AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO"

Transcript

1 Aortaento a rate postcpate con tasso fsso AMMORTAMENTO A RATE POTICIPATE CON TAO FIO + R1 K 1 R R 0 1 K -1 a l tasso d nteresse rferto alla perodctà d pagaento delle rate (es. tasso annuo nel caso d rate annue, tasso ensle nel caso d rate ensl, ) Negl aortaent a tasso fsso l operazone fnanzara d aortaento soddsfare la condzone d equtà x t deve ( 0, ) 0 R (1 ) 0 W x + 1 Rate d aortaento R C + I 1, essendo C le quote captal tal che C I le quote nteress 1 2

2 Aortaento a rate postcpate con tasso fsso defnsce D debto resduo n dopo l pagaento della rata R, 1, D C h 1 h Ch h + 1 1, K, 1 D 0, D 0 La quota nteress D 1 I atura nell ntervallo [ 1, ] I 1, sul debto resduo D 1 Aortaento a quote captal costant a tasso fsso Le quote captal C, C C K C 1 2 1,, sono tal che 3

3 Aortaento a rate postcpate con tasso fsso Aortaento a rate costant a tasso fsso + R K R R 0 1 K -1 deterna R tale che (, ) 0 R(1 ) 0 R a 0 W x ) 1 con a ( 1+ a 1 (1 + ) 4

4 Le funzon d Excel per gl aortaent LE FUNZIONI DI EXCEL PER GLI AMMORTAMENTI ono le funzon: PMT, PPMT e IPMT. LA FUNZIONE PAYMENT (PMT) È la funzone gà vsta per calcolare la rata d una rendta a rata costante d valore attuale o d ontante assegnato. Può essere utlzzata per calcolare la rata d aortaento costante. rate nper pv è l tasso d nteresse PMT (rate; nper; pv; [fv]; [type]) è l nuero delle rate d aortaento è l aontare del debto nzale fv è l eventuale saldo dopo avere effettuato l pagaento dell ulta rata type 0 oppure oesso, trattandos d rate d aortaento postcpate R a PMT (; ; - ) 5

5 Le funzon d Excel per gl aortaent LE FUNZIONI PPMT E IPMT La funzone PPMT calcola una assegnata quota captale n un aortaento a rata costante. La funzone IPMT calcola una assegnata quota nteress n un aortaento a rata costante. rate per nper pv è l tasso d nteresse PPMT (rate; per; nper; pv; [fv]; [type]) IPMT (rate; per; nper; pv; [fv]; [type]) è l perodo cu s rfersce la quota captale o la quota nteresse e deve essere copreso tra 1 e nper è l nuero delle rate d aortaento è l aontare del debto nzale fv è l eventuale saldo dopo avere effettuato l pagaento dell ulta rata type 0 oppure oesso, trattandos d rate d aortaento postcpate 6

6 Le funzon d Excel per gl aortaent Esepo d aortaento con saldo fnale F + R K R R 0 1 K -1 deterna R tale che W ( 0, x ) 0 R a F(1 + ) F(1 + 0 R a ) possono calcolare le rate, le quote captal e le quote nteress nel seguente odo: R - PMT (; ; ; - F) C - PPMT (; ; ; ; - F) 1, I - IPPMT (; ; ; ; - F) 1, 7

7 Aortaento a rate postcpate con tasso varable AMMORTAMENTO A RATE POTICIPATE CON TAO VARIABILE + R1 K 1 R R 0 1 K -1 Rate d aortaento R C + I 1, essendo C le quote captal tal che C I le quote nteress 1 a j (, +1) l tasso d nteresse relatvo al perodo (, +1) la quota nteress I atura nell ntervallo [ 1, ] ( t 1, t ) D 1 I 1, j, 0, K, 1 sul debto resduo D 1 dove D 1 1 Ch Ch è l debto resduo n 1 dopo l pagaento della h 1 h rata R 1 8

