Algebra Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i."

Transcript

1 Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere semplce? (b) Dmostrare che, se q 1 mod p, allora G è cclco. (c) Dmostrare che se G è abelano allora è cclco Sa n un ntero postvo fssato e sa R n l sottonseme d C formato dagl element del tpo a + b n al varare d a e b n Z. (a) Mostrare che R n è un sottoanello d C. (b) Dato un elemento z := a + b n d R n la sua norma N(a) è defnta come N(z) := a 2 + b 2 n. Mostrare che N(z 1 z 2 ) = N(z 1 )N(z 2 ) per ogn z 1 e z 2 n R n. (c) Trovare gl element nvertbl d R n n dpendenza da n. (d) Mostrare che gl element nvertbl d R n formano un gruppo cclco rspetto al prodotto. (e) Dmostrare che 2, e 3 7 sono element rrducbl d R 7. (f) Mostrare che R 7 non è un domno a fattorzzazone unca Sa M un modulo (destro) su un anello commutatvo A. Dato un elemento m d M l annullatore Ann (m) è l sottonseme d A così defnto: Ann (S) := {x A mx = 0}. (a) Mostrare che Ann (m) è un deale d A. (b) Dato un sottomodulo N d M s consder l modulo quozente M/N. Mostrare che Ann (m + N) Ann (m) e che Ann (m + N) = Ann (m) se e solo se ma N = 0 (dove ma := {ma a A} è l sottomodulo d M generato da m) Sa A un anello commutatvo. S rcorda che n un anello commutatvo vale l teorema bnomale, coè (a + b) n = n a b n per ogn a e b n A e ogn ntero postvo n. Per defnzone l nlradcale N d un anello commutatvo A è l sottonseme d A formato da tutt gl element nlpotent d A (coè gl element a per cu esste un ntero postvo n tale che a n = 0). (a) Mostrare che l nlradcale d A è un deale N e che l quozente A/N non ha element nlpotent non banal. (b) Mostrare che se A è un domno allora N = 0. (c) Sa I un deale d A tale che A/I sa un domno. Mostrare che I N.

2 Fac-smle 2 Pagna 1 d Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere semplce? Soluzone: Per l teorema d Sylow G ha almeno un sottogruppo d ordne q. Sempre per l teorema d Sylow, l numero d tal sottogrupp è un dvsore d G q = p congruo a 1 modulo q. I dvsor d p sono 1 e p: l prmo è charamente congruo a 1 modulo q mentre l secondo no (nfatt p 1 è un numero postvo mnore d q e, qund, non è multplo d q). Pertanto G ha esattamente un sottogruppo Q d ordne q: suo conugat, avendo ordne q, devono necessaramente concdere con Q che è qund normale. Il gruppo G non è pertanto semplce. (b) Dmostrare che, se q 1 mod p, allora G è cclco. Soluzone: Dal punto precedente sappamo che G ha un sottogruppo normale Q d ordne q. Con un ragonamento analogo a quello del punto precedente G ha sottogrupp d ordne p e l loro numero è un dvsore d q congruo a 1 modulo p. Poché per potes q non è congruo a 1 modulo p, c è esattamente un sottogruppo P d ordne p. Ragonando come al punto precedente, tale sottogruppo è normale. L ntersezone P Q ha ordne che dvde l ordne d P e l ordne d Q. Poché p e q sono prm dstnt P Q l ntersezone P Q ha ordne 1. Il prodotto P Q ha ordne uguale P Q = pq e dunque P Q = G. Rassumendo, P e Q sono sottogrupp normal l cu prodotto è G e la cu ntersezone è 1: n altr termn G è l prodotto dretto d P e Q. Dal momento che P e Q hanno ordne prmo sono entramb cclc, qund G è l prodotto dretto d grupp cclc avent ordn coprm ed è qund cclco. (c) Dmostrare che se G è abelano allora è cclco. Soluzone: Per l teorema d Sylow G ha almeno un sottogruppo P d ordne p e un sottogruppo Q d ordne q. Poché G è abelano tutt suo sottogrupp sono normal: n partcolare P e Q sono normal (n realtà abbamo mostrato n precedenza che Q è normale anche se G non è abelano). Rpetendo l ultma parte del punto precedente s trova che G è cclco Sa n un ntero postvo fssato e sa R n l sottonseme d C formato dagl element del tpo a + b n al varare d a e b n Z. (a) Mostrare che R n è un sottoanello d C. Soluzone: L nseme R n è charamente non vuoto. Sano z 1 := a 1 + b 1 n e z2 := a 2 + b 2 n due element generc d R n. Abbamo z 1 + z 2 = (a 1 + a 2 ) + (b 1 + b 2 ) n : poché a 1 + a 2 e b 1 + b 2 sono numer nter, R n è chuso rspetto alla somma. Inoltre z = a 1 b 1 n : poché a 1 e b 1 sono numer nter, R n contene gl oppost de propr element. Abbamo po z 1 z 2 = a 1 a 2 nb 1 b 2 + b 1 + (a 1 b 2 + a 2 b 1 ) n : poché a 1 a 2 nb 1 b 2 e a 1 b 2 +a 2 b 1 sono numer nter, R n è chuso rspetto al prodotto. Infne R n contene 1: nfatt 1 = n. (b) Dato un elemento z := a + b n d R n la sua norma N(a) è defnta come N(z) := a 2 + b 2 n. Mostrare che N(z 1 z 2 ) = N(z 1 )N(z 2 ) per ogn z 1 e z 2 n R n.

3 Fac-smle 2 Pagna 2 d 4 Soluzone: La dmostrazone è dretta. Se z 1 := a 1 + b 1 n e z2 := a 2 + b 2 n abbamo z 1 z 2 = a 1 a 2 nb 1 b 2 + b 1 + (a 1 b 2 + a 2 b 1 ) n : pertanto N(z 1 ) = a 2 1 +b 2 1n, N(z 2 ) = a 2 2 +b 2 2n e N(z 1 z 2 ) = (a 1 a 2 nb 1 b 2 ) 2 +(a 1 b 2 +a 2 b 1 ) 2 n. Svluppando ottenamo N(z 1 z 2 ) = a 2 1a n 2 b 2 1b 2 2 2na 1 a 2 b 1 b 2 + na 2 1b na 2 2b na 1 b 2 a 2 b 1 = a 2 1a n 2 b 2 1b na 2 1b na 2 2b 2 1. D altra parte N(z 1 )N(z 2 ) = (a b 2 1n)(a b 2 2n) = a 2 1a n 2 b 2 1b na 2 1b na 2 2b 2 1. (c) Trovare gl element nvertbl d R n n dpendenza da n. Soluzone: Sa z un elemento nvertble. Allora N(z)N(z 1 ) = N(zz 1 ) = N(1) = 1. Poché la norma d un qualsas elemento d R n è, per defnzone, un ntero non negatvo, abbamo che N(z) = 1. Se z = a + b n abbamo che N(z) = a 2 + nb 2. Consderamo l uguaglanza a 2 + nb 2 = 1. Per n = 1 s rduce a a 2 + b 2 = 1 le cu soluzon sono (a, b) = (1, 0), (a, b) = ( 1, 0), (a, b) = (0, 1) e (a, b) = (0, 1) che danno gl element 1, 1, e. Quest quatto element sono effettvamente nvertbl n R 1 : nfatt 1 e 1 concdono con l propro nverso e e sono uno l nverso dell altro. Se n 2 l uguaglanza a 2 + nb 2 = 1 mplca che b = 0: se fosse b 0 avremmo N(z) nb 2 n 2. Pertanto b = 0 e N(z) = a 2 : le unche possbltà sono a = 1 e a = 1. Ottenamo così z = 1 e z = 1: quest sono effettvamente nvertbl n R n. (d) Mostrare che gl element nvertbl d R n formano un gruppo cclco rspetto al prodotto. Soluzone: L nseme degl element nvertbl d un anello forma sempre un gruppo. Nel caso n = 1 tale gruppo è cclco generato da (o da ): nfatt = 1, 2 = 1, 3 = e 4 = 1. Se n 2 tale gruppo è generato da 1: nfatt ( 1) 1 = 1 e ( 1) 2 = 1. (e) Dmostrare che 2, e 3 7 sono element rrducbl d R 7. Soluzone: Dobbamo mostrare che ogn volta che esprmamo uno degl element dat come prodotto d due element d R 7, uno de due fattor è necessaramente nvertble. Notamo che N(2) = 4. Se fosse 2 = z 1 z 2 avremmo N(z 1 N(z 2 ) = 4. Poché la norma d un elemento è un ntero postvo abbamo due possbltà: N(z 1 ) = N(z 2 ) = 2, oppure uno de due fattor ha norma 1 e l altro 4. L equazone a 2 + 7b 2 = 2 mplca che b = 0 (altrment l prmo membro sarebbe maggore o uguale a 7) e s rduce qund a a 2 = 2 che non ha soluzon ntere. Pertanto non c sono element d norma 2 n R 7. L unca possbltà d scrvere 2 come prodotto d due element n R 7 è che uno abba norma 1 e l altro 4: abbamo osservato n precedenza che gl element d norma 1 sono nvertbl n R 7 e, dunque, 2 è rrducble. Per quanto rguarda e 3 7 osservamo che entramb hanno norma 16. Se voglamo esprmere uno d ess come prodotto d due element d R 7 abbamo allora tre possbltà: un fattore d norma 1 e un fattore d norma 16, un fattore d norma 2 e uno d norma 8, entramb fattor d norma 4. Abbamo notato n precedenza che non c sono n R 7 element d norma 2: possamo escludere l secondo caso. Per trovare gl element d norma 4 consderamo l equazone a 2 + 7b 2 = 4: deve essere b = 0 (altrment l prmo membro sarebbe maggore o uguale a 7) e da a 2 = 4 rcavamo a = 2 o a = 2. Gl unc element d norma 4 sono allora 2 e 2: n partcolare l prodotto d due element d norma 4 è un ntero relatvo e non può essere o 3 7. L unca possbltà per esprmere o 3 7 come prodotto d due element d R 7 è che uno de due fattor abba norma 1 e l altro 16: abbamo però gà osservato che gl element d norma 1 sono nvertbl. (f) Mostrare che R 7 non è un domno a fattorzzazone unca.

4 Fac-smle 2 Pagna 3 d 4 Soluzone: Dal punto precedente sappamo che 2, e 3 7 sono rrducbl. Notamo che 16 = = (3 + 7) (3 7): abbamo allora scrtto l numero 16 come prodotto d rrducbl n due mod non equvalent (le due fattorzzazon non hanno nemmeno lo stesso numero d fattor) Sa M un modulo (destro) su un anello commutatvo A. Dato un elemento m d M l annullatore Ann (m) è l sottonseme d A così defnto: Ann (S) := {x A mx = 0}. (a) Mostrare che Ann (m) è un deale d A. Soluzone: Il sottonseme Ann (m) è charamente non vuoto perché 0 Ann (s). Sano x 1 e x 2 due element d Ann (m) e sa d un elemento d A. Abbamo allora mx 1 = mx 2 = 0 da cu ottenamo m(x 1 + x 2 ) = mx 1 + mx 2 = = 0 m(x 1 d) = (mx 1 )d = 0d = 0 coè x 1 + x 2 e x 1 d appartengono all annullatore d m che è, pertanto un deale d A. (b) Dato un sottomodulo N d M s consder l modulo quozente M/N. Mostrare che Ann (m + N) Ann (m) e che Ann (m + N) = Ann (m) se e solo se ma N = 0 (dove ma := {ma a A} è l sottomodulo d M generato da m). Soluzone: Se x è un elemento d Ann (m), coè se mx = 0, allora (m + N) = mx + N = 0 + N = N. Poché N è lo zero del modulo quozente M/N abbamo che x Ann (m + N): dunque Ann (m + N) Ann (m). Supponamo ora che Ann (m + N) = Ann (m) e mostramo che ma N = 0. Sa dunque n ma N: esste dunque x A tale che n = mx. Ma allora (m + N)x = mx + N = n + N = N dal momento che n N. Poché N è lo zero d M/N, cò sgnfca che x appartene a Ann (m + N): l potes Ann (m + N) = Ann (m) mplca allora che x Ann (m), coè n = mx = 0. Pertanto ma N = 0. Supponamo vceversa che ma N = 0 e mostramo che Ann (m + N) Ann (m) (l nclusone opposta è sempre garantta). Sa x Ann (m + N): poché lo zero d M/N è N cò sgnfca che N = (m + N)x = mx + N, coè mx N. Ma allora mx è un elemento d ma N = 0, coè mx = 0: pertanto x Ann (m) Sa A un anello commutatvo. S rcorda che n un anello commutatvo vale l teorema bnomale, coè (a + b) n = n a b n per ogn a e b n A e ogn ntero postvo n. Per defnzone l nlradcale N d un anello commutatvo A è l sottonseme d A formato da tutt gl element nlpotent d A (coè gl element a per cu esste un ntero postvo n tale che a n = 0). (a) Mostrare che l nlradcale d A è un deale N e che l quozente A/N non ha element nlpotent non banal. Soluzone: Notamo che N è non vuoto perché 0 N. Sano ora a e b due element d N: esstono allora nter postv m e n tal che a m = 0 e b n = 0. Consderamo allora (a + b) m+n 1. Per l teorema bnomale abbamo che (a + b) m+n 1 = m+n 1 a b m+n 1. Notamo che tutt gl addend della precedente espressone s annullano: per < m l esponente m+n 1 d b è maggore o uguale d n e, dunque, b m+n 1 = 0; mentre per m s ha a = 0. Pertanto a + b è nlpotente, coè N è chuso rspetto alla somma.

5 Fac-smle 2 Pagna 4 d 4 Sa ora a un elemento nlpotente e c un elemento qualunque dell anello A. Sappamo che esste un ntero postvo n tale che a n = 0: ma allora, poché A è commutatvo, s ha (ac) n = a n c n = 0 c n = 0 coè ac è nlpotente. Questo conclude la verfca del fatto che N sa un deale. Consderamo ora l anello quozente A/N e sa a + N un elemento nlpotente d A/N. Esste allora un ntero postvo n tale che (a + N) n è lo zero d A/N. Poché (a + N) n = a n + N e lo zero d A/N è N cò sgnfca che a n N, vale a dre a n è nlpotente. Dunque esste un ntero postvo m tale che (a n ) m = 0. Per le propretà delle potenze abbamo allora a mn = 0 e, qund, a è nlpotente, coè appartene a N. Questo sgnfca che a + N = N coè l elemento nlpotente a + N d A/N è necessaramente lo 0 d A/N. (b) Mostrare che se A è un domno allora N = 0. Soluzone: Sa a un elemento nlpotente d A: esste allora un ntero postvo n tale che a n = 0. Mostramo, per nduzone su n, che a = 0. Se n = 1 cò è banale, altrment notamo che aa n 1 = a n = 0. Poché A è un domno abbamo che a = 0 (come rchesto) oppure a n 1 = 0 che, per potes nduttva, mplca ancora a = 0. (c) Sa I un deale d A tale che A/I sa un domno. Mostrare che I N. Soluzone: Sa a un elemento d N. Esste allora un ntero postvo n tale che a n = 0. Se consderamo l elemento a + I del quozente A/I abbamo allora che (a + I) n = a + I = 0 + I = I: poché I è lo zero d A/I, cò sgnfca che a + I è nlpotente. Dal punto precedente sappamo che l unco elemento nlpotente d un domno è 0: pertanto a + I è lo zero d A/I, coè a I.

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Progetto Olimpiadi di Matematica Norme per la correzione ad uso degli insegnanti

Progetto Olimpiadi di Matematica Norme per la correzione ad uso degli insegnanti UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olmpad d Matematca 2009 GARA d SECONDO LIVELLO Norme per la correzone ad uso degl nsegnant Come per gl scors ann, la prova è dstnta

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO ( Il Magnetsmo La forze magnetca La forza Gà a temp d Talete (VI secolo a.c.), nell Antca Greca, era noto un mnerale d ferro n grado d attrare

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle

Introduzione... 2 Equazioni dei telegrafisti... 3 Parametri per unità di lunghezza... 7 Soluzione nel dominio della frequenza... 7 Risoluzione delle Appunt d amp Elettromagnetc aptolo 8 parte I nee d trasmssone Introduone... Equaon de telegrafst... 3 Parametr per untà d lunghea... 7 Soluone nel domno della frequena... 7 soluone delle equaon de telegrafst...

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Campi ciclotomici e geometria combinatoria

Campi ciclotomici e geometria combinatoria UNIVERSITÀ DEGLI STUDI DI BARI Dottorato d Rcerca n Matematca XX Cclo A.A. 2006/2007 Settore Scentfco-Dscplnare: MAT/03 Geometra Tes d Dottorato Camp cclotomc e geometra combnatora Canddato: Vncenzo GIORDANO

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Rotazione di un corpo rigido intorno ad un asse fisso

Rotazione di un corpo rigido intorno ad un asse fisso INGEGNERIA GESTIONALE corso d Fsca Generale Prof. E. Puddu LEZIONE DEL 14 15 OTTOBRE 2008 Rotazone d un corpo rgdo ntorno ad un asse fsso 1 Cnematca rotazonale y Supponamo d osservare un corpo rgdo sul

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

Corso di Architettura (Prof. Scarano) 25/03/2002

Corso di Architettura (Prof. Scarano) 25/03/2002 Corso d rchtettura (Prof. Scarano) // Un quadro della stuazone Lezone Logca Dgtale (): Crcut combnator Vttoro Scarano rchtettura Corso d Lauren Informatca Unverstà degl Stud d Salerno Input/Output Regstr

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA.

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA. MTODI P NISI DI IUITI Nel seguto vengono llustrat, medante esemp, alcun tra metod pù utlzzat per l'anals de crcut elettrc. Il problema che s vuole rsolvere è l seguente: assegnato l crcuto elettrco e le

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di Appunt d lettronca Captolo 3 parte Amplfcator reazonat ntroduzone... Connessone sereparallelo... 3 sempo: stado nsegutore d tensone a BJT... 8 sserazone: calcolo dretto degl effett d carco... Concetto

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

- Riproduzione riservata - 1

- Riproduzione riservata - 1 Razze: Setter Inglese Bracco Francese tpo Prene D Franco Barsottn Va Bugallo 1b 56040 Crespna (PI) www.allevamentodelbugallo.t nfo@allevamentodelbugallo.t Parentela e consangunetà; Parentela; genetcamente

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1 Rud Mathematc Numero 07-000-06. Edtorale.... Problem.... Ancora sulle blance.... Estrazon del lotto... 3. Soluzon e Note... 3. [06]... 3.. Problema dell'oste... 3.. Blance...3 4. Paraphernala Mathematca...3

Dettagli

Sviluppo delle lamiere

Sviluppo delle lamiere Svluppo delle lamere Per ottenere un prodotto fnto d lamera pegata è fondamentale calcolare lo svluppo dell elemento prma d essere pegato. I CAD 3D usano l fattore neutro. AUTORE: Grazano Bonett Svluppo

Dettagli