Soluzioni degli esercizi di preparazione al I compitino di Matematica per Scienze Biologiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzioni degli esercizi di preparazione al I compitino di Matematica per Scienze Biologiche"

Transcript

1 Soluzioni degli esercizi di preparazione al I compitino di Matematica per Scienze Biologiche 1. Chiamando x il peso in Kg e y il peso in lbs, la relazione di proporzionalità diretta è data da y =.x (i) 63 =.x = x = 63/. 8.6 Kg (ii) y =..5 = 5.5 lbs. (i) (ii) 3x 1 = 3 3x 1 = log 3 x = 1+log 3 3 log 3 x log 3 x = log 3 x x = log 3 x = 3 = 9 x = 18 x = 3. α = 4 3 π +kπ α = 5 3 π +kπ k Z 4. π 6 +kπ x π 6 +kπ 5. Indicando con X il numero di batteri, con T il tempo dell osservazione. con X 0 il numero di batteri all inizio dell osservazione e con K il tasso di incremento giornaliero, la legge esponenziale può essere espressa come X = X 0 (1+K) T. Dai dati del problema si ricava che X 0 = Noi vogliamo conoscere il numero di batteri al tempo T = 6 sapendo che al tempo T = 3 sono X = 1000(1+K) 6 = 1000((1+K) 3 ), 4000 = 1000(1+K) 3 (1+K) 3 = (1+K) 3 ) = =

2 6. Due eventi A e B sono incompatibili se sono disgiunti, ovvero P(A B) = 0, di conseguenza P(A B) = P(A)+P(B). P(A)+P(B) = /15+1/5 = 5/15 = 1/3 P(A B) = 4/15 quindi gli eventi NON sono incompatibili. 7. Il numero totale di palline è 9. Poiché si eseguono estrazioni con rimessa, ad ogni estrazione abbiamo P(R) = 3/9 = 1/3, P(G) = 4/9, P(V) = /9. (i) La probabilità di non estrarre una pallina Verde è ad ogni estrazione P(V) = 1 /9 = 7/9, quindi la probabilità di non estrarre mai una pallina Verde in 5 estrazioni con rimessa è ( ) (ii) Estrarre 3 Verdi e nessuna Gialla equivale ad estrarre 3 Verdi e Rosse: p(3v R) = ( 5 3 ) ( ) 3 ( ) (i)lafunzionef(x)èlacomposizionediduefunzionif 1 = log 3 xef = 3x 1 così fatta: f(x) = (f 1 f f 1 )(x) L insieme di definizione di f 1 (x) = log 3 x è {x R : x > 0}, quindi una prima condizione da porre è x > 0. La seconda condizione è che la funzione (f f 1 )(x) sia positiva: 3 log 3 x 1 > 0 x > = 3 3 Intersecando le due condizioni otteniamo che l insieme di definizione di f(x) è l insieme D = {x R : x > 3 3} (ii) Poiché la funzione logaritmo è non negativa quando il suo argomento è maggiore o uguale ad 1, l insieme degli x D tali che f(x) 0 si trova risolvendo la disequazione che ha come soluzione x > 3 3 = log 3 x 1 > 1, 9. Indichiamo con P(M): probabilità che un individuo scelto a caso nella popolazione sia malato P(M): probabilità che un individuo scelto a caso nella popolazione NON sia malato

3 P(T + ): probabilità che il test di screening dia risultato positivo P(T ): probabilità che il test di screening dia risultato negativo PeripotesisappiamocheP(T + M) = 90% = 9/10(diconseguenzaP(T M) = 10% = 1/10) e che P(T + M) = 5% = 1/0 (di conseguenza P(T M) = 95% = 19/0). (i) In questo caso P(M) = 1/00, P(M) = 1 1/00 = 199/00 e dobbiamo calcolare P(M T + ). Applicando la formula di Bayes abbiamo: P(M T + ) = P(M) P(T+ M) P(T +, ) dove P(T + ) = P(M) P(T + M)+P(M) P(T + M) = e P(M) P(T + M) = 1 00 La probabilità cercata è quindi 1 0 = = P(M T + ) = 9/000 17/4000 = (ii) In questo punto si chiede di calcolare P(M) sapendo che P(T + ) = 0% = 1/5. Posto P(M) = x si ha: x P(T + M)+(1 x) P(T + M) = x+ 1 0 (1 x) = x+1 x 0 x = 3 17 = L indice di massa corporea (IMC) è ottenuto dal rapporto tra massa ed altezza al quadrato IMC = m h, con m espressa in Kg e h in m. Il valore stimato dell IMC è dato da v IMC s L errore relativo della massa è = vm s (vs) h = = = e m r = 3 81 = %, 3

4 mentre quello dell altezza è e h r = = = %. L errore relativo dell IM C si ottiene allora sommando l errore relativo della massa ed il doppio(nella formula dell IM C l altezza è al quadrato) dell errore relativo dell altezza: e IMC r = ( ) = = % = 3.70%+ 1.67% 70 Poiché l errore relativo è il rapporto tra l errore assoluto ed il valore stimato e r = e a v s, l errore assoluto dell IM C si ottiene moltiplicando il valore stimato per l errore relativo: e IMC a = v IMC s e IMC 19 r = 5 70 = Leggendo con attenzione il testo si deduce che la funzione G(T) è definita a tratti ed in particolare vale 0 negli intervalli [,15] e [40,+ ]. Nell intervallo [15, 30] G(T) è lineare ed è possibile esprimere la sua equazione sfruttando i dati sperimentali; l equazione sarà del tipo con y = m 1 x+q 1, m 1 = = 6 e q 1 ottenuto imponendo il passaggio per un punto (ad esempio (15,0)): 0 = 6 15+q 1 q 1 = 90 Nell intervallo [30, 35] G(T) rimane costante ed il suo valore sarà dato dal valore che l espressione lineare ottenuta precedentemente assume per x = 30: = 90. Nell intervallo [35,40] G(T) segue nuovamente una legge lineare partendo dal punto (35,90) per arrivare al punto (40,0), poiché deve valere 0 per temperature superiori a 40, quindi: e m = = 18 q = = 70. 4

5 1. Estrarre tre cavie contemporaneamente è equivalente ad estrarne una alla volta, ovvero estrarre senza rimettere dentro la cavia estratta. a) P(1B) = = 1 44 Nota che l evento estrarre una cavia bianca è equivalente a quello estrarre due cavie nere. b) c) P(1B)+P(0B) = P(1B)+P(3N) = = = P(3N) = = d) Poiché si estraggono 3 cavie (e le cavie sono solo di colori), dire che ci siano piu cavie nere che bianche equivale a dire che ci sia al più una cavia bianca, il che significa che la probabilità è la stessa calcolata al punto b), ovvero 7/ Possiamo procedere analiticamente o graficamente (vedi Figura 1); scegliamo la prima strada. Se x 1 allora 1 x x x x x da cui segue (ricorda che x 1) Se x > 1 allora 1 5 x 1 x 1 x x x 3x da cui segue (ricorda che x > 1) 1 < x 3+ 5 La soluzione completa è allora (come puoi vedere in Figura 1) 1 5 x 3+ 5 x 1+ 5 x

6 Figura 1: Grafici delle funzioni y = 1 x e y = x x. L insieme S T è quello compreso tra i due grafici 14. Detto A l allele dominante (responsabile della malattia M) e a l allele recessivo, la frequenza dell allele A è p = 0.1, mentre quella dell allele a è q = 0.9, quindi le frequenze genotipiche sono date da AA p = 1% Aa pq = 18% aa q = 81% a) Senza informazioni aggiuntive la probabilità che un individuo preso a caso nella popolazione sia malato è pari alla frequenza del genotipo AA più quella del genotipo Aa: 1%+18% = 19% b) Si deve qui calcolare una probabilità condizionale P(F M P M M S ) dove F M sta per figlio malato, P M sta per padre malato e M S sta per madre sana. Se il padre è malato (Aa o AA) e la madre è sana (aa) il figlio sarà malato se il padre porta l allele A: P(F M P M M S ) = P(F M P M M S ) P(P M )P(M S ) ( )/ = = = c) Siamo nella situazione del punto b): padre malato e madre sana. La probabilità che almeno un figlio sia sano si può ottenere dalla probabilità che tutti e tre i figli siano malati: ( ) 3 10 P(almeno 1 sano) = 1 P(3 malati) = 1 19 = 6

7 15. a) L insieme di definizione della funzione, qualunque siano i parametri (supposti entrambi diversi da zero), è R {0}. Imponendo le condizioni f( 1) = 6 e f( 5) = 10 si arriva al sistema lineare di due equazioni nelle due incognite a e b { a+b = 6 5a+b/5 = 10 che ha come soluzione a = 1 e b = 5 (si può risolvere, ad esempio, per sostituzione). La funzione cercata è quindi f(x) = x + 5 x b) La prima trasformazione da applicare è x x + 1 ottenendo la funzione h(x) = (x + 1) + 5/(x + 1) ; tenendo poi fissa la funzione e moltiplicando per le ordinate, si ha un riscalamento che porta alla trasformazione h(x) h(x)/ ottenendo g(x) = 1 [ ] (x+1) 5 + (x+1) Se la moltiplicazione per delle ordinate fosse stata interpretata come moltiplicazione dei valori della funzione avremmo avuto [ ] g(x) = (x+1) 5 + (x+1) c) Imponenedo f(x) 6 si ha x + 5 x 6 x4 +5 x 6x x x 4 6x +5 0 (x 1)(x 5) 0 (x 1)(x+1)(x 5)(x+5) 0 x 5 1 x < 0 0 < x 1 x È sufficiente considerare due eventi A e B (con P(A),P(B) 0) incompatibili, ovvero tali che P(A B) = 0, e ricordare la legge della probabilità condizionale: P(A B) = P(A B) = 0 P(B) P(B) < P(A) 17. La funzione data non è iniettiva, in quanto esistono elementi distinti del dominio che hanno la stessa immagine, ad esempio f( 1) = ( 1) 4 = 1 = 1 4 = f(1) f( ) = ( ) 4 = 16 = 4 = f() 7

8 18. IndichiamoconP(FA)econP(PL)leprobabilitàcheunapersonasiatrattata con il farmaco e con il placebo rispettivamente. Siano poi P(SI) e P(NS) le probabilità che una persona abbia o non abbia un sollievo istantaneo. Dal testo si deduce: a) b) P(FA) = P(PL) = 1 P(SI FA) = P(SI) = P(FA)P(SI FA)+P(PL)P(SI PL) = La lunghezza del batterio è data da P(FA SI) = P(FA)P(SI FA) P(SI) P(SI PL) = = = 47.5% l = V A b dove A b = πrb ; quindi il suo valore stimato è l s = V s A s b = 8 π.55 µm Per gli errori relativi si ha ǫ r r b = = 0.3 ǫr V = 8 = 0.5 da cui (per un errore di stampa gli errori relativi sono alti, ma per semplicità risolviamo come se non lo fossero) ǫ r l = ǫ r V +ǫ r r b = 0.85 L errore assoluto della lunghezza è allora ǫ a l = l s ǫ r l.17 µm 0. Ricordachelafunzionelogaritmicaconbasemaggioredi1èdefinitaquandoil suo argomento è positivo, ed assume valori negativi quando il suo argomento è minore di 1. ln(e 3x ) < 0 0 < e 3x < 1 < e 3x < 3 ln < 3x < ln3 ln 3 < x < ln3 3 ln 3 < x < ln 3 3 8

9 1. La percentuale di incremento annuo è il 3%, quindi se la quantità iniziale è q 0 dopo un anno avremo q 1 = q ( 100 q 0 = q ). 100 Per ottenere quindi la quantità aumentata q 1, a partire dalla quantità iniziale q 0, dobbiamo moltiplicare per il fattore 1+3/100. Per il secondo anno, per ottenere q, dobbiamo moltiplicare nuovamente per 1+3/100, e così via. Dal 00 sono passati 7 anni quindi, poiché q 0 = 1.50, il costo del pane oggi dovrebbe essere ( q 7 = ) euro/chilo. 100 Se il pane adesso, dopo 7 anni, costa.60 euro al chilo, per ottenere l incremento percentuale annuo dobbiamo risolvere la seguente equazione in p: ( p ) 7 =.60, 100 da cui e quindi 1+ p = , ( ) 7.60 p = Abbiamo 10 paia di calzini, quindi 0 calzini in totale. Le possibili coppie di calzini sono ( ) 0 = 190; per ottenere due calzini dello stesso colore posso prendere calzini neri tra 8, calzini blu tra 6, grigi tra 4 e bianchi tra, ovvero i casi favorevoli sono ( ) ( ) ( ) ( ) = = 50. La probabilità cercata è quindi p = = Un altro modo di procedere è quello di considerare la nostra situazione come un estrazione senza rimessa. Abbiamo che la probabilità di pescare un calzino 9

10 biancoè/0, dipescarneunoneroè8/0, dipescarneunobluè6/0, mentre di pescarne uno grigio è 4/0. Allora p(b) = = p(n) = = p(bl) = = 15 p(g) = = e la probabilità cercata è la somma delle precedenti probabilità, ovvero p = = La frequenza dell allele A è p = 8/10, mentre quella dell allele a è q = /10, quindi le frequenze genotipiche sono date da AA p = 64% Aa pq = 3% aa q = 4% a) Senza informazioni aggiuntive la probabilità che un individuo preso a caso nella popolazione sia malato è pari alla frequenza del genotipo aa, 4%. b) Se la madre è malata, cioè aa, porterà sicuramente l allele a, mentre il padre, che è sano, potrà avere genotipo AA oppure Aa. Affinché il figlio sia malato il padre dovrà essere Aa e portare l allele a: p(f aa P aa M aa ) = p(f aa P aa M aa ) p(p aa )p(m aa ) = (1/)(3/100)(4/100) (96/100)(4/100) = 1 6 c) Se il padre è sano, il figlio risulterà malato solo se il padre è di tipo Aa e cede con probabilità 1/ l allele a, mentre la madre può essere aa oppure Aa come il padre (e in questo caso può cedere l allele a sempre con probabilità 1/): p(f aa P aa) = (1/)(3/100)(4/100)+((1/4)(3/100)) 96/100 = 1 30 d) Selamadreèmalata,cioèaa,porteràsicuramentel allelea,mentre,non avendoinformazionisulpadre, essopotràesseredituttie3igenotipi. Il figlio sarà malato se e solo se il padre è aa oppure Aa portando l allele a, quindi con probabilità q + (1/)pq = 0%, pari alla frequenza dell allele a. e) Se il padre e la madre sono entrambi malati sicuramente il figlio sarà malato, avrà cioè genotipo aa. 10

Esercizi di preparazione al I compitino di Matematica per Scienze Biologiche (presi da vecchi compitini e testi d esame)

Esercizi di preparazione al I compitino di Matematica per Scienze Biologiche (presi da vecchi compitini e testi d esame) Esercizi di preparazione al I compitino di Matematica per Scienze Biologiche (presi da vecchi compitini e testi d esame) 1. Per convertire il peso di un oggetto da chilogrammi (Kg) a libbre (lbs), teniamo

Dettagli

ESERCITAZIONE 12 : PREPARAZIONE AL COMPITINO

ESERCITAZIONE 12 : PREPARAZIONE AL COMPITINO ESERCITAZIONE 1 : PREPARAZIONE AL COMPITINO e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 16 8 Gennaio 013 Percentuali

Dettagli

3 A Misurando in modo approssimato due quantità x ed y si ottengono i seguenti valori: 2.98<x<3.02 e 1.95<y<2.05

3 A Misurando in modo approssimato due quantità x ed y si ottengono i seguenti valori: 2.98<x<3.02 e 1.95<y<2.05 MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI I PROVA IN ITINERE RECUPERO 8 gennaio 2008 SOLUZIONI La versione A di ogni esercizio si riferisce al Tema 1, la versione B al Tema 2 1A- Il

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 3) 10 Febbraio 2010

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 3) 10 Febbraio 2010 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 3) 0 Febbraio 200 SOLUZIONI. Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto) in un opportuno

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 10 Febbraio 2010

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 10 Febbraio 2010 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 10 Febbraio 010 SOLUZIONI 1. Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto) in un opportuno

Dettagli

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI I PROVA IN ITINERE RECUPERO 8 gennaio 2009 TEMI 1 E 3 ESERCIZI SVOLTI

MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI I PROVA IN ITINERE RECUPERO 8 gennaio 2009 TEMI 1 E 3 ESERCIZI SVOLTI MATEMATICA E STATISTICA CORSO A SCIENZE BIOLOGICHE MOLECOLARI I PROVA IN ITINERE RECUPERO 8 gennaio 2009 TEMI 1 E 3 ESERCIZI SVOLTI OSSERVAZIONE PRELIMINARE: Premesso che per il corretto svolgimento di

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008 Soluzioni 1.(4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza al quadrato, eprea in

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 SOLUZIONI 1. (4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza, eprea in m, al quadrato.

Dettagli

IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote?

IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote? IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote? Dobbiamo calcolare P(P AA F + ), dove abbiamo indicato con P AA l evento

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.

Dettagli

MATEMATICA CORSO A III APPELLO 23 Settembre 2013

MATEMATICA CORSO A III APPELLO 23 Settembre 2013 MATEMATICA CORSO A III APPELLO 23 Settembre 2013 Soluzioni 1. Un microrganismo ha il corpo che si avvicina ad un cilindro con raggio di base r b = 1 ± 0.03 µm e volume V = 8 ± 0.20 µm 3. Determina il valore

Dettagli

Possibile Es1:Calcolo approssimato

Possibile Es1:Calcolo approssimato Possibile Es1:Calcolo approssimato E noto che i lati di un parallelepipedo, a base quadrata, misurano, in cm, rispettivamente x=6±0.03,lato della base, ed y=8±0.02, altezza parallelepipedo. Calcolare valore

Dettagli

Correzione primo compitino, testo B

Correzione primo compitino, testo B Correzione primo compitino, testo B gennaio 20 Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna

Dettagli

ESERCITAZIONE 5: PROBABILITÀ DISCRETA

ESERCITAZIONE 5: PROBABILITÀ DISCRETA ESERCITAZIONE 5: PROBABILITÀ DISCRETA e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 6 Novembre 2012 Esercizi 1-2

Dettagli

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo GRUPPI SANGUIGNI La distribuzione dei gruppi sanguigni nella popolazione italiana è: gruppo A 36%, gruppo B 17%, gruppo AB 7%, gruppo 0 40%. Il gruppo sanguigno è determinato da un locus genetico con tre

Dettagli

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla.

PROBABILITA. ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. PROBABILITA ESERCIZIO: In un urna ci sono 2 biglie rosse, 2 biglie bianche ed 1 biglia gialla. a) Si eseguono due estrazioni con rimessa, calcolare la probabilità che le biglie estratte abbiano lo stesso

Dettagli

Soluzioni degli esercizi proposti

Soluzioni degli esercizi proposti Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

ciascun gamete riceve con la stessa probabilità l uno o l altro di essi

ciascun gamete riceve con la stessa probabilità l uno o l altro di essi LE LEGGI DI MENDEL I primi tre postulati di Mendel: 1.I caratteri genetici sono controllati da fattori che esistono in coppie nei singoli organismi 2.Quando due fattori diversi, responsabili di un unico

Dettagli

Correzione primo compitino, testo B

Correzione primo compitino, testo B Correzione primo compitino, testo B 20 febbraio 200 Parte Esercizio Facciamo riferimento alla pagina 20 del libro di testo Nel caso di somma (o differenza) di misure abbiamo che il valore stimato della

Dettagli

MATEMATICA CORSO A III APPELLO 13 Settembre 2012

MATEMATICA CORSO A III APPELLO 13 Settembre 2012 MATEMATICA CORSO A III APPELLO 13 Settembre 212 Soluzioni 1. È stato preparato uno sciroppo concentrato al 4% mettendo 3 grammi di zucchero in una certa quantità d acqua. a) Quanto vale la massa dell acqua?

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo GRUPPI SANGUIGNI La distribuzione dei gruppi sanguigni nella popolazione italiana è: gruppo A 36%, gruppo B 17%, gruppo AB 7%, gruppo 0 40%. Il gruppo sanguigno è determinato da un locus genetico con tre

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

Correzione primo compitino, testo B

Correzione primo compitino, testo B Correzione primo compitino, testo B Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna fare attenzione,

Dettagli

MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009

MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009 MATEMATICA E STATISTICA CORSO A III APPELLO 7 Luglio 2009 Soluzioni 1. Calcola quanto vale, in forma decimale, il reciproco del numero 1 2 log 10 4 4. Cominciamo col semplificare il numero di cui vogliamo

Dettagli

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}? Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi

Dettagli

ciascun gamete riceve con la stessa probabilità l uno o l altro di essi

ciascun gamete riceve con la stessa probabilità l uno o l altro di essi LE LEGGI DI MENDEL I primi tre postulati di Mendel: 1.I caratteri genetici sono controllati da fattori che esistono in coppie nei singoli organismi 2.Quando due fattori diversi, responsabili di un unico

Dettagli

Secondo scritto. 8 luglio 2010

Secondo scritto. 8 luglio 2010 Secondo scritto 8 luglio 010 1 Parte 1 Esercizio 1.1. Facciamo riferimento alle pagine e 3 del libro di testo. Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna fare attenzione,

Dettagli

Correzione primo compitino, testo A

Correzione primo compitino, testo A Correzione primo compitino, testo A Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna fare attenzione,

Dettagli

PROBABILITA :GRUPPI SOLUZIONE UTILIZZANDO LA LEGGE DELLE PROBABILITA COMPOSTE: (4/12)(3/11)

PROBABILITA :GRUPPI SOLUZIONE UTILIZZANDO LA LEGGE DELLE PROBABILITA COMPOSTE: (4/12)(3/11) PROBABILITA :GRUPPI ESERCIZIO 1: Un gruppo di 12 persone, fra cui Paolo e Francesca, viene suddiviso a caso in tre gruppi ugualmente numerosi. Qual è la probabilità che: a) Paolo e Francesca facciano parte

Dettagli

IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote?

IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote? IL FATTORE Rh Supponiamo ora di sapere che è nato un figlio Rh + da madre Rh, qual è la probabilità che il padre sia Rh + omozigote? Dobbiamo calcolare P(P AA F + ), dove abbiamo indicato con P AA l evento

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

GENETICA E PROBABILITA

GENETICA E PROBABILITA GENETICA E PROBABILITA Cromosoma:corpo cellulare contenete i geni disposti in ordine lineare, appare nel corso della mitosi (o della meiosi) come un filamento o un bastoncello di cromatina Gene:Unità di

Dettagli

P (F E) = P (E) P (F E) = = 25

P (F E) = P (E) P (F E) = = 25 Regola del prodotto Conoscete la definizione di probabilità condizionata. Definizione 1. Siano E e F due eventi di uno spazio campionario S. Supponiamo P (F ) > 0. La probabilità condizionata dell evento

Dettagli

Matematica e statistica 23 febbraio 2012

Matematica e statistica 23 febbraio 2012 Matematica e statistica 23 febbraio 2012 Compito A Cognome e nome Matricola Parte I Esercizio 1 L indice di massa corporea (IMC) è ottenuto dal rapporto tra massa, espressa in Kg, e altezza, espressa in

Dettagli

REGOLE D ESAME. la V prova scritta di Matematica e statistica Scienze Biologiche Molecolari anno accademico 2008/09

REGOLE D ESAME. la V prova scritta di Matematica e statistica Scienze Biologiche Molecolari anno accademico 2008/09 REGOLE D ESAME Il giorno 18 gennaio si svolgeranno contemporaneamente: la prima prova in itinere di matematica per Scienze Biologiche anno accademico 2009/10 la V prova scritta di Matematica e statistica

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

PROBABILITA : TERNO AL LOTTO

PROBABILITA : TERNO AL LOTTO PROBABILITA : TERNO AL LOTTO Qual è la probabilità di fare un terno al lotto? Possiamo dare una valutazione di equiprobabilità degli eventi Casi possibili 90 5 Casi favorevoli Probabilità 87 2 87 2 90

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

ESERCITAZIONE: LEGGE DI HARDY-WEINBERG

ESERCITAZIONE: LEGGE DI HARDY-WEINBERG ESERCITAZIONE: LEGGE DI HARDY-WEINBERG e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 Il colore degli occhi di una specie di pipistrelli della frutta è determinata geneticamente da

Dettagli

Svolgimento della prova scritta del 14 luglio 2009

Svolgimento della prova scritta del 14 luglio 2009 Svolgimento della prova scritta del 4 luglio 2009 Esercizio. Calcolare i seguenti limiti, giusticando tutti i passaggi: x 2 log x lim ; lim x + x 7 x + x. 2 Esercizio 2. Calcolare Esercizio. Calcolare

Dettagli

Foglio di Esercizi 10 con Risoluzione 18 dicembre 2017

Foglio di Esercizi 10 con Risoluzione 18 dicembre 2017 Matematica per Farmacia, a.a. 07/8 Foglio di Esercizi 0 con Risoluzione 8 dicembre 07 ATTENZIONE: in alcuni degli esercizi di Probabilità puó essere utile usare il Teorema di Bayes. Esercizio (Vedere il

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie Prova N. parti e : risposte Matematica e Statistica 0 gennaio 0 VARIANTE: 0 risposte: C A C B B B B D A B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %,

Dettagli

SVOLGIMENTI DELLE PROVE SCRITTE di Elementi di Matematica Laurea Magistrale in Farmacia A.A. 2017/2018 Preappello 15 Dicembre 2017

SVOLGIMENTI DELLE PROVE SCRITTE di Elementi di Matematica Laurea Magistrale in Farmacia A.A. 2017/2018 Preappello 15 Dicembre 2017 SVOLGIMENTI DELLE PROVE SCRITTE di Elementi di Matematica Laurea Magistrale in Farmacia A.A. 07/08 Preappello 5 Dicembre 07 NOME... COGNOME... N.MATRICOLA... Sia A il numero delle lettere del proprio nome

Dettagli

ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI

ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI ESERCITAZIONE: CALCOLO APPROSSIMATO ED ERRORI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 Se 2 x 2.5 e 5 y 6, fra quali limiti sono compresi i numeri x + y, y x, x y e y/x? 7 x

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 3 1-Il giorno 7 gennaio Francesca riscontrò un aumento di peso del 10% rispetto al suo peso prima delle vacanze

Dettagli

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

TEST DIAGNOSTICI. Si chiama test diagnostico un esame effettuato per stabilire se un dato individuo è affetto o no da una certa malattia.

TEST DIAGNOSTICI. Si chiama test diagnostico un esame effettuato per stabilire se un dato individuo è affetto o no da una certa malattia. TEST DIAGNOSTICI Si chiama test diagnostico un esame effettuato per stabilire se un dato individuo è affetto o no da una certa malattia. Il test, come ogni esame, ha un certo margine di errore, può risultare

Dettagli

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5?

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5? QUESITI 1 FUNZIONI 1. (Da Medicina e Odontoiatria 201) Data la funzione f ( x ) = x 6, quale delle seguenti risposte rappresenta la sua funzione inversa? 1 x a) f ( x ) = + 6 1 x b) f ( x ) = 2 1 x c)

Dettagli

Le disequazioni. BM4 pag Esercizi pag es ) Situazioni al massimo

Le disequazioni. BM4 pag Esercizi pag es ) Situazioni al massimo Le disequazioni. BM4 pag. 28-35 Esercizi pag. 97 98 es. 68 73. 1) Situazioni. a) Con la mia compagnia telefonica C1 pago 20 cts al minuto. Acquistando una tessera del valore di 60 CHF, determina: i) Quanti

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/2018 1 ANNO ACCADEMICO 7/8 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 7/9/8 Esercizio. I giocatori A e B giocano con un mazzo di 4 carte, senza le figure, con le seguenti regole: - ad ogni turno

Dettagli

Esercitazione di Matematica Errori di misura e propagazione degli errori

Esercitazione di Matematica Errori di misura e propagazione degli errori Esercitazione di Matematica Errori di misura e propagazione degli errori Giacomo Tommei tommei@dm.unipi.it Annunci: La Prof. Cerrai farà lezione domani mattina, Mercoledi 3 Novembre, dalle 12 alle 13.

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 Soluzioni 1. In un sahetto i sono 9 palline olorate: 2 rosse, 4 verdi e 3 gialle. Si fanno 3 estrazioni on rimessa. a) Calola la probabilità

Dettagli

Test diagnostici- 1. Un test diagnostico perfetto dovrebbe dare esito positivo in tutti i soggetti malati e esito negativo in tutti i soggetti sani.

Test diagnostici- 1. Un test diagnostico perfetto dovrebbe dare esito positivo in tutti i soggetti malati e esito negativo in tutti i soggetti sani. Test diagnostici- 1 Un test diagnostico è un metodo usato per diagnosticare una certa malattia: per esempio il Pap test è un metodo per diagnosticare il tumore del collo dell utero, la glicemia è un metodo

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE 1-(Vale 4 punti) Per procedere all acquisto on line di un biglietto aereo è necessaria una password composta da 4 simboli che

Dettagli

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza

Dettagli

Risolvere le seguenti disequazioni

Risolvere le seguenti disequazioni Risolvere le seguenti disequazioni 1. x 4x x 4 > 0 Innanzi tutto il denominatore deve essere non nullo, quindi l insieme di definizione (o campo d esistenza) è x ±. Se decomponiamo sia numeratore che denominatore,

Dettagli

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI Una equazione si definisce irrazionale quando

Dettagli

RELAZIONI E FUNZIONI

RELAZIONI E FUNZIONI Esprimendo la legge di Hardy -Weinberg, abbiamo utilizzato la lettera p per esprimere la probabilità, in senso frequentista, dell allele A nella popolazione. Abbiamo quindi calcolato la probabilità del

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

RELAZIONI E FUNZIONI

RELAZIONI E FUNZIONI Esprimendo la legge di Hardy -Weinberg, abbiamo utilizzato la lettera p per esprimere la probabilità, in senso frequentista, dell allele A nella popolazione. Abbiamo quindi calcolato la probabilità del

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Svolgimento prova scritta del 16 maggio 2009

Svolgimento prova scritta del 16 maggio 2009 Svolgimento prova scritta del 16 maggio 2009 Esercizio 1. Calcolare i seguenti iti, giusticando tutti i passaggi: x + x 2 3 (x + 8) ; sin x 2 x + x. 2 Esercizio 2. Calcolare d dx ln(1 + x3 ). Esercizio

Dettagli

ESERCITAZIONE 8 : FUNZIONI LINEARI

ESERCITAZIONE 8 : FUNZIONI LINEARI ESERCITAZIONE 8 : FUNZIONI LINEARI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 27 Novembre 2012 Le funzioni lineari

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Soluzioni del Test OFA del 18/09/2015

Soluzioni del Test OFA del 18/09/2015 Soluzioni del Test OFA del 18/09/201 Materiale prelevato da http://www.batmath.it Versione del 19 settembre 201 Questo fascicolo contiene la risoluzione dei quesiti proposti nel test OFA del 18 settembre

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A , 26 ottobre 2015

I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A , 26 ottobre 2015 I Compito in itinere di Matematica e Statistica per il Corso di Laurea in Enologia e Viticoltura A.A. 205-206, 26 ottobre 205 Cognome: Nome: Matricola: CODICE = 838338 A B C D E 2 3 4 5 6 7 8 CODICE=838338

Dettagli

Prerequisiti per seguire il corso

Prerequisiti per seguire il corso Prerequisiti per seguire il corso Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

G(T) (a) Dal grafico dedurre l espressione analitica di G(T ) completando quanto segue: G(T ) = 0 se... G(T ) = 75 se... G(T ) =... se 33 T 38.

G(T) (a) Dal grafico dedurre l espressione analitica di G(T ) completando quanto segue: G(T ) = 0 se... G(T ) = 75 se... G(T ) =... se 33 T 38. Esercizi 1. Il seguente grafico rappresenta la percentuale G(T ) di semi di una pianta che germinano entro una settimana dalla semina, in funzione della temperatura T (in o C) del terreno 75 G(T) 1 0 13

Dettagli

Correzione Esercitazione 2

Correzione Esercitazione 2 Correzione Esercitazione Esercizio. Per contare correttamente i casi favorevoli all uscita del 9 e all uscita del bisogna considerare i modi in cui si possono ottenere le loro scomposizioni: in particolare,

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011 Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/2012-16 Settembre 2011 1. Quale tra i seguenti numeri è razionale? A. 2 3. B. 2 + 3. C. π. D. 2 8. E. 8. 2. Quali

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli