Algebra Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i."

Transcript

1 Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere semplce? (b) Dmostrare che, se q 1 mod p, allora G è cclco. (c) Dmostrare che se G è abelano allora è cclco Sa n un ntero postvo fssato e sa R n l sottonseme d C formato dagl element del tpo a + b n al varare d a e b n Z. (a) Mostrare che R n è un sottoanello d C. (b) Dato un elemento z := a + b n d R n la sua norma N(a) è defnta come N(z) := a 2 + b 2 n. Mostrare che N(z 1 z 2 ) = N(z 1 )N(z 2 ) per ogn z 1 e z 2 n R n. (c) Trovare gl element nvertbl d R n n dpendenza da n. (d) Mostrare che gl element nvertbl d R n formano un gruppo cclco rspetto al prodotto. (e) Dmostrare che 2, e 3 7 sono element rrducbl d R 7. (f) Mostrare che R 7 non è un domno a fattorzzazone unca Sa M un modulo (destro) su un anello commutatvo A. Dato un elemento m d M l annullatore Ann (m) è l sottonseme d A così defnto: Ann (S) := {x A mx = 0}. (a) Mostrare che Ann (m) è un deale d A. (b) Dato un sottomodulo N d M s consder l modulo quozente M/N. Mostrare che Ann (m + N) Ann (m) e che Ann (m + N) = Ann (m) se e solo se ma N = 0 (dove ma := {ma a A} è l sottomodulo d M generato da m) Sa A un anello commutatvo. S rcorda che n un anello commutatvo vale l teorema bnomale, coè (a + b) n = n a b n per ogn a e b n A e ogn ntero postvo n. Per defnzone l nlradcale N d un anello commutatvo A è l sottonseme d A formato da tutt gl element nlpotent d A (coè gl element a per cu esste un ntero postvo n tale che a n = 0). (a) Mostrare che l nlradcale d A è un deale N e che l quozente A/N non ha element nlpotent non banal. (b) Mostrare che se A è un domno allora N = 0. (c) Sa I un deale d A tale che A/I sa un domno. Mostrare che I N.

2 Fac-smle 2 Pagna 1 d Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere semplce? Soluzone: Per l teorema d Sylow G ha almeno un sottogruppo d ordne q. Sempre per l teorema d Sylow, l numero d tal sottogrupp è un dvsore d G q = p congruo a 1 modulo q. I dvsor d p sono 1 e p: l prmo è charamente congruo a 1 modulo q mentre l secondo no (nfatt p 1 è un numero postvo mnore d q e, qund, non è multplo d q). Pertanto G ha esattamente un sottogruppo Q d ordne q: suo conugat, avendo ordne q, devono necessaramente concdere con Q che è qund normale. Il gruppo G non è pertanto semplce. (b) Dmostrare che, se q 1 mod p, allora G è cclco. Soluzone: Dal punto precedente sappamo che G ha un sottogruppo normale Q d ordne q. Con un ragonamento analogo a quello del punto precedente G ha sottogrupp d ordne p e l loro numero è un dvsore d q congruo a 1 modulo p. Poché per potes q non è congruo a 1 modulo p, c è esattamente un sottogruppo P d ordne p. Ragonando come al punto precedente, tale sottogruppo è normale. L ntersezone P Q ha ordne che dvde l ordne d P e l ordne d Q. Poché p e q sono prm dstnt P Q l ntersezone P Q ha ordne 1. Il prodotto P Q ha ordne uguale P Q = pq e dunque P Q = G. Rassumendo, P e Q sono sottogrupp normal l cu prodotto è G e la cu ntersezone è 1: n altr termn G è l prodotto dretto d P e Q. Dal momento che P e Q hanno ordne prmo sono entramb cclc, qund G è l prodotto dretto d grupp cclc avent ordn coprm ed è qund cclco. (c) Dmostrare che se G è abelano allora è cclco. Soluzone: Per l teorema d Sylow G ha almeno un sottogruppo P d ordne p e un sottogruppo Q d ordne q. Poché G è abelano tutt suo sottogrupp sono normal: n partcolare P e Q sono normal (n realtà abbamo mostrato n precedenza che Q è normale anche se G non è abelano). Rpetendo l ultma parte del punto precedente s trova che G è cclco Sa n un ntero postvo fssato e sa R n l sottonseme d C formato dagl element del tpo a + b n al varare d a e b n Z. (a) Mostrare che R n è un sottoanello d C. Soluzone: L nseme R n è charamente non vuoto. Sano z 1 := a 1 + b 1 n e z2 := a 2 + b 2 n due element generc d R n. Abbamo z 1 + z 2 = (a 1 + a 2 ) + (b 1 + b 2 ) n : poché a 1 + a 2 e b 1 + b 2 sono numer nter, R n è chuso rspetto alla somma. Inoltre z = a 1 b 1 n : poché a 1 e b 1 sono numer nter, R n contene gl oppost de propr element. Abbamo po z 1 z 2 = a 1 a 2 nb 1 b 2 + b 1 + (a 1 b 2 + a 2 b 1 ) n : poché a 1 a 2 nb 1 b 2 e a 1 b 2 +a 2 b 1 sono numer nter, R n è chuso rspetto al prodotto. Infne R n contene 1: nfatt 1 = n. (b) Dato un elemento z := a + b n d R n la sua norma N(a) è defnta come N(z) := a 2 + b 2 n. Mostrare che N(z 1 z 2 ) = N(z 1 )N(z 2 ) per ogn z 1 e z 2 n R n.

3 Fac-smle 2 Pagna 2 d 4 Soluzone: La dmostrazone è dretta. Se z 1 := a 1 + b 1 n e z2 := a 2 + b 2 n abbamo z 1 z 2 = a 1 a 2 nb 1 b 2 + b 1 + (a 1 b 2 + a 2 b 1 ) n : pertanto N(z 1 ) = a 2 1 +b 2 1n, N(z 2 ) = a 2 2 +b 2 2n e N(z 1 z 2 ) = (a 1 a 2 nb 1 b 2 ) 2 +(a 1 b 2 +a 2 b 1 ) 2 n. Svluppando ottenamo N(z 1 z 2 ) = a 2 1a n 2 b 2 1b 2 2 2na 1 a 2 b 1 b 2 + na 2 1b na 2 2b na 1 b 2 a 2 b 1 = a 2 1a n 2 b 2 1b na 2 1b na 2 2b 2 1. D altra parte N(z 1 )N(z 2 ) = (a b 2 1n)(a b 2 2n) = a 2 1a n 2 b 2 1b na 2 1b na 2 2b 2 1. (c) Trovare gl element nvertbl d R n n dpendenza da n. Soluzone: Sa z un elemento nvertble. Allora N(z)N(z 1 ) = N(zz 1 ) = N(1) = 1. Poché la norma d un qualsas elemento d R n è, per defnzone, un ntero non negatvo, abbamo che N(z) = 1. Se z = a + b n abbamo che N(z) = a 2 + nb 2. Consderamo l uguaglanza a 2 + nb 2 = 1. Per n = 1 s rduce a a 2 + b 2 = 1 le cu soluzon sono (a, b) = (1, 0), (a, b) = ( 1, 0), (a, b) = (0, 1) e (a, b) = (0, 1) che danno gl element 1, 1, e. Quest quatto element sono effettvamente nvertbl n R 1 : nfatt 1 e 1 concdono con l propro nverso e e sono uno l nverso dell altro. Se n 2 l uguaglanza a 2 + nb 2 = 1 mplca che b = 0: se fosse b 0 avremmo N(z) nb 2 n 2. Pertanto b = 0 e N(z) = a 2 : le unche possbltà sono a = 1 e a = 1. Ottenamo così z = 1 e z = 1: quest sono effettvamente nvertbl n R n. (d) Mostrare che gl element nvertbl d R n formano un gruppo cclco rspetto al prodotto. Soluzone: L nseme degl element nvertbl d un anello forma sempre un gruppo. Nel caso n = 1 tale gruppo è cclco generato da (o da ): nfatt = 1, 2 = 1, 3 = e 4 = 1. Se n 2 tale gruppo è generato da 1: nfatt ( 1) 1 = 1 e ( 1) 2 = 1. (e) Dmostrare che 2, e 3 7 sono element rrducbl d R 7. Soluzone: Dobbamo mostrare che ogn volta che esprmamo uno degl element dat come prodotto d due element d R 7, uno de due fattor è necessaramente nvertble. Notamo che N(2) = 4. Se fosse 2 = z 1 z 2 avremmo N(z 1 N(z 2 ) = 4. Poché la norma d un elemento è un ntero postvo abbamo due possbltà: N(z 1 ) = N(z 2 ) = 2, oppure uno de due fattor ha norma 1 e l altro 4. L equazone a 2 + 7b 2 = 2 mplca che b = 0 (altrment l prmo membro sarebbe maggore o uguale a 7) e s rduce qund a a 2 = 2 che non ha soluzon ntere. Pertanto non c sono element d norma 2 n R 7. L unca possbltà d scrvere 2 come prodotto d due element n R 7 è che uno abba norma 1 e l altro 4: abbamo osservato n precedenza che gl element d norma 1 sono nvertbl n R 7 e, dunque, 2 è rrducble. Per quanto rguarda e 3 7 osservamo che entramb hanno norma 16. Se voglamo esprmere uno d ess come prodotto d due element d R 7 abbamo allora tre possbltà: un fattore d norma 1 e un fattore d norma 16, un fattore d norma 2 e uno d norma 8, entramb fattor d norma 4. Abbamo notato n precedenza che non c sono n R 7 element d norma 2: possamo escludere l secondo caso. Per trovare gl element d norma 4 consderamo l equazone a 2 + 7b 2 = 4: deve essere b = 0 (altrment l prmo membro sarebbe maggore o uguale a 7) e da a 2 = 4 rcavamo a = 2 o a = 2. Gl unc element d norma 4 sono allora 2 e 2: n partcolare l prodotto d due element d norma 4 è un ntero relatvo e non può essere o 3 7. L unca possbltà per esprmere o 3 7 come prodotto d due element d R 7 è che uno de due fattor abba norma 1 e l altro 16: abbamo però gà osservato che gl element d norma 1 sono nvertbl. (f) Mostrare che R 7 non è un domno a fattorzzazone unca.

4 Fac-smle 2 Pagna 3 d 4 Soluzone: Dal punto precedente sappamo che 2, e 3 7 sono rrducbl. Notamo che 16 = = (3 + 7) (3 7): abbamo allora scrtto l numero 16 come prodotto d rrducbl n due mod non equvalent (le due fattorzzazon non hanno nemmeno lo stesso numero d fattor) Sa M un modulo (destro) su un anello commutatvo A. Dato un elemento m d M l annullatore Ann (m) è l sottonseme d A così defnto: Ann (S) := {x A mx = 0}. (a) Mostrare che Ann (m) è un deale d A. Soluzone: Il sottonseme Ann (m) è charamente non vuoto perché 0 Ann (s). Sano x 1 e x 2 due element d Ann (m) e sa d un elemento d A. Abbamo allora mx 1 = mx 2 = 0 da cu ottenamo m(x 1 + x 2 ) = mx 1 + mx 2 = = 0 m(x 1 d) = (mx 1 )d = 0d = 0 coè x 1 + x 2 e x 1 d appartengono all annullatore d m che è, pertanto un deale d A. (b) Dato un sottomodulo N d M s consder l modulo quozente M/N. Mostrare che Ann (m + N) Ann (m) e che Ann (m + N) = Ann (m) se e solo se ma N = 0 (dove ma := {ma a A} è l sottomodulo d M generato da m). Soluzone: Se x è un elemento d Ann (m), coè se mx = 0, allora (m + N) = mx + N = 0 + N = N. Poché N è lo zero del modulo quozente M/N abbamo che x Ann (m + N): dunque Ann (m + N) Ann (m). Supponamo ora che Ann (m + N) = Ann (m) e mostramo che ma N = 0. Sa dunque n ma N: esste dunque x A tale che n = mx. Ma allora (m + N)x = mx + N = n + N = N dal momento che n N. Poché N è lo zero d M/N, cò sgnfca che x appartene a Ann (m + N): l potes Ann (m + N) = Ann (m) mplca allora che x Ann (m), coè n = mx = 0. Pertanto ma N = 0. Supponamo vceversa che ma N = 0 e mostramo che Ann (m + N) Ann (m) (l nclusone opposta è sempre garantta). Sa x Ann (m + N): poché lo zero d M/N è N cò sgnfca che N = (m + N)x = mx + N, coè mx N. Ma allora mx è un elemento d ma N = 0, coè mx = 0: pertanto x Ann (m) Sa A un anello commutatvo. S rcorda che n un anello commutatvo vale l teorema bnomale, coè (a + b) n = n a b n per ogn a e b n A e ogn ntero postvo n. Per defnzone l nlradcale N d un anello commutatvo A è l sottonseme d A formato da tutt gl element nlpotent d A (coè gl element a per cu esste un ntero postvo n tale che a n = 0). (a) Mostrare che l nlradcale d A è un deale N e che l quozente A/N non ha element nlpotent non banal. Soluzone: Notamo che N è non vuoto perché 0 N. Sano ora a e b due element d N: esstono allora nter postv m e n tal che a m = 0 e b n = 0. Consderamo allora (a + b) m+n 1. Per l teorema bnomale abbamo che (a + b) m+n 1 = m+n 1 a b m+n 1. Notamo che tutt gl addend della precedente espressone s annullano: per < m l esponente m+n 1 d b è maggore o uguale d n e, dunque, b m+n 1 = 0; mentre per m s ha a = 0. Pertanto a + b è nlpotente, coè N è chuso rspetto alla somma.

5 Fac-smle 2 Pagna 4 d 4 Sa ora a un elemento nlpotente e c un elemento qualunque dell anello A. Sappamo che esste un ntero postvo n tale che a n = 0: ma allora, poché A è commutatvo, s ha (ac) n = a n c n = 0 c n = 0 coè ac è nlpotente. Questo conclude la verfca del fatto che N sa un deale. Consderamo ora l anello quozente A/N e sa a + N un elemento nlpotente d A/N. Esste allora un ntero postvo n tale che (a + N) n è lo zero d A/N. Poché (a + N) n = a n + N e lo zero d A/N è N cò sgnfca che a n N, vale a dre a n è nlpotente. Dunque esste un ntero postvo m tale che (a n ) m = 0. Per le propretà delle potenze abbamo allora a mn = 0 e, qund, a è nlpotente, coè appartene a N. Questo sgnfca che a + N = N coè l elemento nlpotente a + N d A/N è necessaramente lo 0 d A/N. (b) Mostrare che se A è un domno allora N = 0. Soluzone: Sa a un elemento nlpotente d A: esste allora un ntero postvo n tale che a n = 0. Mostramo, per nduzone su n, che a = 0. Se n = 1 cò è banale, altrment notamo che aa n 1 = a n = 0. Poché A è un domno abbamo che a = 0 (come rchesto) oppure a n 1 = 0 che, per potes nduttva, mplca ancora a = 0. (c) Sa I un deale d A tale che A/I sa un domno. Mostrare che I N. Soluzone: Sa a un elemento d N. Esste allora un ntero postvo n tale che a n = 0. Se consderamo l elemento a + I del quozente A/I abbamo allora che (a + I) n = a + I = 0 + I = I: poché I è lo zero d A/I, cò sgnfca che a + I è nlpotente. Dal punto precedente sappamo che l unco elemento nlpotente d un domno è 0: pertanto a + I è lo zero d A/I, coè a I.

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 4 Teora de Goch Dr. Guseppe Rose Unverstà degl Stud della Calabra Corso d Laurea Magstrale n Economa Applcata a.a 011/01 Handout 4 1 L equlbro d Bertrand Nel modello d Bertrand, abbamo un duopolo esattamente

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Complementi 4 - Materiali non isotropi

Complementi 4 - Materiali non isotropi Complement 4 - Materal non sotrop [Ultmarevsone revsone9gennao gennao2009] In questo noteboo s parte dalla legge d Hooe per sold ansotrop, e s deducono le opportune restron sulle 21 costant elastche, potando

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Progetto Olimpiadi di Matematica Norme per la correzione ad uso degli insegnanti

Progetto Olimpiadi di Matematica Norme per la correzione ad uso degli insegnanti UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olmpad d Matematca 2009 GARA d SECONDO LIVELLO Norme per la correzone ad uso degl nsegnant Come per gl scors ann, la prova è dstnta

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K)

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K) ESERCITAZIONI d ECONOIA POLITICA ISTITUZIONI (A-K). Bonacna - Unverstà degl Stud d Pava monca.bonacna@unboccon.t 1 3 a ESERCITAZIONE: ONETA: Soluzon Ogn volta che s parla d domanda d, spuòdrecheèdomandadmoneta

Dettagli

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO ( Il Magnetsmo La forze magnetca La forza Gà a temp d Talete (VI secolo a.c.), nell Antca Greca, era noto un mnerale d ferro n grado d attrare

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1.

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1. PROGRAMMAZIONE LINEARE Una pccola ntroduzone R. Tade R. Tade 2 LA PROGRAMMAZIONE LINEARE L obettvo del captolo consste nel fornre lo scheletro d un problema d programmazone lneare e gl strument concettual

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Campi ciclotomici e geometria combinatoria

Campi ciclotomici e geometria combinatoria UNIVERSITÀ DEGLI STUDI DI BARI Dottorato d Rcerca n Matematca XX Cclo A.A. 2006/2007 Settore Scentfco-Dscplnare: MAT/03 Geometra Tes d Dottorato Camp cclotomc e geometra combnatora Canddato: Vncenzo GIORDANO

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Lezione mecc n.14 pag 1

Lezione mecc n.14 pag 1 Lezone mecc n.4 pag Argoment d questa lezone: Urt ra due corp Legg d conserazone negl urt ra due corp Urt stantane e orze mpulse Urt elastc ed anelastc Prm cenn a sstem d pù partcelle (energa d rotazone

Dettagli