Fisica Generale A estensione principio di conservazione dell energia energia termica teoria cinetica dei gas 14. I Principio della Termodinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fisica Generale A estensione principio di conservazione dell energia energia termica teoria cinetica dei gas 14. I Principio della Termodinamica"

Transcript

1 Fisica Generale A 4. I Princiio della ermodinamica htt://camus.cib.unibo.it/2434/ December 3, 2 Primo Princiio e Moti Molecolari Il rimo rinciio della termodinamica è l estensione del rinciio di conservazione dell energia all energia termica. Descrivendo un gas come un insieme di molecole in moto casuale (teoria cinetica dei gas si trova che la velocità quadratica media delle molecole è v 2 3R temeratura M dove M è la massa molare. Da questo segue che: 2 energia cinetica media delle molecole 3R 2 M v 2 La temeratura è roorzionale all energia cinetica media delle molecole (energia interna. 2 Primo Princiio e Moti Molecolari (II Il Lavoro nelle rasformazioni Quasi- Statiche di un Fluido Quando un sistema comie lavoro su di un altro sistema, esso trasferisce energia meccanica all altro sistema. edremo che quando un sistema termodinamico trasferisce calore a un altro sistema termodinamico, esso trasferisce energia interna all altro sistema, senza che a tale trasferimento di energia siano associati sostamenti macroscoici. Consideriamo un gas contenuto il un cilindro dotato di un istone, il quale, in seguito al movimento del istone, modifica il rorio volume dal volume iniziale i al volume finale f. Il gas esercita una certa ressione sulle areti del cilindro, e dunque anche sul istone. La forza che il gas esercita sul istone è: S F S ˆn h dh dove ˆn è il versore normale al istone. Se il istone si sosta della quantità dh, il volume, che inizialmente vale Sh, aumenta della quantità d S dh, er cui il lavoro elementare comiuto dal gas è: F dl F idp ( S ˆn i dh ˆn ( ( S dh d rodotto tra scalari rodotto scalare tra vettori 3 4

2 Il Lavoro nelle rasformazioni Quasi- Statiche di un Fluido (II Lavoro Adiabatico dl d Questa relazione vale in generale er le trasformazioni statiche infinitesime di un fluido. Per una trasformazione finita: L Per una trasformazione ciclica, che nel diagramma di Claeyron è raresentata da una curva chiusa, resi 2 unti A e B sulla curva, il lavoro è l area racchiusa dalla curva: L f i B A 2 A ( d ( d ( d ( d B integrale semlice (non è un integrale di linea A B B 2 A A ( d A ( 2 ( B B Si trova serimentalmente che se un sistema termodinamico comie una trasformazione adiabatica (non necessariamente -, il lavoro comiuto (lavoro adiabatico diende soltanto dagli stati iniziale e finale: Non dalla articolare trasformazione adiabatica eseguita (che uò essere -,, ecc.. uttavia (N.B., a differenza della meccanica se una arte della trasformazione adiabatica non è allora la trasformazione inversa non è ossibile. i A B f 5 6 Lavoro Adiabatico (II Lavoro Adiabatico (III P.es., nella trasformazione A f mostrata in figura (esansione, non - la temeratura non cambia. La trasformazione f A richiederebbe una comressione da arte del istone, ma così facendo la temeratura del sistema aumenterebbe, er cui non si arriverebbe mai allo stato A. Dati 2 stati qualunque A e B, non semre esiste una trasformazione adiabatica A B. uttavia se non esiste la trasformazione adiabatica A B allora esiste la trasformazione adiabatica B A. i A B f Per ogni coia di stati di equilibrio A e B di un sistema termodinamico, esiste almeno una trasformazione adiabatica (non necessariamente - che va da A a B oure da B ad A. Se le trasformazioni adiabatiche A B (oure BA sono iù di una, il lavoro corrisondente, detto lavoro adiabatico, è lo stesso er tutte (diende dagli stati iniziale e finale ma non dalla articolare trasformazione che li collega. A B 7 8

3 Energia Interna Energia Interna (II Fissato uno stato di riferimento O, ossiamo definire (analogamente al otenziale meccanico la funzione di stato energia interna U, come: ( L OA U A ( ad ( ad L AO se una trasformazione adiabatica O A se una trasformazione adiabatica A O L energia interna U è definita a meno di una costante additiva arbitraria. A ( ad Il lavoro adiabatico comiuto dal U ( A L AO sistema nella trasformazione i f è: O ( ad U B L if U ( i U ( f U B ad ( L OB ( L energia interna U raresenta il contenuto energetico di un sistema termodinamico (è l energia meccanica totale dell agitazione termica delle molecole. L energia interna U aumenta quando l ambiente esterno comie un lavoro adiabatico sul sistema e diminuisce quando il sistema comie un lavoro adiabatico sull ambiente esterno. L energia interna U è una grandezza estensiva. 9 Quantità di Calore Quantità di Calore (II L energia interna è una funzione di stato. Dunque la variazione dell energia interna in una trasformazione: U if U f ( U ( i non diende dalla trasformazione eseguita. Se essa è adiabatica: ( ad L if U ( ad if L if U if Se essa non è adiabatica, U if resta la stessa ma cambia il lavoro L (che, in generale diende dalla trasformazione e non soltanto dagli stati iniziale e finale. L if U if Chiamiamo quantità di calore la quantità: Q if L if U if Q ( ad L U if if L if U if La differenza sta nel fatto che nelle trasformazioni non adiabatiche si hanno areti diatermiche che consentono la modifica dei arametri di stato dei sistemi in contatto termico. A livello microscoico, l agitazione termica delle molecole di un sistema, urtando contro la arete diatermica, crea agitazione termica negli atomi della arete (essendo le areti solide, si tratta di vibrazioni, i quali, a loro volta, urtando contro le molecole del secondo sistema, ne aumentano l agitazione termica. Si ha dunque un trasferimento di energia che non avviene a livello meccanico macroscoico, ma er urti microscoici. 2

4 Quantità di Calore (III Quantità di Calore (I L energia trasferita secondo la modalità termica (er interazioni microscoiche a cui non corrisonde un movimento macroscoico viene chiamata quantità di calore o semlicemente calore Q. Per una trasformazione non adiabatica scriveremo erciò: Q L U Il calore è una grandezza estensiva. Il calore è il modo termico di scambiare energia, rorio come il lavoro è il modo meccanico di scambiare energia. Q, L e U hanno le stesse dimensioni fisiche [ML 2 2 ] e si misurano in Joule nel Sistema Internazionale. Una vecchia unità di misura è la caloria: cal I J. In una trasformazione adiabatica Q. Questo significa che le areti adiabatiche non lasciano assare il calore e dunque sono isolanti termici. N.B.: er convenzione Q è ositivo quando l energia termica viene acquisita dal sistema, mentre L è ositivo quando l energia meccanica viene ceduta dal sistema. Per questo i segni di Q e L sono oosti: U Q L (I rinciio della termodinamica energia meccanica che esce dal sistema energia termica che entra nel sistema 3 4 Quantità di Calore ( Quantità di Calore (I Per trasformazioni infinitesime: du dq dl dq e dl non sono differenziali esatti, ma la loro differenza du è un differenziale esatto. Chiamiamo ambiente circostante al nostro sistema l insieme di tutti i sistemi con cui il nostro sistema scambia lavoro o calore. Chiamiamo inoltre universo l insieme del nostro sistema e dell ambiente circostante. sistema ambiente universo Poiché er definizione l universo non scambia né lavoro né calore con altri sistemi, si ha: Q U U L U U La somma delle energie interne di tutti i sistemi termodinamici che in un dato istante interagiscono tra loro rimane costante durante il rocesso (rinciio di conservazione dell energia. ambiente sistema universo 5 6

5 Caacità ermica Caacità ermica (II Si trova serimentalmente (mulinello di Joule che la variazione dell energia interna è arossimativamente roorzionale alla variazione di temeratura (se non ci sono cambiamenti dello stato di aggregazione: L U C Se il riscaldamento è ottenuto trasferendo calore invece che comiendo lavoro, si ha: Q U C uttavia il coefficiente di roorzionalità C mostra avere una diendenza dalla temeratura e dal tio di trasformazione (isobara, isocora, ecc.. Si definisce erciò caacità termica a x costante (dove x,, ecc. il raorto: C x dq d (il edice x significa che il raorto è calcolato a x costante. Si definisce inoltre il calore (secifico molare: c x C x n e il calore secifico: c x C x m x 7 8 Caacità ermica (III Calori Molari di Gas Monoatomici e Biatomici Per i liquidi e i solidi C C, mentre er i gas C C. Serimentalmente, er i gas, è difficile misurare C, mentre è iù comodo misurare C e il raorto: Gas Monoatomico c [J mol K ] c / R He Ne c c Ar Kr Per i gas monoatomici risulta: Xe c 5 2 R, c 3 2 R, 5 3 Per i gas biatomici risulta arossimativamente: c 7 2 R, c 5 2 R, 7 5 Per i gas oliatomici i risultati sono alquanto diversi tra loro. Gas Biatomico c [J mol K ] c / R H CO N Cl Br

6 Calori Molari di Gas Poliatomici, Liquidi e Solidi Sostanza Fase c [J mol K ] c [J mol K ] Aria secca C Gas Alluminio Solida 24.2 NH 3 Liquida 8.8 CO 2 Gas Acqua C Gas Acqua C Liquida Acqua 25 C Liquida Acqua C Solida 38.9 Ferro Solida 25. Piombo Solida 26.4 Grafite Solida 8.53 Alcool Etilico Liquido 2 Calori Latenti Quando ha luogo un cambiamento di stato di aggregazione (fase l energia interna di un sistema termodinamico subisce variazioni senza variazione di temeratura: L energia assorbita o ceduta dal sistema termodinamico è utilizzata er modificare i legami tra gli atomi o le molecole (non semlicemente er modificare l agitazione termica; Per esemio una certa quantità di energia assorbita uò trasformare una certa quantità di ghiaccio a C in acqua a C: L energia è utilizzata er romere i legami della struttura cristallina del ghiaccio. Il calore latente l è la quantità di energia assorbita (l > o ceduta (l < da un sistema termodinamico di massa unitaria, quando esso comie un cambiamento del rorio stato di aggregazione (fase senza cambiamento di temeratura Calori Latenti (II Calori Latenti (III L energia necessaria er fondere kg di sostanza solida è detta calore latente di fusione. L energia ta nella solidificazione di kg di sostanza liquida è ari al calore latente di fusione. L energia necessaria er fare evaorare kg di sostanza liquida è detta calore latente di vaorizzazione. L energia ta nella condensazione di kg di sostanza aeriforme è ari al calore latente di vaorizzazione. L energia Q necessaria er avere il cambiamento di stato di aggregazione di una massa m di sostanza con calore latente l è ertanto: Q ml Sostanza Calore Latente di Fusione [kj/kg] Punto di Fusione [ C] Calore Latente di aorizzazione [kj/kg] Punto di Ebollizione [ C] Alcool Etilico Ammoniaca Anidride Carbonica Elio Idrogeno Piombo Azoto Ossigeno Acqua

7 Gas Perfetti Gas Perfetti (II In generale l energia interna, essendo una funzione di stato, è funzione delle variabili di stato. Nel caso di una sostanza ura soltanto 2 variabili di stato sono indiendenti (la terza è legata a queste due dall equazione di stato. Scegliendo come variabili indiendenti e si ha, in generale: U U (, (sostanza ura Consideriamo l esansione adiabatica di un gas erfetto. Essendo adiabatica Q. Essendo non viene comiuto lavoro, dunque L. Per il I rinciio della termodinamica: Q U L Se un gas è rarefatto, si trova serimentalmente che nell esansione adiabatica: Segue che nei gas erfetti l energia interna è funzione della sola temeratura. ( U U U (gas erfetto Gas Perfetti (III Gas Perfetti (I In generale (anche er gas non erfetti: dq du d ed essendo, in generale U U(, si ha: du U d U d erciò: dq U ( U d -,- d In una trasformazione isocora d, erciò: C dq d U (gas generico Per i gas erfetti: U ( du U d U du C d Differenziando l equazione di stato dei gas erfetti si ha: nr d d nrd dq du d C d nrd d ( C nrd d Perciò, a ressione costante (d : C dq (gas erfetto d C nr d C d C d 27 28

8 Entalia e Lavoro ecnico Entalia e Lavoro ecnico (II L entalia (N.B.: non confondere con entroia è una quantità er molti versi analoga all energia interna, concettualmente meno intuitiva, ma di maggiore uso ratico, chimico e ingegneristico: H U L entalia ha le dimensioni di un energia [ML 2 2 ], è una funzione di stato e una grandezza estensiva. Se la trasformazione è -, differenziando: dh du d d du d dh d dq du d dh d (trasformazione - Si chiama lavoro tecnico la quantità: dl d In molte alicazioni ratiche, il fluido che comie la trasformazione viene rima asirato da un ambiente a ressione e, doo la trasformazione, viene esulso in un ambiente a ressione 2, dove e 2 sono le ressioni iniziale e finale della trasformazione. Il lavoro totale (asirazione trasformazione esulsione è dato da: esulsione isobara L tot asirazione trasformazione 2 d ( d 2 ( 2 ( 2 d d 2 d 2 ( d 2, 2 2 ( d isobara Entalia e Lavoro ecnico (III Entalia e Lavoro ecnico (I L tot ( 2 ( d Il lavoro totale (asirazione trasformazione esulsione è uguale al lavoro tecnico. L uso dell energia interna rende iù semlici i calcoli nelle trasformazioni isocore. L uso dell entalia rende iù semlici i calcoli nelle trasformazioni isobare. 2 ( d ( d L Per esemio: f Q U H Q U Q H i Abbiamo anche: ( du U dh H ( d f i ( d (trasformazione isocora - (trasformazione isobara - d U d H d d (scegliendo e come variabili indiendenti (scegliendo e come variabili indiendenti 3 32

9 Entalia e Lavoro ecnico ( Entalia e Lavoro ecnico (I Poiché in un isocora d e in un isobara d, si ha erciò: / du d U dq dh. d H 2 ( C C dq d dq d U H ( d ( d U H (gas generico -,- d. -,- d Scegliendo ora e come variabili indiendenti: ( du U d U d dh H d H d / ( U du d - d U,- d dq 3 dh. d H ( H d. - d 2,- dq H d U d (gas generico ( H H U U (gas generico Entalia e Lavoro ecnico (II Nel caso di un gas erfetto: H U U er cui: ( ( U U H H Inoltre: ( du U dh H ( ( ( nr H ( U H d U d H (gas erfetto d C d d C d (gas erfetto rasformazioni Adiabatiche Quasi-Statiche dei Gas Perfetti Per il I rinciio della termodinamica: dq dl du Poiché la trasformazione è adiabatica: dq Poiché inoltre la trasformazione è -: dl d Poiché infine il sistema è un gas erfetto: du C d Perciò otremo scrivere: d C d 35 36

10 rasformazioni Adiabatiche Quasi-Statiche dei Gas Perfetti (II rasformazioni Adiabatiche Quasi-Statiche dei Gas Perfetti (III Utilizzando l equazione di stato dei gas erfetti e searando le variabili: d C d nr d C d nr d C d Se la caacità termica è costante: nr d d C nr ln ( C ln ( nr ln - C,. / ln -, / (. ln -,. / ln -, /. ( -, / -., /. nr C C C C C C (I formula di Poisson Da questa si ossono ricavare le altre formule di Poisson utilizzando l equazione di stato dei gas erfetti: nr nr nr (II formula di Poisson nr nr ( nr (III formula di Poisson ( htt://camus.cib.unibo.it/2434/ Domenico Galli Diartimento di Fisica domenico.galli@unibo.it htt:// htts://lhcbweb.bo.infn.it/gallididattica

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 3 TRASFORMAZIONI DEL SISTEMA

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 3 TRASFORMAZIONI DEL SISTEMA Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. CHIMICA FISICA Lezione 3 Anno Accademico 00-0 Docente: Dimitrios Fessas RASFORMAZIONI DEL SISEMA i. RASFORMAZIONI

Dettagli

Lezione 10 Termodinamica

Lezione 10 Termodinamica rgomenti della lezione: relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot Lezione 0 ermodinamica secondo riiio della termodinamica Gas ideali Un gas

Dettagli

Lezione Trasformazioni termodinamiche

Lezione Trasformazioni termodinamiche Lezione rasformazioni termodinamiche Adiabatica; Isocora; Isobara; Isoterma; Energia interna costante; Adiabatica Consideriamo una trasformazione che orti il sistema dallo stato di equilibrio 1 allo stato

Dettagli

Lezione 10 Termodinamica

Lezione 10 Termodinamica rgomenti della lezione: Lezione 0 ermodinamica relazione di Mayer trasformazioni adiabatiche trasformazioni isoterme macchine termiche ciclo di arnot secondo riiio della termodinamica cenni sull entroia

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica Il rimo rinciio della termodinamica 1) Concetti di variabile di stato e di trasformazione termodinamica Per studiare le relazioni fra calore Q, lavoro W e energia interna U Int nelle interazioni fra sistemi

Dettagli

Calcolare in quanto tempo uno scaldabagno da 60 litri porta il suo contenuto

Calcolare in quanto tempo uno scaldabagno da 60 litri porta il suo contenuto lcuni esemi. Un coro di massa m1kg assorbe una quantità di calore 30cal aumentando la sua temeratura di 10 C. uale sarà il suo calore secifico? uale sarà la sua caacità termica? Calcolare in quanto temo

Dettagli

La Pressione (1) La Pressione è una grandezza scalare ed in un fluido rappresenta una proprietà meccanica dello stesso.

La Pressione (1) La Pressione è una grandezza scalare ed in un fluido rappresenta una proprietà meccanica dello stesso. La Pressione (1) Trasformazioni termodamiche del Gas Ideale - 1 ds La Pressione è una grandezza scalare ed un fluido raresenta una rorietà meccanica dello stesso. d n F df ds = 1 = mg h (1) = ds ds n π

Dettagli

2) Primo principio della Termodinamica

2) Primo principio della Termodinamica 2) Primo rinciio della Termodinamica Anteatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica delle

Dettagli

TEORIA CINETICA DEI GAS

TEORIA CINETICA DEI GAS TEORI CIETIC DEI GS Gas erfetto molto grande Traiettorie classiche Interazione da sfere rigide, urti elastici Casualita x jx 0 x y z x j 0 j jx + jy + jz x x j 1 l ( ; ) Δx Pxx+Δ x l PRESSIOE f i Δ m(

Dettagli

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1

Termologia. Paolo Bagnaia - CTF Esercizi di termologia e termodinamica 1 ermologia Paolo Bagnaia - CF - 3 - Esercizi di termologia e termodinamica 1 Esercizio Un cubetto di ghiaccio di 150 g alla temeratura di 0 C è gettato in unreciiente, i che contiene 300 g di acqua alla

Dettagli

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico Calorimetria Princiio zero Trasformazioni termodinamiche Lavoro termodinamico Stato di un sistema In Meccanica: lo stato di una articella è definito quando siano note, in un certo istante, la osizione

Dettagli

dz dx + dy y x x y se z e una funzione di due generiche variabili x ed y ossia se z= a prescindere dal fatto che le variabili x ed y

dz dx + dy y x x y se z e una funzione di due generiche variabili x ed y ossia se z= a prescindere dal fatto che le variabili x ed y Richiami matematici se z e una funzione di due generiche variabili x ed y ossia se z= zxy (, ) a rescindere dal fatto che le variabili x ed y siamo indiendenti o siano diendenti da altre variabili il differenziale

Dettagli

Complementi di Termologia. III parte

Complementi di Termologia. III parte Prof. Michele Giugliano (Dicembre 00) Comlementi di Termologia. III arte N. 3. - Lavoro nelle trasformazioni. In generale se un gas, soggetto ad una variazione della ressione, varia il volume, esso comie

Dettagli

= 20 C, dopo aver rappresentato il ciclo nel diagramma di Clapeyron, il lavoro L

= 20 C, dopo aver rappresentato il ciclo nel diagramma di Clapeyron, il lavoro L Partendo dallo stato iniziale, un gas erfetto monoatomico comie il ciclo raggiungendo successivamente gli stati intermedi, e e tornando oi dallo stato nello stato iniziale. Il ciclo è costituito da: un

Dettagli

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE TERMODINAMICA DELLE TURBINE A GAS. INTRODUZIONE Il ciclo termodinamico su cui è imostato il funzionamento delle turbine a gas è il ciclo Bryton, la cui analisi orta alla determinazione di due arametri

Dettagli

LAVORO DI UN GAS. Espansione di un gas a pressione costante V A V B

LAVORO DI UN GAS. Espansione di un gas a pressione costante V A V B LORO DI UN GS Esansione di un gas a ressione costante L F h S h Δ 1 LORO DI UN GS Se la ressione non è costante durante la trasformazione il lavoro si calcola come somma dei lavori comiuti in iccole trasformazioni

Dettagli

Deduzione della legge dell azione di massa per via cinetica

Deduzione della legge dell azione di massa per via cinetica L equilibrio chimico Reazioni reversibili o di equilibrio: reazioni che ossono avvenire sia in senso diretto che in senso inverso Deduzione della legge dell azione di massa er via cinetica A + B C + D

Dettagli

Esercizi svolti di termodinamica applicata

Esercizi svolti di termodinamica applicata 0 ; 0 ; 0 Esercizi solti di termodinamica alicata Ex) A g di aria engono forniti 00 J di calore una olta a ressione costante ed una olta a olume costante semre a artire dallo stesso stato iniziale. Calcolare

Dettagli

delle temperature iniziale e finale analogia con l energia potenziale in meccanica la funzione U e detta energia interna

delle temperature iniziale e finale analogia con l energia potenziale in meccanica la funzione U e detta energia interna Lavoro adiabatico e calore, esperimenti di Joule si puo innalzare la temperatura dell acqua in un calorimetro anche effettuando lavoro senza scambiare calore ( lavoro adiabatico ) i risultati sperimentali

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione Lavoro ed energia Sia dato un coro su cui agisce una forza. Suoniamo che inizialmente il coro sia fermo, dalla relazione F = ma doo un certo intervallo di temo in cui la forza agisce sull oggetto, il coro

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

Introduzione alle macchine termiche

Introduzione alle macchine termiche 1 Introduzione alle macchine termiche In questa nota 1 introduciamo il concetto di macchina termica che oera con trasformazioni cicliche er trasformare calore in lavoro. In generale questo argomento viene

Dettagli

Lavoro nelle trasformazioni quasi statiche

Lavoro nelle trasformazioni quasi statiche avoro nelle trasformazioni quasi statiche Consideriamo un fluido contenuto in cilindro chiuso da un pistone scorrevole, di area A e distante h dalla base: in uno spostamento infinitesimo quasi statico

Dettagli

Fisica dell Atmosfera e del Clima

Fisica dell Atmosfera e del Clima Università degli studi di rento Corso di Laurea Magistrale in Ingegneria er l Ambiente e il erritorio Prof. Dino Zardi Diartimento di Ingegneria Civile, Ambientale e Meccanica Fisica dell Atmosfera e del

Dettagli

La funzione energia interna nei gas ideali. dv =( V p ) dp+( V. T ) p

La funzione energia interna nei gas ideali. dv =( V p ) dp+( V. T ) p La funzione energia interna nei gas ideali Si vuole dimostrare che er quei gas i cui stati sono descritti dall'equazione =nr l' energia interna è funzione solo della temeratura. In altri termini si verificherà

Dettagli

Primo Principio della termodinamica

Primo Principio della termodinamica Primo Principio della termodinamica 1 FORME DI ENERGIA Esistono diverse forme di energia In un sistema la somma di tutte le forme di energia è detta energia totale E del sistema. La Termodinamica studia

Dettagli

Tonzig La fisica del calore

Tonzig La fisica del calore 4 onzig La fisica del calore batiche si trova 2 / = / 4, il che vuol dire che la [F] si riduce alla [E]. Ne deriva che, nello secifico caso di un gas erfetto, il rendimento di un ciclo di Carnot è [G]

Dettagli

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia Stati della materia STATI DI AGGREGAZIONE DELLA MATERIA E GAS PERFETTI Cosa sono gli stati della materia? Gli stati della materia sono come si presenta la materia nell universo fisico e dipendono dalla

Dettagli

Primo principio della Termodinamica

Primo principio della Termodinamica rimo principio della ermodinamica Sistemi termodinamici Esperimento di Joule Energia interna rimo principio della ermodinamica Leggi dei gas Gas erfetto Calori specifici dei gas 1 Sistemi ermodinamici

Dettagli

Fisica dell Atmosfera e del Clima

Fisica dell Atmosfera e del Clima Università degli studi di rento Facoltà di Ingegneria Corso di Laurea Magistrale in Ingegneria er l Ambiente e il erritorio Prof. Dino Zardi Diartimento di Ingegneria Civile ed Ambientale Fisica dell Atmosfera

Dettagli

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle.

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle. PRIMO PRINCIPIO DLLA RMODINAMICA In una trasformazione adiabatia: In una trasformazione isoora: L In una trasformazione generia: L (7) (Primo riniio della termodinamia) Aliazione del riniio di onservazione

Dettagli

Proprietà matematiche. Relazioni differenziali Quadrato termodinamico Esempi E ancora esempi

Proprietà matematiche. Relazioni differenziali Quadrato termodinamico Esempi E ancora esempi Prorietà matematiche Relazioni differenziali Quadrato termodinamico Esemi E ancora esemi 1 Relazioni differenziali (1) Sommario delle rorietà matematiche di una generica funzione variabili z( x, ) di due

Dettagli

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale:

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale: A. na maccina disosta su un asse orizzontale è alimentata da una ortata di 0 kg/s di aria (R = 87 J/kg K, c = 004 J/kg K) alla ressione P = 0 bar e alla temeratura T = 00 C, da un condotto circolare di

Dettagli

Capacità termica e calore specifico

Capacità termica e calore specifico Calori specifici Capacità termica e calore specifico Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T i

Dettagli

Capacità termica e calore specifico

Capacità termica e calore specifico Calori specifici Capacità termica e calore specifico - Il calore si trasferisce da un corpo ad un altro fintanto che i corpi sono a temperature differenti. Potremo scrivere quindi: Q = C ΔT = C (T f T

Dettagli

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: dv dp. dv dt. nrt dt

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: dv dp. dv dt. nrt dt RELAZIONE DI MAYER La relazione di Mayer è: C C R IL rinciio della termodinamica si uò scrivere come du L () Consideriamo due trasformazioni, delle quali una sia un isocora e l altra una isobara, che ortino

Dettagli

Parte II. I Principio della TERMODINAMICA a.a

Parte II. I Principio della TERMODINAMICA a.a Parte II I Princiio della TERMODINAMICA a.a. 04-5 Equazioni di bilancio Mentre un sistema aerto consente flussi di massa e di energia attraerso le sezioni di ingresso e di uscita e flussi di energia attraerso

Dettagli

Peso atomico (meglio massa atomica)

Peso atomico (meglio massa atomica) Nome file d:\scuola\corsi\corso fisica\termodinamica\leggi dei gas.doc Creato il 26/3/2 7.5 Dimensione file: 4864 byte Andrea Zucchini Elaborato il 22//22 alle ore 5.52, salvato il 22//2 7.52 stamato il

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli

Tonzig La fisica del calore

Tonzig La fisica del calore 0 Tonzig La fisica del calore c) Per stati di equilibrio caratterizzati da uno stesso valore della ressione (e del numero di moli), volume e temeratura assoluta sono direttamente roorzionali. Se 0 è il

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la

TERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la ERMODINAMICA Per lo studio scientifico di un problema occorre separare idealmente una regione di spazio limitata ( sistema ) da tutto ciò che la circonda e può influenzarne il comportamento ( ambiente

Dettagli

Enunciato di Kelvin-Plank

Enunciato di Kelvin-Plank ezione VI - 3/03/003 ora 8:30-0:30 - Enunciato di Kelin-Plank, laoro nelle trasformazioni di gas erfetti, Entalia - Originale di Cara Mauro e Dondi Silia Enunciato di Kelin-Plank Non è ossibile effettuare

Dettagli

Tre tipi di Sistema Un richiamo

Tre tipi di Sistema Un richiamo Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Programma: a che unto siamo? Lezioni 25-26 2010 re tii di Sistema Un richiamo Un aio di riferimenti matematici Sistema isolato:

Dettagli

Tale errata concezione del calore fu abbandonata quando si intuì che il calore non è altro che una forma di energia.

Tale errata concezione del calore fu abbandonata quando si intuì che il calore non è altro che una forma di energia. CALORE Secondo la teoria fluidistica il calore era concepito come una sostanza imponderabile (fluido calorico o semplicemente calorico) permeante tutti i corpi. Mettendo a contatto due corpi a diversa

Dettagli

Lavoro adiabatico e calore, esperimenti di Joule

Lavoro adiabatico e calore, esperimenti di Joule Lavoro adiabatico e calore, esperimenti di Joule un recipiente a pareti rigide, adiabatiche ( isolato termicamente ) riempito di acqua pura ed instrumentato con termometri e manometri e detto calorimetro

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

ma come si puo misurare una grandezza fisica della quale si postula l esistenza, ma di cui non si conosce nulla? chiaramente misurarla direttamente

ma come si puo misurare una grandezza fisica della quale si postula l esistenza, ma di cui non si conosce nulla? chiaramente misurarla direttamente Princiio zero della termodinamica gli stati di equilibrio termico godono della articolare rorieta che i sistemi all equilibrio termico tra loro condividono una stessa grandezza fisica, detta temeratura

Dettagli

Sulla propagazione delle onde sonore nell'atmosfera. C = du dt. C V =( du dt ) V T +W. du +dl=dq

Sulla propagazione delle onde sonore nell'atmosfera. C = du dt. C V =( du dt ) V T +W. du +dl=dq Sulla roagazione delle onde sonore nell'atmosfera Si definisce caacità termica di un coro il raorto C = du Tra energia assorbita dal coro e conseguente variazione della sua temeratura. Dalla relazione

Dettagli

La costante (p 0 0 /273) la si riesprime come n R dove R è una costante universale il cui valore dipende solo dalle unità di misura usate: R8.31 Joule/(K mole) e n è il numero di moli L equazione di stato

Dettagli

CONVENZIONE SUI SEGNI

CONVENZIONE SUI SEGNI CONVENZIONE SUI SEGNI Si stabilisce una convenzione sui segni sia per gli scambi di calore che per il lavoro che il sistema compie o subisce L>0: LAVORO COMPIUTO DAL SISTEMA Q>0: CALORE ASSORBITO SISTEMA

Dettagli

Prova scritta del 27 novembre 2018

Prova scritta del 27 novembre 2018 Prova scritta del 27 novembre 2018 1 Un reciiente della caacità di 1.00 L e contenente un gas A alla ressione di 10.0 kpa viene connesso ad un altro reciiente avente il volume di 3.00 L con all interno

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: nrt

RELAZIONE DI MAYER. Per quanto riguarda l ultimo termine, esprimendo V in funzione di p e T si ha: nrt RELAZIONE DI MAYER La relazione di Mayer è: C C R IL rinciio della termodinamica si uò scrivere come du δ δl () Consideriamo due trasformazioni, delle quali una sia un isocora e l altra una isobara, che

Dettagli

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante.

Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante. All origine di tutto c è il teorema di conservazione dell energia totale meccanica: Per un sistema isolato la somma di energia potenziale ed energia cinetica si mantiene costante. Il teorema è tipicamente

Dettagli

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di

Dettagli

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Termodinamica Studia sistemi estesi caratterizzati da pressione, volume e temperatura Si basa sulla definizione della temperatura e su tre principi Il primo principio riguarda la conservazione dell energia

Dettagli

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente. PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova

Dettagli

Programma svolto a.s. 2015/2016. Materia: fisica

Programma svolto a.s. 2015/2016. Materia: fisica Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

La termochimica. Energia in movimento

La termochimica. Energia in movimento La termochimica Energia in movimento Sistema termodinamico La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in

Dettagli

Lez 14 16/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 14 16/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 14 16/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Esperienza di Joule E. Fiandrini Fis. Sper. e 2 Esperienza di Joule

Dettagli

Il I principio della termodinamica. Calore, lavoro ed energia interna

Il I principio della termodinamica. Calore, lavoro ed energia interna Il I principio della termodinamica Calore, lavoro ed energia interna Riassunto Sistemi termodinamici Un sistema termodinamico è una porzione di materia descritto da funzioni di stato che ne caratterizzano

Dettagli

L entropia. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

L entropia. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 L entropia Universita' di Udine 1 L entropia secondo Clausius Prendiamo un ciclo reversibile qualunque ricopriamolo con una rete di adiabatiche i trattini del ciclo li sostituiamo con trattini di isoterme

Dettagli

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 4 Lavoro e calore Misura di lavoro e calore Energia interna 04/03/2008 Antonino Polimeno 1 Sommario (1) - Un sistema termodinamico è una porzione

Dettagli

Temperatura e Calore.

Temperatura e Calore. emeratura e Calore www.fisicaxscuola.altervista.org emeratura e Calore Stati di Aggregazione emeratura Scale ermometriche Dilatazione ermica Leggi dei gas: La rima legge di Gay-Lussac ( costante) La seconda

Dettagli

Le trasformazioni principali. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Le trasformazioni principali. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Le trasformazioni principali Universita' di Udine 1 Trasformazioni notevoli: un elenco Le trasformazioni reversibili sono evidentemente infinite Hanno molta importanza alcune trasformazioni fondamentali

Dettagli

La termochimica. Energia in movimento

La termochimica. Energia in movimento La termochimica Energia in movimento Sistema termodinamico La termodinamica è una scienza che studia proprietà macroscopiche della materia e prevede quali processi chimici e fisici siano possibili, in

Dettagli

Termodinamica. by R. Pizzoferrato

Termodinamica. by R. Pizzoferrato ermodinamica Comletiamo il quadro dei fenomeni fisici: cambiamenti di stato? dove finisce l energia ersa in meccanica? nuove grandezze fisiche: emeratura, Calore, ecc Definiamo Sistema ermodinamico: arte

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

5. Energia libera e potenziale chimico

5. Energia libera e potenziale chimico 5. Energia libera e otenziale chimico Obiettivo: riconoscere lo stato di equilibrio di un sistema mantenuto a temeratura e ressione costanti. costante term 1 2 costante ext 1 2 ext costante term costante

Dettagli

È quella parte della termologia che studia le trasformazioni di calore in lavoro e viceversa.

È quella parte della termologia che studia le trasformazioni di calore in lavoro e viceversa. EMODINMI È quella arte della termologia che studia le trasformazioni di calore in lavoro e viceversa. PINIPIO DI EUIENZ OE - OO Grazie a questo imortante eserimento, Joule oté verificare che il calore

Dettagli

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi

Dettagli

CLASSI SECONDE Formulario (con esercizi) LEGGI DEI GAS

CLASSI SECONDE Formulario (con esercizi) LEGGI DEI GAS CLASSI SECONDE Formulario con esercizi) LEGGI DEI GAS Germano D Abramo Versione 1.1 10/03/2016 N.B. Si invita a trovare errori e/o imrecisioni o a richiedere una stesura del testo iù semlice.) Trasformzioni

Dettagli

Fondamenti di Meteorologia e Climatologia

Fondamenti di Meteorologia e Climatologia Uniersità degli studi di rento Facoltà di Ingegneria Corso di Laurea in Ingegneria er l Ambiente e il erritorio Prof. Dino Zardi Diartimento di Ingegneria Ciile ed Ambientale Fondamenti di Meteorologia

Dettagli

Termodinamica e Termochimica

Termodinamica e Termochimica Termodinamica e Termochimica Mattia Natali 25 luglio 2011 Indice 1 Termochimica 1 1.1 Energia, sistemi, calore.................................... 1 1.2 Misure del calore.......................................

Dettagli

I principi della termodinamica

I principi della termodinamica I principi della termodinamica dalla pratica alla teoria di Ettore Limoli Convenzione sui segni di Q e di L Calore assorbito dal sistema: Q > 0 Calore ceduto dal sistema: Q < 0 Lavoro fatto dal sistema:

Dettagli

i tre stati di aggregazione

i tre stati di aggregazione Temperatura e Calore -temperatura -calore e calore specifico -lavoro in termodinamica -trasformazioni termodinamiche -trasformazioni di stato -energia interna 1 i tre stati di aggregazione solido Ordine

Dettagli

Lezione 9 Termodinamica

Lezione 9 Termodinamica Argomenti della lezione: Lezione 9 Termodinamica introduzione misura della temperatura dilatazione termica calore / capacità termica, calore specifico, calore latente calore e lavoro primo principio della

Dettagli

2) Primo principio della Termodinamica

2) Primo principio della Termodinamica 2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica

Dettagli

Moto Monodimensionale in Condotti

Moto Monodimensionale in Condotti Diartimento di Ingegneria Industriale Moto Monodimensionale in Condotti Fluido Comrimibile - eoria Fig a Fig B Fig. A Moti D Comrimibili- ermodinamica Scuola di Ingegneria Corso di e Macchine A.A. 3 4

Dettagli

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R.

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R. Introduzione al primo principio della termodinamica Liceo scientifico M. Curie Savignano s R. La termodinamica si basa sul concetto di sistema macroscopico (o sistema termodinamico). Lo stato di un sistema

Dettagli

termodinamica: 2. il Primo Principio

termodinamica: 2. il Primo Principio termodinamica: 2. il Primo Principio 28 Primo Principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica TERMODINAMICA

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze e Tecnologie Agrarie, A.A. 2015/2016, Fisica TERMODINAMICA TERMODINAMICA Temperatura: - è una grandezza macroscopica correlata al nostro senso di caldo e di freddo; - due persone diverse possono definire caldo o freddo lo stesso oggetto. - è quella grandezza che

Dettagli

approfondimento Fasi e cambiamenti di fase

approfondimento Fasi e cambiamenti di fase approfondimento Fasi e cambiamenti di fase Gas ideali e gas reali Teoria cinetica dei gas e conseguenze Cambiamenti di fase e conservazione della energia Gas ideali e gas reali In un gas ideale: l interazione

Dettagli

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp Entalpia Si definisce entalpia la grandezza H ( 1 H = U + pv L'entalpia è una funzione di stato ed è una grandezza estensiva. Differenziando la (1) si ha dh=du+pdv+vdp --> du+pdv = dh - Vdp In una generica

Dettagli

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più I Fluidi Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più comunemente forze di coesione) che caratterizzano

Dettagli

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 7

Università degli studi di MILANO Facoltà di AGRARIA. El. di Chimica e Chimica Fisica Mod. 2 CHIMICA FISICA. Lezione 7 Università egli stui i MILANO Facoltà i AGRARIA El. i Chimica e Chimica Fisica Mo. CHIMICA FIICA Lezione 7 Anno Accaemico 000-0 Docente: Dimitrios Fessas Prorietà i equilibrio ei sistemi a iù comonenti

Dettagli

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE TRANSIZIONI DI FASE Fase: qualsiasi parte di un sistema omogenea, di composizione chimica costante e in un determinato stato fisico. Una fase può avere le stesse variabili intensive (P, T etc) ma ha diverse

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi Aunti di Meccanica dei Fluidi 3. STATICA: PRESSIONE E LEE IDROSTATICA PRESSIONE IN UN PUNTO La ressione è il modulo della forza esercitata da un fluido er unità di suerficie che agisce in direzione normale

Dettagli

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore Sistemi termodinamici Sistema: regione dello spazio oggetto delle nostre indagini. Ambiente: tutto ciò che circonda un sistema. Universo: sistema + ambiente Sistema aperto: sistema che consente scambi

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

D T = T fin - T iniz. C e detta capacita termica J K. sperimentalmente risulta che. che occorre fornire/sottrarre. la quantita di calore.

D T = T fin - T iniz. C e detta capacita termica J K. sperimentalmente risulta che. che occorre fornire/sottrarre. la quantita di calore. Capacita termica sperimentalmente risulta che la quantita di calore che occorre fornire/sottrarre ad un corpo che si trovi inizialmente in equilibrio termico ad una determinata temperatura per modificarne

Dettagli

CALORE E TERMODI NAMI CA - PRI MO PRI NCI PI O

CALORE E TERMODI NAMI CA - PRI MO PRI NCI PI O CALORE E ERMODI NAMI CA PRI MO PRI NCI PI O uanto calore è necessario er riscaldare, alla ressione di atm, una massa di kg di ghiaccio, inizialm ent e a 0 C, finchè t ut t o il ghiaccio non si è trasformato

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 03-4 4 CHIMICA Lezioni di Chimica Fisica rof. Antonio Toffoletti Conversione di una grandezza tra unità di misura differenti Uno scienziato ha misurato la pressione atmosferica

Dettagli