8 Aortaento a rate postcpate con tasso varable Aortaento a rate costant a tasso varable (E. 1) a j ( 0,1) l tasso d nteresse relatvo al pro perodo, rferto alla perodctà d pagaento delle rate deterna la pra rata d aortaento R 1 tale che R 0 + R1 K 1 a j(0,1) 0 1 K -1 ha I j(0,1) 1 C1 R1 I1 1 calcolano qund tutte le quote captal: ( ) e le quote nteress ( t t ) D 1 I j 1, 1, C C 2, 1 1+ j(0,1) essendo D 1 1 C h h 1 D 9

9 Aortaento a rate postcpate con tasso varable Aortaento a rate costant a tasso varable (E. 2) a j ( 0,1) l tasso d nteresse relatvo al pro perodo, rferto alla perodctà d pagaento delle rate deterna la pra rata d aortaento R 1 tale che R 0 + R1 K 1 a j(0,1) 0 1 K -1 ha I j(0,1) 1 C1 R1 I1 D1 C1 deterna la R 2 tale che D R 0 K D 1 R2 1 2 a 1 j(1,2) K K -1 10

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 7 NOVEMBRE 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo contrae un prestto d.000 da rborsare edante rate annual costant postcpate al tasso annuo del,%. Dopo l pagaento

Dettagli

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE INTRODUZIONE AL LABORATORIO PLS: LA MATEMATIA PER LE DEISIONI FINANZIARIE Lvana Pcech Dpartento d Scenze econoche, azendal, ateatche e statstche Bruno de Fnett Unverstà d Treste Nel Laboratoro sono ntrodotte

Dettagli

AMMORTAMENTI A RATE ANTICIPATE

AMMORTAMENTI A RATE ANTICIPATE Aortaenti a rate anticipate AMMORTAMENTI A RATE ANTICIPATE Sia l operazione regolata secondo la legge della capitalizzazione coposta con tasso di interesse periodalei coerente con la periodicità di pagaento

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO

Appunti di complemento per le lezioni del corso di Matematica Finanziaria L OPERAZIONE DI AMMORTAMENTO Appunti di copleento per le lezioni del corso di Mateatica Finanziaria L OPERAZIONE DI AMMORTAMENTO Preessa Il presente testo di appunti è stato scritto per fornire agli studenti un supporto didattico

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 10/11/2012 1 PIANI DI AMMORTAMENTO Piano di ammortamento Italiano Esercizio 1 2 ESERCIZIO 1 Si calcoli il piano di ammortamento a quota capitale costante e rata semestrale

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

OGGETTO RANGE DI CELLE. Una cella o un gruppo di celle in un foglio di lavoro di Excel è un oggetto di tipo Range.

OGGETTO RANGE DI CELLE. Una cella o un gruppo di celle in un foglio di lavoro di Excel è un oggetto di tipo Range. Oggetto Range di celle OGGETTO RANGE DI CELLE Una cella o un gruppo di celle in un foglio di lavoro di Excel è un oggetto di tipo Range. Un range di celle è un array a due dimensioni (anche se si tratta

Dettagli

VIII Esercitazione di Matematica Finanziaria

VIII Esercitazione di Matematica Finanziaria VIII Esercitazione di Matematica Finanziaria 7 Dicembre 200 Esercizio. Un privato decide di acquistare una nuova automobile. A tal fine ottiene da una finanziaria un anticipo per l importo S = 25.000 euro

Dettagli

Corso di Economia Pubblica Lezione 4 - Neutralità IRES

Corso di Economia Pubblica Lezione 4 - Neutralità IRES (materale gentlmente concesso dalla Prof.ssa Alessandra Casarco) Corso d Economa Pubblca Lezone 4 - Neutraltà IRES Prof. Paolo Buonanno paolo.buonanno@unbg.t Investmento: no mposte P = π( I) δi I L mpresa

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO)

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) COSTI FISSI E VARIABILI E I problem d MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) CF CV Un concetto d fondo Cost fss e cost varabl CF CV Orzzonte temporale e funzone d produzone Funzone d produzone nel

