione Gamma. 1. = Ottavio Serra La costate C di Eulero-Mascheroi e la fuzioe Gamma la costate C di Eulero Mascheroi è defiita come il limite della seguete successioe: [] a = +/+/3+ +/ log(+) Il termie a è la differeza tra

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe così defiita: a b divide a-b. La relazioe biaria è detta cogrueza modulo. Se a b scriveremo pure a b (mod. ) e leggeremo a cogruo b (modulo

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

Esercitazione 2 Soluzione di equazioni non lineari

Esercitazione 2 Soluzione di equazioni non lineari Esercitazioe 2 Soluzioe di equazioi o lieari Scopo di questa serie di esercizi è quella di trovare ove possibile gli zeri di fuzioe di equazioi o lieari utilizzado i vari metodi spiegati a lezioe. I metodi

Dettagli

Architettura degli elaboratori

Architettura degli elaboratori iversità degli Studi dell Isubria Dipartimeto di Scieze Teoriche e pplicate rchitettura degli elaboratori Registri e Marco Tarii Dipartimeto di Scieze Teoriche e pplicate marco.tarii@uisubria.it Register

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Biari di Ricerca Alberi biari (ripasso) U albero biario è ua struttura dati defiita i modo ricorsivo come u isieme fiito di odi che è vuoto (albero vuoto o albero ullo) oppure è composto da tre

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli