Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott."

Transcript

1 Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs

2 Teora de Graf Concett fondamental Un grafo non orentato G=(V,E) è dato da una coppa d nsem fnt: V={v 1,...,v n } l nseme degl n Nod d G E={e 1,..,e m } VxV l nseme degl m Arch non orentat d G Ogn arco non orentato d G corrsponde ad una coppa non ordnata d nod d G e k =(v,v j ). La presenza d un arco tra una coppa d nod ndca una relazone tra nod stess. 2

3 Un esempo: G=(V,E) v 1 e 2 v 2 e 6 e 1 e e 5 v v 5 e v e 7 {,,,, } V v v v v v = {,,,,,, } E e e e e e e e = e = v, v e = v, v ( ) ( )

4 Defnzon d base: un arco (v,v) è detto loop un arco e=(u,v) E s dce ncdente su u e su v due nod u,v V sono dett adacent (u,v) E due arch e 1,e 2 E sono dett adacent e 1 =(u,v) ed e 2 =(v,w) (hanno un nodo n comune) l nseme d nod N(u)={v V: v adacente a u} è detto ntorno d u n G l nseme d arch δ(u)={e E: e ncde su u} è detto stella d u n G δ(u) è detto grado del nodo u v 1 e 1 v 5 e 2 v 2 e 6 e e 5 v e v e 7

5 Teora de Graf Concett fondamental I graf sono un mezzo per rappresentare relazon bnare Ad esempo: due cttà connesse da una strada due calcolator conness n una rete telematca due persone legate da una relazone d parentela (come, padre-fglo) due persone che condvdono una stanza l collegamento tra due component elettronc un operazone che deve essere eseguta da una certa macchna... 5

6 I graf possono essere usat come strumento per modellare n manera schematca un vastssmo numero d problem decsonal. Ad esempo: determnare l percorso pù breve che connette due cttà determnare come connettere nella manera pù economca (pù effcente) un nseme d calcolator n una rete telematca assegnare un nseme d operazon ad un nseme d macchne determnare l percorso pù convenente da far percorrere ad una flotta d vecol commercal per effettuare delle consegne e qund rentrare al deposto... 6

7 Grafo semplce: Non esstono arch parallel (al pù un arco per ogn coppa d nod) o loop. Graf e Sottograf G =(V,E ) è detto sottografo d G=(V,E) V V e E E G =(V,E ) è detto sottografo ndotto da V n G=(V,E) V V e u,v V se (u,v) E allora (u,v) E. 7

8 Esempo v1 e 2 v 2 e 1 v 5 e e e 5 v e 6 v e 7 G=(V,E) v 1 e 2 v 2 e 1 v v 5 G è unsottografo d G 8

9 Esempo v 1 e 2 v 2 e 1 e v v 5 e v e 5 e 6 e 7 G=(V,E) v 1 e 2 v 2 e 1 e e 6 v V ={v 1,v 2,v,v 5 } v 5 G è un sottografo ndotto d G 9

10 Graf bpartt e graf complet G è detto grafo bpartto se esste una partzone d V=V 1 V 2 tale che: V 1 V 2 = e=(u,v) E se u V 1 allora v V 2 oppure se u V 2 allora v V 1 Esempo grafo bpartto grafo non bpartto 10

11 G è detto completo contene tutt possbl arch, ovvero δ(v) =n-1 v V l massmo numero d arch d un grafo completo è dato da Esempo n = 2 n( n 1) 2 grafo completo 11

12 Graf conness e component connesse Dato G=(V,E), un nodo v V s dce connesso ad un nodo u V se esste un cammno tra u e v n G v V è connesso a v (rflessvtà) v V è connesso a u V u V è connesso a v V (smmetra) se v V è connesso a u V e u V è connesso a w V v V è connesso a w V (transtvtà) Un grafo G=(V,E) è connesso tutt suo nod sono conness tra loro. 12

13 L nseme V può essere partzonato n sottonsem C ={v V:v è connesso a u, u C } Il sottografo ndotto da C n G è detto componente connessa d G G è connesso possede una sola componente connessa ( v,u V v è connesso a u) Esempo component connesse grafo connesso 1

14 Graf orentat G=(V,E) è detto orentato se, dato V={v 1,...,v n }, l nseme degl arch E={e 1,..,e m } è formato da coppe ordnate d nod. Per un grafo orentato s ha che e =(v k,v h ) e j =(v h,v k ) e,e j E Coda v h e v k Testa L arco e s dce uscente da v h ed entrante n v k 1

15 Esempo v 1 e v 2 e 1 e 2 e e 6 v v e 5 grafo orentato Fs(v)={u V: (v,u) E} è detto stella uscente d v Bs(v)={u V: (u,v) E} è detto stella entrante d v S(v)= Fs(v) Bs(v) è detto stella d v le defnzon d sottografo, sottografo ndotto e componente connessa d un grafo orentato sono analoghe a quelle date per graf non orentat 15

16 Graf orentat e component fortemente connesse Dato G=(V,E), un nodo v V s dce fortemente connesso ad un nodo u V se esste una path (cammno orentato) tra v e u n G. v V è connesso a v (rflessvtà) se v V è fortemente connesso a u V e u V è fortemente connesso a w V v V è fortemente connesso a w V (transtvtà) Un grafo G=(V,E) è fortemente connesso tutt suo nod sono fortemente conness tra loro. 16

17 Esempo v 1 v 2 C sono n G component fortemente connesse? v v G v 1 v 2 v v Component fortement connesse 17

18 Rappresentazon d un Grafo Lste d adacenza: ad ogn vertce è assocata la lsta de vertc adacent (può essere una tabella o una lsta concatenata). Matrce d adacenza: (n x n) a h = 1 se (v, v h ) E, a h = 0 altrment Matrce d ncdenza: (n x m) a h = 1 se v e h, a h = 0 altrment 18

19 Matrc d Incdenza de Graf Dato G=(V,E) grafo non orentato, A G =[a j ], con =1,...,n e j=1,...,m è la matrce d ncdenza d G, dove n= V ed m= E, e tale che a j = 1 se v è testa o coda d e j 0 altrment 19

20 Esempo v v 2 e 5 e 1 e A G = v e v e1 e2 e e e v v v v 1 2 matrce d ncdenza d un grafo non orentato 20

21 Dato G=(V,E) grafo orentato, A G =[a j ], con =1,...,n e j=1,...,m è la matrce d ncdenza d G, dove n= V ed m= E, e tale che a j = se v se v è coda è testa altrment d d e e j j (arco uscente da (arco entrante n v v ) ) 21

22 Esempo e 5 v v 1 v 2 e 1 e 2 e e v A G = e1 e2 e e e v v v v matrce d ncdenza d un grafo orentato

23 Rappresentazon d un Grafo: Vantagg e Svantagg Lsta d adacenza: memora O(m) Vantagg: permette d scorrere nod adacent a v n O(grado(v)) Svantagg: nserment e cancellazon su lste concatenate n O(grado(v)) Matrce d adacenza: memora O(n2) Vantagg: Inserment e cancellazon n O(1) Svantagg: permette d scorrere nod adacent a v n O(n) D.: matrce d ncdenza? 2

24 Problema del flusso a costo mnmo Sa G=(V,E) un grafo connesso e orentato n cu: Ø Ad ogn arco (,j) è assocato un costo c j che rappresenta l costo da pagare per ogn untà d flusso che transta sull arco (,j). Ø Ad ogn vertce v V è assocato un valore ntero b v dove: - b v >0 ndca che l nodo v è un nodo d offerta - b v <0 ndca che l nodo v è un nodo d domanda - b v =0 ndca che l nodo v è un nodo d passaggo Ø La somma d tutt b v deve essere uguale a zero (condzone d blancamento). Cò che vene prodotto dalle sorgent vene consumato dalle destnazon. Nel problema del flusso a costo mnmo bsogna far gungere la merce prodotta (da nod d offerta) alle destnazon (nod d domanda) mnmzzando cost d trasporto. 2

25 Problema del Flusso a costo Mnmo FORMULAZIONE mn c j (, j) A x j con vncol : j k j FS ( ) k BS ( ) x j x 0 x = b A = 1,...n x c j j b = quanttà d flussosull'arco (, j) = costo d trasporto d un'untà d flussosull'arco (, = valore assocato al nodo : seb seb seb > 0 : nodo offerta < 0 : nodo domanda = 0 : nodo d passaggo j) 25

26 Problema del Flusso a costo Mnmo: FORMULAZIONE mn n n = 1 j= 1 c con vncol : j x j x n j x j n j= 1 k= 1 0 x k = b = 1,...n = 1,,n; j = 1,...n x c b j j = quanttà d flusso sull'arco (, j) = costo d "trasporto"d un'untà d = valore assocato al nodo : seb seb seb > 0 : nodo offerta < 0 : nodo domanda = 0 : nodo d passaggo flusso sull'arco (, j) 26

27 Problema del Flusso a costo Mnmo FORMULAZIONE NOTA: In forma matrcale: mn c T x Ax x = 0 1. La matrce A(m,n) è la matrce d ncdenza nodo-arco, ogn colonna a j è assocata all arco (,j), ed n partcolare abbamo che: a j = e e j 2. Il rango d questa matrce è: r(a)=m-1 b (e vettore colonna con tutt 0 eccetto un 1 n poszone -ma.)

28 Problema del Flusso a costo Mnmo: Esempo Consderamo un grafo orentato G=(V,E) rappresentante una rete d trasporto. L obettvo è quello d far vaggare ( flure ), al mnmo costo, determnate quanttà d merce (untà d flusso) da nod d offerta a quell d domanda (eventualmente passando per de nod d passaggo) Abbamo: Una quanttà b >0 per nod offerta, <0 per nod domanda, =0 per nod d passaggo (quanttà d offerta/domanda) Un costo c j 0 per ogn arco (costo per l trasporto d una untà d merce)

29 Problema del Flusso a costo Mnmo: Esempo Soluzone 1 Costo: (6*5)+(*1)+(*2)=0 Flusso Flusso 5-= Flusso 5 Soluzone 2 Costo: Flusso 5 1 (1*5)+(2*5)+(1*)+(*)=28 Flusso Flusso 2 - Flusso 1+2=

30 Problema del Flusso a costo Mnmo: Esempo Modellamo l problema Consderamo una varable x j 0 per ogn arco (,j), rappresentante la quanttà d flusso che attraverserà l arco nella soluzone

31 Rappresentamo l grafo medante una matrce d ncdenza nodo-arco A; per ogn nodo v ed arco e, la corrspondente entrata A ve varrà: 1 se e esce da v (v è la coda d e) -1 se e entra n v (v è la testa d e) 0 altrment Problema del Flusso a costo Mnmo: Esempo A (1,2) (1,) (2,5) (,2) (,) (,1) (,2) (,5)

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2 RICERCA OPERATIVA GRUPPO B prova scrtta del febbrao 009. Dte se l vettore (,, ) è combnazone affne, conca o convessa de vettor ( ½,, ), (0, 5, 0) e (,, ). Il vettore (,, ) è combnazone affne de vettor

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Lezione 2 Codifica della informazione

Lezione 2 Codifica della informazione Lezone Codfca della nformazone Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Organzzazone della lezone La codfca della nformazone Notazone poszonale Rappresentazone

Dettagli

RICERCA OPERATIVA GRUPPO A prova scritta del 12 febbraio 2009

RICERCA OPERATIVA GRUPPO A prova scritta del 12 febbraio 2009 RICERCA OPERATIVA GRUPPO A prova scrtta del febbrao 009. Dte se l vettore (, /4, /4) è combnazone affne, conca o convessa de vettor (, 0, ), (, ½, ½) e ( ½,, ). Il vettore (, /4, /4) è combnazone convessa

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008 Intellgenza rtfcale II Ragonamento probablstco Rappresentazone Marco astra Ragonamento probablstco: rappresentazone - arte Mond possbl sottonsem event artzon e varabl aleatore robabltà Margnalzzazone Condzonal

Dettagli

Ragionamento probabilistico: rappresentazione

Ragionamento probabilistico: rappresentazione Intellgenza Artfcale II Ragonamento probablstco: rappresentazone Marco astra Intellgenza Artfcale II - A.A. - Rappresentazone robablstca ] Ragonamento probablstco: rappresentazone Mond possbl sottonsem

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Teoria dei Grafi Concetti fondamentali

Teoria dei Grafi Concetti fondamentali Teoria dei Grafi Concetti fondamentali I grafi sono un mezzo per rappresentare relazioni binarie. Ad esempio: due città connesse da una strada due calcolatori connessi in una rete telematica due persone

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

1. Considerazioni preliminari

1. Considerazioni preliminari 1. Consderazon prelmnar Le attvtà d trasporto ncdono n manera rlevante su cost logstc (n alcun cas anche per due terz. Rsulta mportante qund organzzare n modo effcente queste attvtà. altra parte le attvtà

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

Algoritmi basati sulla tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera Qucksort Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 28/01/2008 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 28/0/2008 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 20 soggett. Soggetto Età Resdenza

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio Formulazone e Notazon Algortmo d Carler- Pnson er roblem d Job Sho Schedulng: un esemo Notazon o C M ( o r, q -esma oerazone del ob Temo d rocessamento d o Macchna che deve rocessare o Clque (nseme d oerazon

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 9--) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Appunti di Teoria dell Informazione

Appunti di Teoria dell Informazione Corso d Telecomuncazon (Classe Qunta della specalzzazone Elettronca e Telecomuncazon) Pagna - - . La teora dell nformazone La teora dell nformazone descrve l funzonamento de sstem d comuncazone sa analogc

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Errata corrige del libro Fondamenti di Informatica in Java

Errata corrige del libro Fondamenti di Informatica in Java corrge del lbro Fondament d Informatca n Java Emlo D Gacomo, Walter Ddmo Captolo 1 R1 R2 R3 Rn PC IR PSW Untà d controllo Pag. 23, Fgura 1.2 Bus nterno ALU MAR MDR al bus dat al bus ndrzz al bus d controllo

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Rcerca operatva Lezone # 2 7 maggo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14? n presenza d un attvtà produttva

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell per la panfcazone delle attvtà Paolo Dett Dpartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell per la panfcazone delle

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

IMPIANTI E PROCESSI CHIMICI. Esercitazione n 8 Progetto di colonne di distillazione binarie: bilancio entalpico ed economico (riflusso ottimo)

IMPIANTI E PROCESSI CHIMICI. Esercitazione n 8 Progetto di colonne di distillazione binarie: bilancio entalpico ed economico (riflusso ottimo) IMPIANTI E PROCESSI CHIMICI Eserctazone n 8 Progetto d colonne d dstllazone bnare: blanco entalpco ed economco (rflusso ottmo) Graze ad un esempo c concentreremo sulla valutazone ottmale (n senso economco)

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

1 Bimatrix Games e Best Response Condition

1 Bimatrix Games e Best Response Condition Strument della Teora de Goch per l Informatca A.A. 2009/10 Lecture 5: 29 Ottobre 2010 Calcolo d Equlbr Nash Mst per Goch a due Gocator Docente Prof. Vncenzo Auletta Note redatte da: Roberto D Russo Sommaro

Dettagli

Ottimizzazione Combinatoria 2 Presentazione

Ottimizzazione Combinatoria 2 Presentazione Ottmzzazone Combnatora Presentazone ANONIO SASSANO Unerstà Roma La Sapenza Dpartmento Informatca e Sstemstca Roma, Marzo Prereqst Element base eora e Graf e egl Algortm Defnzon base eora e Graf eora ella

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola:

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2014/15. Prova Scritta del 16/11/ NOME matricola: Corso d Laurea n Scenze Ambental Corso d Fsca Generale II a.a. 2014/15 Prova Scrtta del 16/11/2015 - NOME matrcola: 1) Un clndro contene 2 mol d gas deale alla temperatura d 340 K. Se l gas vene compresso

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Modelli per la Logistica Distributiva: Single Commodity Minimum Cost Flow Problem Multi Commodity Minimum Cost Flow Problem Fixed Charge

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri Segmentazone tramte modell ad hoc Indvduazone d lnee e curve Obbettvo: Data l mmagne d output d un algortmo d rlevamento d bord, trova tutte le stanze d una certa curva (lnea o ellss) o una sua parte.

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

sda 2006/6/1 9:59 page 317 #333

sda 2006/6/1 9:59 page 317 #333 sda 2006/6/1 9:59 page 317 #333 Captolo 9 NP-completezza SOMMARIO In questo captolo fnale rprendamo n esame le class d complesstà ntrodotte nel prmo captolo, dandone una defnzone formale basata sul concetto

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Ottimizzazione dei Progetti

Ottimizzazione dei Progetti Sapenza Unverstà d Roma - Dpartmento d Ingegnera Informatca, Automatca e Gestonale Ottmzzazone de Progett Renato Brun brun@ds.unroma.t Il materale presentato è dervato da quello de proff. A. Sassano e

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 13: 17 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/16? resa vsone della prma prova parzale Entro l

Dettagli

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi

Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica. Algoritmi Unverstà degl Stud d Roma Tor Vergata Facoltà d Ingegnera Corso d Laurea n Ingegnera Medca Algortm Rev.2.2 of 2016-04-20 Elaborazone dat Problem che s presentano spesso sono 1. rcorsvo (es. successone

Dettagli

Economia del turismo

Economia del turismo Unverstà degl Stud d Caglar Facoltà d Economa Corso d Laurea n Economa e Gest. de Serv. Turstc A.A. 2013-2014 Economa del tursmo Prof.ssa Carla Massdda Sezone 5 ANALISI MICROECONOMICA DEL TURISMO Argoment

Dettagli

Reti di Telecomunicazione

Reti di Telecomunicazione Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc Ret d Telecomuncazone Prof. Fabo Martgnon F. Martgnon: Ret d Telecomuncazone Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Università degli Studi di Catania Lezone PONTI E GRANDI STRUTTURE Prof. Per Paolo Ross Unverstà degl Stud d Catana Progetto de travers d un ponte con mpalcato a struttura msta Lnee d nfluenza Lo studo del traverso esge che s determnno

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Proprietà dei Grafi. Ottimizzazione Combinatoria Ottimizzazione Combinatoria Ottimizzazione Combinatoria Proprietà dei Grafi ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria Gestionale

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Unverstà degl Stud d Napol Federco II CdL Ing. lettrca Corso d Laboratoro d Crcut lettrc Introduzone a MATLAB Lezone n.5 Dr. Carlo Petrarca Dpartmento d Ingegnera lettrca e Tecnologe dell Informazone Unverstà

Dettagli

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1.

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1. PROGRAMMAZIONE LINEARE Una pccola ntroduzone R. Tade R. Tade 2 LA PROGRAMMAZIONE LINEARE L obettvo del captolo consste nel fornre lo scheletro d un problema d programmazone lneare e gl strument concettual

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Archtettura degl Elaborator - 1 Unverstà degl Stud d Padova Facoltà d Scenze MM.FF.NN. Corso d Laurea Trennale n Informatca docente: Alessandro Sperdut Informazon General Lucd ed esercz dsponbl n formato

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori Archtettura degl Elaborator Unverstà degl Stud d Padova Scuola d Scenze Corso d Laurea n Informatca docente: Alessandro Sperdut Informazon General Lucd ed esercz dsponbl n formato elettronco http://www.math.unpd.t/~sperdut/archtettura1.html

Dettagli