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Ammortamento Italiano Ammortamento Francese Ammortamento a Rimborso Unico Ammortamento Tedesco Preammortamento

Ammortamento Italiano Ammortamento Francese Ammortamento a Rimborso Unico Ammortamento Tedesco Preammortamento 1. 2. 3. 4. 5. Ammortamento Italiano Ammortamento Francese Ammortamento a Rimborso Unico Ammortamento Tedesco Preammortamento Esercizio 1 Amm.to Italiano Redigere il piano di ammortamento italiano per

Dettagli

Le attività e le passività sono valutate al prezzo di mercato o di liquidazione CONTABILITA A COSTI STORICI

Le attività e le passività sono valutate al prezzo di mercato o di liquidazione CONTABILITA A COSTI STORICI CONTABILITA A COSTI STORICI Msurazone e gestone del rscho d tasso d nteresse 1) Attvtà e passvtà rlevate per l loro valore d orgne, ndpendentemente dalle varazon d tasso; 2) La CCS recepsce la varazone

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Verifiche di congruità tecnica delle offerte rispetto ai margini

Verifiche di congruità tecnica delle offerte rispetto ai margini Dsposzone tecnca d funzonaento Pagna 1 d 7 Dsposzone tecnca d funzonaento n. 10 rev.1 MPE (a sens dell artcolo 4 del Testo ntegrato della Dscplna del ercato elettrco, approvato con decreto del Mnstro delle

Dettagli

Proposte di modifica del MTE. Roma 10 giugno 2009

Proposte di modifica del MTE. Roma 10 giugno 2009 Proposte d odfca del MTE Roa 10 gugno 2009 Indce Proposta d odfca del Testo Integrato Funzonaento del MTE Tpologe contratt negozabl Meccanso della cascata Regstrazone della poszone n consegna Controll

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Domanda ZZ. Domanda, Z; Produzione, Y. 45 Y Produzione, Y

Domanda ZZ. Domanda, Z; Produzione, Y. 45 Y Produzione, Y CPITOLO 5 - I mercat de ben e delle attvtà fnanzare: l modello IS-LM fg. 5.1. Equlbro sul mercato de ben. La domanda d ben è una funzone crescente della produzone. L equlbro rchede che la domanda sa uguale

Dettagli

Imposte sulle vendite

Imposte sulle vendite Imposte sulle vendte e IVA Imposte sulle vendte Le mposte general sulle vendte (IGV) tassano la totaltà delle vendte d ben e servz e sono mposte ad valorem. Esse s artcolano secondo due modaltà: 1) Rfermento

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

MOBILITA DI CAPITALI

MOBILITA DI CAPITALI Poltca Economca dell'unone Europea MOBILITA DI CAPITALI Prof. Roberto Lombard Prof. Roberto Lombard 1 Le Econome moderne hanno un elevato grado d nterazone ed ntegrazone de Mercat Fnanzar ed de Captal

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo La funzone d domanda ndvduale e l denttà d Slutsky. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fa:

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercizi: lezione 04/11/2016 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

I modelli fondati sui flussi finanziari e reddituali

I modelli fondati sui flussi finanziari e reddituali 6. I modell fodat su fluss fazar e reddtual Il modello fazaro e le relatve metodologe d determazoe del valore Il modello reddtuale e le relatve metodologe d determazoe del valore ecoomco Gl ambt d applcazoe

Dettagli

MATEMATICA FINANZIARIA 1 (A - K) Pavia 6/ 9/2004. COGNOMEeNOME:...CODICEESAME... Iscritto al Ianno, nell a.acc...n.dimatricola:...laureain...

MATEMATICA FINANZIARIA 1 (A - K) Pavia 6/ 9/2004. COGNOMEeNOME:...CODICEESAME... Iscritto al Ianno, nell a.acc...n.dimatricola:...laureain... MATEMATICA FINANZIARIA 1 (A - K) Pavia 6/ 9/2004 COGNOMEeNOME:...CODICEESAME... Iscritto al Ianno, nell a.acc......n.dimatricola:...laureain...... (Come noto, il risultato finale dell importo dei capitali,

Dettagli

1 AMMORTAMENTO AMMORTAMENTO

1 AMMORTAMENTO AMMORTAMENTO 1 AMMORTAMENTO AMMORTAMENTO A fronte di un prestito D a tasso t la somma dovuta dopo un anno ( o periodo) e (1+t) D. Se al tempo finale il debitore non ha la somma dovuta (1+t) D ma solo P ( < D ) il debito

Dettagli

Appello regolare Sessione estiva 10 lug (Matematica Finanziaria)

Appello regolare Sessione estiva 10 lug (Matematica Finanziaria) Università Carlo Cattaneo Istituto di Metodi Quantitativi F860 - Matematica per l Economia e la Finanza II a.a. 007/08 Cognome Nome Voto Appello regolare Sessione estiva 0 lug. 008 (Matematica Finanziaria)

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

ESERCITAZIONE Ammortamento economico

ESERCITAZIONE Ammortamento economico Impianti Industriali ESERCITAZIONE Ammortamento economico Prof. Ing. Augusto Bianchini DIN Dipartimento di Ingegneria Industriale Università degli Studi di Bologna Forlì, 21 febbraio 217 Esercizio 1 Costruire

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato:

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato: ESERCIZIO N. 1 Il canddato proceda a calcolare l tasso d congrua remunerazone reale dell azenda Gess al 31.12.2003 applcando l CAPM e l WACC della stessa azenda; dat d cu s dspone sono seguent: a) rendmento

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

McGraw-Hill. Tutti i diritti riservati

McGraw-Hill. Tutti i diritti riservati Vttoro Galleran, Gacomo Zann, Davde Vagg Copyrght 2004 The Companes srl Caso 4 Stma d un vgneto d 2,5 ha ubcato nella collna Forlvese Indce. Confermento dell ncarco e questo d stma 2 2. Rapport economco

Dettagli

Esercizio 1 Completare il seguente piano di ammortamento. Quota Interessi

Esercizio 1 Completare il seguente piano di ammortamento. Quota Interessi AMMORTAMENTI Esercizio 1 Completare il seguente piano di ammortamento. Epoca Rate Debito 0 4.000.000 1 1.600.000 2 2.000.000 450.000 1.000.000 3 0 150.000 150.000 1.000.000 4 1.000.000 150.000 0 Esercizio

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

V Esercitazione di Matematica Finanziaria

V Esercitazione di Matematica Finanziaria V Esercitazione di Matematica Finanziaria 25 Novembre 200 Esercizio. Date due operazioni finanziarie (con scadenzari in anni) x = { 40, 7.8, 7.8, 7.8, 7.8, 7.8, 47.8}/t = {0, 0.5,,.5, 2, 2.5, 3}; determinare:

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Economia degli intermediari finanziari. Lo sconto

Economia degli intermediari finanziari. Lo sconto Economa degl ntermedar fnanzar Lo sconto 1. Introduzone Lo sconto è una forma d smoblzzo de credt commercal utlzzable nel caso n cu l mpresa regol propr scamb medante effett cambar, ossa ttol d credto

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico Matematica Finanziaria Canale D - K. Capitolo 2 Rendite

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico Matematica Finanziaria Canale D - K. Capitolo 2 Rendite 1 Mateatca Fazara Uverstà degl Stud La Sapeza Facoltà d Ecooa Ao accadeco 2012-13 Mateatca Fazara Caale D - K Captolo 2 Redte Atoo Abal Atoo Abal a.a. 2011-12 2 Mateatca Fazara Captolo 2 Operazo fazare

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K)

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K) ESERCITAZIONI d ECONOIA POLITICA ISTITUZIONI (A-K). Bonacna - Unverstà degl Stud d Pava monca.bonacna@unboccon.t 1 3 a ESERCITAZIONE: ONETA: Soluzon Ogn volta che s parla d domanda d, spuòdrecheèdomandadmoneta

Dettagli

prospetto CAPITALE di funzionamento all 1/1/2013

prospetto CAPITALE di funzionamento all 1/1/2013 prospetto CAPITALE di funzionamento all 1/1/2013 Costi sospesi INVESTIMENTI Rimanenze di materie* 40 Rimanenze di prodotti** 76 Crediti di regolamento Crediti verso clienti 250 Liquidità immediata Denaro

Dettagli

EVOLUZIONE DEL DEBITO

EVOLUZIONE DEL DEBITO AMMORTAMENTO DI PRESTITI A RATE POSTICIPATE COSTANTI PROF. ROSARIO OLIVIERO Indice 1 RENDITA POSTICIPATA ---------------------------------------------------------------------------------------------------

Dettagli

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 25 gennaio 2010 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

1a. [2] secondo la legge degli interessi semplici. 1b. [2] secondo la legge degli interessi composti.

1a. [2] secondo la legge degli interessi semplici. 1b. [2] secondo la legge degli interessi composti. MATEMATICA FINANZIARIA - 6 cfu Prova del 17 GIUGNO 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Lezione N.4. Argomenti della lezione. Capitale netto. Capitale netto. RILEVAZIONI CONTINUATIVE: Le operazioni di finanziamento

Lezione N.4. Argomenti della lezione. Capitale netto. Capitale netto. RILEVAZIONI CONTINUATIVE: Le operazioni di finanziamento rgomenti della lezione Lezione N.4 RILEVZIONI CONTINUTIVE: Le operazioni di finanziamento Le operazioni di finanziamento interno: il capitale netto Le operazioni di finanziamento esterno: i mutui passivi

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

MATEMATICA FINANZIARIA. Cognome Nome. Matricola Corso di Laurea

MATEMATICA FINANZIARIA. Cognome Nome. Matricola Corso di Laurea MATEMATICA FINANZIARIA Prova scritta del 22/02/2017 COMPITO A Cognome Nome Matricola Corso di Laurea Lo studente è tenuto a riportare sul presente foglio il procedimento essenziale seguito nella risoluzione

Dettagli

Geotecnica Esercitazione 1/2013

Geotecnica Esercitazione 1/2013 Geotecnca Eserctazone 1/2013 # 1 - Note le quanttà q n gramm present su ogn setacco d dametro assegnato, rportate n Tab. 1, rappresentare le curve granulometrche e classfcare terren a, b, c. # 2 La Tab.

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

L efficacia delle politiche nel modello IS-LM

L efficacia delle politiche nel modello IS-LM Corso d Poltca Economca Eserctazone n. 4 6 aprle 2017 L effcaca delle poltche nel modello IS-LM Dott. Walter Paternes Melon walter.paternes@unroma3.t POLITICA FISCALE ESPANSIVA - nel modello IS/LM una

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2001

MATEMATICA FINANZIARIA Appello del 10 luglio 2001 MATEMATICA FINANZIARIA Appello del 10 luglio 2001 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l PORTO TURSTCO NELLA FRAZONE SAN GORGO DEL COMUNE D GOOSA MAREA (ME) PROGETTO PRELMNARE PANO ECOVOb'TCO E FNANZAF0 NDCE 1. PREMESSA...,.l 2. COSTO DELL'NTERVENTO...,...,...,..,,.,...,,.,,~...,.,.,.,,...l

Dettagli

Ricavo totale [Euro/anno] delle biomasse. Quantità [ton/anno] Ricavo totale [Euro/anno] energie elettrica. Quantità [kw/anno]

Ricavo totale [Euro/anno] delle biomasse. Quantità [ton/anno] Ricavo totale [Euro/anno] energie elettrica. Quantità [kw/anno] Quantificazione del mercato potenziale per il conferimento Quantità [ton/die] Quantità [ton/anno] Ricavo Unitario Ricavo totale [ /anno] Ricavo totale [Euro/anno] delle biomasse [ /ton] Conferimento Biomasse

Dettagli

1 Esercizi di Riepilogo sui piani di ammortamento

1 Esercizi di Riepilogo sui piani di ammortamento 1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli