Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:"

Transcript

1 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa lezone 3: professor Danele Rtell 1/31?

2 Captalzzazone msta S usa l regme composto per l numero ntero d ann e l regme semplce per la parte rmanente. ( ) m(t, C) = C (1 + ) [t] 1 + (t [t]) [t] := max {n N : n t} è la parte ntera d t 2/31?

3 Eserczo. Il captale d ha dato, al tasso annuo = 0, 025 l montante d Determnare l tempo d captalzzazone n regme msto. 3/31?

4 Eserczo. Il captale d ha dato, al tasso annuo = 0, 025 l montante d Determnare l tempo d captalzzazone n regme msto. Questa volta è meno banale delle due precedent. 1. er trovare l numero ntero d ann rsolvamo come fossmo n regme composto = (1 + 0, 025) t t ln 1, 025 = ln t = 21, /31?

5 2. Saputo che l numero ntero d ann è 21 dalla formula d captalzzazone n regme msto, rcordato che l numero {t} = t [t] (parte frazonara d t) è compreso fra 0 e 1 abbamo: = 5 000(1, 025) 21 (1 + 0, 025 {t}) {t} = 0, /31?

6 2. Saputo che l numero ntero d ann è 21 dalla formula d captalzzazone n regme msto, rcordato che l numero {t} = t [t] (parte frazonara d t) è compreso fra 0 e 1 abbamo: = 5 000(1, 025) 21 (1 + 0, 025 {t}) {t} = 0, coè {t} = 360 0, = gorn coè 5 mes e 25 gorn Rsposta 21 ann, 5 mes, 25 gorn 5/31?

7 Eserczo. La somma d mpegata n regme msto per 4 ann e 9 mes ha fruttato l montante d S chede d determnare l tasso d mpego. 6/31?

8 Eserczo. La somma d mpegata n regme msto per 4 ann e 9 mes ha fruttato l montante d S chede d determnare l tasso d mpego. Questo è un problema dffcle la sua equazone rsolvente è ( = (1 + x) ) 12 x er rsolverla dovremo rcorre a metod approssmat che vedremo n seguto pp /31?

9 Lqudazone degl nteress n regme semplce Quando s applca la captalzzazone semplce s deve tener conto del fatto che, trascorso un perodo d tempo untaro, è consuetudne pratcare la lqudazone degl nteress Il perodo d captalzzazone è, d norma, un anno. 7/31?

10 Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) 8/31?

11 Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) Al termne del secondo anno la captalzzazone darà l montante C (1 + ) 2 8/31?

12 Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) Al termne del secondo anno la captalzzazone darà l montante C (1 + ) 2 In generale dopo n ann, ragonando nduttvamente, l montante è: C (1 + ) n. 8/31?

13 Captalzzazone frazonata: regme composto Confronto fra captalzzazon annual e captalzzazon n frazon d anno mensl bmestral trmestral quadrmestral semestral 9/31?

14 rspetto a 2 2 = (1 + ) 1/2 1 resa una frazone d anno, ad esempo l semestre, s mpone l uguaglanza fra montant alla fne del prmo anno 1 + = (1 + 2 ) 2. l ndce 2 c rcorda l numero de semestr n un anno. Se s vuole convertre n semestrale un tasso annuo basta rsolvere 10/31?

15 Analogamente l tasso quadrmestrale equvalente 3 è defnto da: 1 + = (1 + 3 ) 3, n quanto suddvdamo l anno n tre quadrmestr. tasso trmestrale: tasso bmestrale: tasso mensle: 1 + = (1 + 4 ) = (1 + 6 ) = ( ) 12 11/31?

16 In generale se s dvde l perodo d captalzzazone n p N sottoperod la relazone d equvalenza è: 1 + = (1 + p ) p, da cu: p = (1 + ) 1 p 1. 12/31?

17 Captalzzazone frazonata: regme semplce Confronto fra captalzzazon annual e captalzzazon n frazon d anno a) mensl b) bmestral c) trmestral d) quadrmestral e) semestral 1 + = 1 + j p p, p = 12, 6, 3, 4, 2 = j p = p 13/31?

18 Tass nomnal convertbl Tasso nomnale convertble p ( N) volte Nel regme composto anzché utlzzare l tasso p s utlzza l tasso provenente dal regme semplce j p Tale tasso produce captalzzazon maggor del tasso annuo equvalente, nfatt: (1 + j p ) p 1 > p j p =. 14/31?

19 Dsuguaglanza d Bernoull Sa x 1 un numero reale. Allora per ogn n N s ha che: (1 + x) n 1 + n x 15/31?

20 Dmostrazone La tes è ovva se x = 0, e per x = 1 Sa x 0, 1. Se n = 1 la tes s rduce a (1 + x) 1 = x 16/31?

21 Dmostrazone La tes è ovva se x = 0, e per x = 1 Sa x 0, 1. Se n = 1 la tes s rduce a (1 + x) 1 = x Ammettamo che essta s N per cu vale la tes. Se x > 1 allora 1 + x > 0 qund: (1 + x) s+1 = (1 + x) s (1+x) (1 + s x) (1+x) = 1+(1 + s) x+s x 2. L ultmo termne è strettamente postvo, dunque: (1 + x) s (1 + s) x, da cu l nduttvtà della formula 16/31?

22 Sgnfcato fnanzaro d e Se un credtore versa denaro con maturazone d nteresse, nell potes n cu n ogn sngolo momento l nteresse maturato captalzz proporzonalmente al tasso annuo, quale sarà l rsultato alla fne dell anno? 17/31?

23 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n 18/31?

24 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n Dopo l secondo perodo b 2 = ( 1 + x ) b 1 = n ( 1 + x n) 2. 18/31?

25 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n Dopo l secondo perodo b 2 = ( 1 + x ) b 1 = n ( 1 + x n) 2. Dopo n perod b n = ( 1 + x n) n. 18/31?

26 Captalzzazone stantanea sgnfca mandare n : lm b n = lm (1 + x n n n ) n 19/31?

27 Captalzzazone stantanea sgnfca mandare n : ma se scrvamo: lm b n = lm (1 + x n n n ) n ( 1 + x ) [ n ( = 1 + x ] n/x x n n) 19/31?

28 Captalzzazone stantanea sgnfca mandare n : ma se scrvamo: lm b n = lm (1 + x n n n ) n ( 1 + x ) [ n ( = 1 + x ] n/x x n n) vedamo che: lm b n = lm (1 + x ) n = e x n n n 19/31?

29 Forza stantanea d nteresse Consderamo la generca legge d captalzzazone n una varable m(t, C) = Cf(t). Calcolamo l nteresse per untà d captale fra gl stant t + h e t Cf(t + h) Cf(t) Cf(t) Il rapporto non dpende dal captale nzale C. = f(t + h) f(t). (1) f(t) 20/31?

30 Dvdendo la frazone n (1) per la lunghezza dell ntervallo d tempo h > 0 abbamo l nteresse per untà d captale medo nell ntervallo [t, t + h] : f(t + h) f(t) f(t) 1 h = f(t + h) f(t) h 1 f(t). (1b) 21/31?

31 Dvdendo la frazone n (1) per la lunghezza dell ntervallo d tempo h > 0 abbamo l nteresse per untà d captale medo nell ntervallo [t, t + h] : f(t + h) f(t) f(t) 1 h = f(t + h) f(t) h 1 f(t). (1b) assando al lmte per h 0 + n (1b) ottenamo l nteresse per untà d captale stantaneo al tempo t f(t + h) f(t) lm h 0 + h 1 f(t) = f (t) f(t) (1c) 21/31?

32 La funzone δ(t) vene chamata dervata logartmca della funzone f(t), n quanto: δ(t) = f (t) f(t) = d dt ln f(t). 22/31?

33 La funzone δ(t) vene chamata dervata logartmca della funzone f(t), n quanto: δ(t) = f (t) f(t) = d dt ln f(t). Dal punto d vsta fnanzaro, trattandos dell nteresse per untà d captale stantaneo, s parla d forza stantanea d nteresse 22/31?

34 La peculartà del regme composto è che la forza stantanea d nteresse è costante nel tempo, nfatt se f(t) = (1 + ) t è evdente che: δ(t) = f (t) f(t) = (1 + )t ln(1 + ) (1 + ) t = ln(1 + ). 23/31?

35 La peculartà del regme composto è che la forza stantanea d nteresse è costante nel tempo, nfatt se f(t) = (1 + ) t è evdente che: δ(t) = f (t) f(t) = (1 + )t ln(1 + ) (1 + ) t = ln(1 + ). Mentre nel regme semplce, f(t) = 1 + t s vede che: δ(t) = f (t) f(t) = 1 + t. 23/31?

36 Usando le equazon dfferenzal a varabl separabl, possamo d nvertre l punto d vsta e concludere che l regme esponenzale è l unco regme a godere d specfche propretà. 24/31?

37 Usando le equazon dfferenzal a varabl separabl, possamo d nvertre l punto d vsta e concludere che l regme esponenzale è l unco regme a godere d specfche propretà. Infatt se cercassmo quel regme d captalzzazone con forza d nteresse costante, dcamo uguale a δ > 0, c troveremmo a consderare l equazone dfferenzale separable: 24/31?

38 Usando le equazon dfferenzal a varabl separabl, possamo d nvertre l punto d vsta e concludere che l regme esponenzale è l unco regme a godere d specfche propretà. Infatt se cercassmo quel regme d captalzzazone con forza d nteresse costante, dcamo uguale a δ > 0, c troveremmo a consderare l equazone dfferenzale separable: f (t) = δf(t), f(0) = 1, 24/31?

39 Usando le equazon dfferenzal a varabl separabl, possamo d nvertre l punto d vsta e concludere che l regme esponenzale è l unco regme a godere d specfche propretà. Infatt se cercassmo quel regme d captalzzazone con forza d nteresse costante, dcamo uguale a δ > 0, c troveremmo a consderare l equazone dfferenzale separable: f (t) = δf(t), f(0) = 1, che, usando la formula rsolutva porge: f 1 dz z = t 0 δdt = ln f = δt = f(t) = e δt 24/31?

40 Questo sgnfca che l regme composto è caratterzzato, nel senso che è l unco regme d captalzzazone con questa propretà, dal fatto d aver forza stantanea d nteresse costante nel tempo. 25/31?

41 Questo sgnfca che l regme composto è caratterzzato, nel senso che è l unco regme d captalzzazone con questa propretà, dal fatto d aver forza stantanea d nteresse costante nel tempo. Nel caso generale: forza stantanea d ntessa non specfcata funzone δ(t) l fattore montante della legge d captalzzazone assocata s determna come segue: ln f(t) = t 0 ( t δ(s) ds = f(t) = exp 0 ) δ(s) ds. 25/31?

42 Eserczo Dopo aver dmostrato che la funzone f(t) = t + 1 2(1 + t) + 1 2, è un fattore d captalzzazone, se ne calcol la forza stantanea d nteresse. 26/31?

43 Eserczo Dopo aver dmostrato che la funzone f(t) = t + 1 2(1 + t) + 1 2, è un fattore d captalzzazone, se ne calcol la forza stantanea d nteresse. In prms s deve verfcare che f(0) = 1 26/31?

44 Eserczo Dopo aver dmostrato che la funzone f(t) = t + 1 2(1 + t) + 1 2, è un fattore d captalzzazone, se ne calcol la forza stantanea d nteresse. In prms s deve verfcare che f(0) = 1 o che la f(t) è crescente f (t) = 1 1 2(t + 1) 2 > 0 26/31?

45 Infne s deve valutare δ(t) = δ(t) = f (t) f(t) 2t 2 + 4t + 1 (t + 1) (2t 2 + 3t + 2) 27/31?

46 Attualzzazone L attualzzazone pone l problema nverso della captalzzazone. E possede un ttolo d credto esgble nel futuro Questo sgnfca n concreto che un soggetto D s mpegna a corrspondere a E l captale C n una fssata data futura operazone d attualzzazone s nverte la stuazone studata nella captalzzazone 28/31?

47 Attualzzazone L attualzzazone pone l problema nverso della captalzzazone. E possede un ttolo d credto esgble nel futuro Questo sgnfca n concreto che un soggetto D s mpegna a corrspondere a E l captale C n una fssata data futura E decde d rvolgers ad un ntermedaro B allo scopo d cedere mmedatamente l credto, n modo da avere subto dsponble l captale C a < C operazone d attualzzazone s nverte la stuazone studata nella captalzzazone 28/31?

48 Defnzone. Dremo legge d attualzzazone assocata alla legge d captalzzazone m(t; C) la funzone a (t; C): m (t; a(t; C)) = C 29/31?

49 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) 30/31?

50 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) = a(t; C) f(t) 30/31?

51 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) = a(t; C) f(t) 30/31?

52 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) = a(t; C) f(t) a(t; C) = C f(t) 30/31?

53 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) = a(t; C) f(t) a(t; C) = C f(t) ϕ(t) = 1 f(t) 30/31?

54 La funzone d attualzzazone è determnata dalla funzone captalzzazone cu fa rfermento C = m (t; a(t; C)) = a(t; C) f(t) a(t; C) = C f(t) ϕ(t) = 1 f(t) s dce fattore d attualzzazone conugato al fattore d captalzzazone. È ben defnto n forza del fatto che f(t) > 0. 30/31?

55 I fattor d attualzzazone conugat rspettvamente alle legg lneare ed esponenzale sono: ϕ L (t) = t, 31/31?

56 I fattor d attualzzazone conugat rspettvamente alle legg lneare ed esponenzale sono: ϕ L (t) = t, ϕ E(t) = 1 (1 + ) t 31/31?

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Analisi Class info sul corso Lezione 1 16 settembre 2015

Analisi Class info sul corso Lezione 1 16 settembre 2015 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 16 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/30? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Dispersione magnetica nei trasformatori monofase

Dispersione magnetica nei trasformatori monofase Dspersone magnetca ne trasformator Supponamo che l avvolgmento l prmaro d un trasformatore sa percorso dalla corrente e supponamo d mantenere 0, 0, l avvolgmento l prmaro concatenerà un flusso φ che nel

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO Aortaento a rate postcpate con tasso fsso AMMORTAMENTO A RATE POTICIPATE CON TAO FIO + R1 K 1 R R 0 1 K -1 a l tasso d nteresse rferto alla perodctà d pagaento delle rate (es. tasso annuo nel caso d rate

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Sviluppo delle lamiere

Sviluppo delle lamiere Svluppo delle lamere Per ottenere un prodotto fnto d lamera pegata è fondamentale calcolare lo svluppo dell elemento prma d essere pegato. I CAD 3D usano l fattore neutro. AUTORE: Grazano Bonett Svluppo

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Regressione lineare con un singolo regressore

Regressione lineare con un singolo regressore Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra - 2013 1 / 45 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

MOBILITA DI CAPITALI

MOBILITA DI CAPITALI Poltca Economca dell'unone Europea MOBILITA DI CAPITALI Prof. Roberto Lombard Prof. Roberto Lombard 1 Le Econome moderne hanno un elevato grado d nterazone ed ntegrazone de Mercat Fnanzar ed de Captal

Dettagli

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA TEORIA DELLA STIMA E DELLA DESCISIOE STATISTICA STIMA A MASSIMA VEROSIMIGLIAZA Per determnare la stma a massma verosmglanza d un parametro θ, partendo da un campone d dat X, bsogna scrvere la denstà d

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 Calcolo del metodo patrmonale semplce con correzone reddtuale 1. Determnazone del patrmono netto rettfcato Dat blanco stato patrmonale al 31.12.01

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO PACCHETTI STRADALI

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO PACCHETTI STRADALI ELABORATO N C.6 SETTORE LAVORI PUBBLICI SERVIZIO PROGETTAZIONE E COSTRUZIONI STRADALI S.P. n 569 DI VIGNOLA COMPLETAMENTO DELLA VARIANTE GENERALE ALLA S.P. N 569 E REALIZZAZIONE DELLE VARIANTI ALLA S.P.

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l PORTO TURSTCO NELLA FRAZONE SAN GORGO DEL COMUNE D GOOSA MAREA (ME) PROGETTO PRELMNARE PANO ECOVOb'TCO E FNANZAF0 NDCE 1. PREMESSA...,.l 2. COSTO DELL'NTERVENTO...,...,...,..,,.,...,,.,,~...,.,.,.,,...l

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli