Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1"

Transcript

1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1

2 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado d lbertà non può essere rsolta analtcamente se l ecctazone vara con legge arbtrara, oppure se l sstema non è lneare. In quest cas la rsposta può essere calcolata ntegrando numercamente l equazone del moto. Il carco applcato p(t) vene descrtto da un nseme d valor dscret p = p(t ), con =, 1, 2,, N. D solto, gl ntervall d tempo Δt +1 = t +1 t dett pass d ntegrazone, s assumono d ampezza costante, ndcata con Δt. p(t) p p 1 p 2 p 3 p t t 1 t 2 t 3 t!t t N t Prof. Adolfo Santn - Dnamca delle Strutture 2

3 Introduzone 2/2 Per ogn passo d ntegrazone, l procedmento d ntegrazone numerca consente d calcolare la rsposta all stante fnale t +1, nota la rsposta all stante nzale t. Applcando l procedmento n sequenza s ottene la rsposta u = u(t ) per tutt gl stant d tempo t consderat. Poché, a dfferenza del metodo dell ntegrale d convoluzone, non è necessaro rcorrere al prncpo d sovrapposzone degl effett, l procedmento d ntegrazone numerca può essere mpegato anche per sstem non lnear. Un metodo d ntegrazone numerca deve possedere due mportant requst: p(t) () convergenza: al dmnure dell ampezza degl ntervall la rsposta deve convergere a quella esatta; () stabltà: la soluzone numerca deve essere stable ne confront degl error d arrotondamento. p p 1 p 2 p 3 p t t 1 t 2 t 3 t!t t N t Prof. Adolfo Santn - Dnamca delle Strutture 3

4 Il metodo d Newmark Il metodo d Newmark s basa sulle seguent equazon ntegral Δt +1 u +1 = u + ( τ )dτ u = u + Δt +1 u ( τ )dτ +1 che consentono d calcolare la veloctà e lo spostamento al termne del passo d ntegrazone, sommando a loro valor nzal un espressone ntegrale. La varazone d veloctà dpende dall ntegrale dell accelerazone, mentre la varazone d spostamento dpende dall ntegrale della veloctà. Queste relazon possono essere utlzzate se s assume arbtraramente nota la legge d varazone dell accelerazone ü(τ) all nterno del passo d ntegrazone. Una tale potes, nfatt, permette d defnre anche la legge d varazone della veloctà, consentendo d passare così al successvo ntervallo d ntegrazone. Nella formulazone d Newmark le relazon assumono la forma ( ) Δt u +1 = u + 1 γ + ( γδt ) +1 + ( βδt 2 ) u +1 u +1 = u + ( Δt) u + (.5 β)δt 2 n cu l ampezza del passo d ntegrazone, Δt, è stata assunta costante. I parametr β e γ defnscono la varazone dell accelerazone all nterno del passo e controllano le caratterstche d stabltà del metodo. D solto s pone 1 6 β 1 4 e γ = 1 2 Prof. Adolfo Santn - Dnamca delle Strutture 4

5 Accelerazone costante nel passo Se s assume che l accelerazone sa costante nel passo e par alla meda de valor nzale e fnale ( τ ) = u(t) ( +1)! = 1/4 sosttuendo nelle relazon precedent e ntegrando due volte s ha τ ( ) = u + u τ u τ τ ( ) = u + u τ ( ) u( τ )dτ = u + τ 2 + u +1 ( ) ( )dτ = u + τ u + τ da cu s ottengono seguent valor fnal della veloctà e dello spostamento u +1 = u + Δt ( ) u +1 = u + ( Δt) u + Δt 2 ( + +1 ) 4 Confrontando queste relazon con quelle d Newmark, s può osservare che assumere una varazone costante dell accelerazone nel passo corrsponde a porre n queste ultme u +1 u +1 u t t +1 t β = 1 4 e γ = 1 2 Prof. Adolfo Santn - Dnamca delle Strutture 5

6 Accelerazone lneare nel passo Se s assume che l accelerazone sa lneare nel passo d ntegrazone ( τ ) = + τ Δt ( +1 ) sosttuendo nelle relazon precedent e ntegrando due volte s ha τ ( ) = u + u τ ( ) = u + u τ u τ u( τ )dτ = u + τ + τ 2 2Δt τ ( )dτ = u + τ u + τ 2 u ( +1 ) 2 + τ 3 6Δt da cu s ottengono seguent valor fnal della veloctà e dello spostamento u ( +1 ) u +1 = u + Δt u +1 = u + Δt ( ) Confrontando queste relazon con quelle d Newmark, s può osservare che assumere una varazone costante dell accelerazone nel passo corrsponde a porre n queste ultme u u(t) u +1 u! = 1/6 t t +1 ( ) u + Δt 2 1 t β = 1 6 e γ = 1 2 Prof. Adolfo Santn - Dnamca delle Strutture 6

7 Il metodo d Newmark n forma esplcta 1/6 Così come è stato formulato, l metodo d Newmark è mplcto. Infatt, valor della veloctà e dello spostamento al termne del passo d ntegrazone dpendono dal valore fnale dell accelerazone, nzalmente ncognto. D conseguenza, l calcolo deve essere effettuato teratvamente a partre da un valore nzale d tentatvo. Dal punto d vsta computazonale è preferble trasformare le relazon d Newmark n modo da rendere esplcto l metodo. In questo caso, poché la rsposta fnale dpende solo da valor nzal, non sono rcheste terazon ed è possble passare drettamente da un passo d ntegrazone al successvo. Le relazon d Newmark possono essere convertte n forma esplcta nel caso d sstem lnear. A tale scopo s consderno le equazon del moto al termne e all nzo del passo d ntegrazone Sottraendo membro a membro s ha m +1 m u +1 + c u +1 + ku +1 = p +1 m u + c u + ku = p ( u ) + c u +1 u che s può scrvere nella forma ncrementale ( ) + k( u +1 u ) = p +1 p Prof. Adolfo Santn - Dnamca delle Strutture 7

8 Il metodo d Newmark n forma esplcta 2/6 n cu mδ u + cδ u + kδu = Δp Δ u = +1, Δ u = u +1, Δu = u +1 u, Δp = p +1 p Anche le relazon ( ) Δt u +1 = u + 1 γ possono essere scrtte n forma ncrementale. S ha + ( γδt ) u = u + ( Δt) u +.5 β Δ u = ( Δt) u + ( γδt ) Δ u Dalla seconda s può rcavare l ncremento d accelerazone Sosttuendo nella prma s ottene ( )Δt 2 Δu = ( Δt) u + Δt βδt 2 ( )Δ u Δ u = 1 βδt Δu 1 2 βδt u 1 2β Δ u = γ βδt Δu γ β u Δt γ + ( βδt 2 ) u +1 Prof. Adolfo Santn - Dnamca delle Strutture 8 u

9 Il metodo d Newmark n forma esplcta 3/6 Sosttuendo le relazon Δ u = 1 βδt Δu 1 2 βδt u 1 2β Δ u = γ βδt Δu γ β u Δt γ nell equazone del moto n forma ncrementale dopo alcun passagg s ha 1 βδt m + γ 2 βδt c + k Δu = Δp + Ponendo ˆk = 1 βδt 2 m + γ βδt c + k s ottene Δˆp = Δp + mδ u + cδ u + kδu = Δp 1 βδt m + γ β c u + 1 2β m + Δt 1 βδt m + γ β c u + 1 2β m + Δt ˆkΔu = Δˆp γ c γ c Prof. Adolfo Santn - Dnamca delle Strutture 9

10 Il metodo d Newmark n forma esplcta 4/6 ˆkΔu = Δˆp da cu s rcava l ncremento d spostamento nel passo d ntegrazone Δu = Δˆp ˆk Noto Δu, gl ncrement d veloctà e d accelerazone nel passo possono essere calcolat medante le relazon Δ u = γ βδt Δu γ β u Δt γ Δ u = 1 βδt Δu 1 2 βδt u 1 2β La rsposta al tempo t +1 può nfne essere determnata attraverso le relazon u +1 = u + Δu u +1 = u + Δ u +1 = + Δ u In alternatva, l accelerazone può essere anche ottenuta dall equazone del moto scrtta al tempo t +1, coè +1 = 1 ( m p c u ku ) Prof. Adolfo Santn - Dnamca delle Strutture 1

11 Il metodo d Newmark n forma esplcta 5/6 +1 = 1 ( m p c u ku ) Per nzare l procedmento, questa relazone deve essere utlzzata per la valutazone dell accelerazone nzale n funzone delle condzon nzal del moto, coè = 1 ( m p c u ku ) Prof. Adolfo Santn - Dnamca delle Strutture 11

12 Il metodo d Newmark n forma esplcta 6/6 Stabltà e convergenza S può dmostrare che l metodo d Newmark è stable se rsulta Δt T 1 π 2 1 γ 2β n cu T è l perodo naturale d vbrazone del sstema. Ponendo β = 1/4 e γ = 1/2, rsulta Δt T < che mplca che l metodo dell accelerazone costante nel passo è ncondzonatamente stable. Inoltre, ponendo nella β = 1/6 e γ = 1/2, s ha che l metodo dell accelerazone lneare nel passo è stable se rsulta Δt T.551 Questa condzone è poco rlevante perché, al fne d ottenere una rappresentazone suffcentemente accurata dell ecctazone e della rsposta, è necessaro sceglere un ntervallo d ntegrazone scuramente pù pccolo d.551t. Il metodo dell accelerazone lneare nel passo è preferble a quello dell accelerazone costante per la sua maggore veloctà d convergenza. Prof. Adolfo Santn - Dnamca delle Strutture 12

13 Il metodo d Newmark: sommaro del procedmento Note le condzon nzal n termn d spostamento e d veloctà, s determna l accelerazone nzale attraverso la relazone = 1 ( m p c u ku ) Scelt valor da assegnare a β e γ, e assegnata l ampezza Δt dell ntervallo d ntegrazone, s calcolano le costant ˆk = 1 βδt m + γ 2 βδt c + k a = 1 βδt m + γ β c b = 1 2β m + Δt γ c Per ogn ntervallo d ntegrazone s calcolano le quanttà Δˆp = Δp + a u + b u Δ u = γ βδt Δu γ β u Δt γ Δu = Δˆp ˆk Δ u = 1 βδt Δu 1 2 βδt u 1 2β da cu s ottene u +1 = u + Δu u +1 = u + Δ u +1 = + Δ u Sosttuendo con +1, s rpete l procedmento per l successvo ntervallo d ntegrazone, e così va. Prof. Adolfo Santn - Dnamca delle Strutture 13

Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema non lineare a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone nmerca dell eqazone del moto per n sstema non lneare a n grado d lbertà Prof. Adolfo Santn - Dnamca delle Strttre Rgdezza secante e rgdezza tangente /2 Per n sstema non lneare, l eqazone del

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Capitolo 6 - Caratterizzazione dell azione sismica sulle costruzioni

Capitolo 6 - Caratterizzazione dell azione sismica sulle costruzioni Captolo 6 - Caratterzzazone dell azone ssmca sulle costruzon Lo studo della percolostà ssmca d un terrtoro consente d ottenere nformazon sulla ssmctà del sto n esame, sulle caratterstche de terremot che

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

PERDITE DI POTENZA NEI TRASFORMATORI Prof.

PERDITE DI POTENZA NEI TRASFORMATORI    Prof. EDITE DI OTENZA NEI TASFOATOI www.elettrone.altervsta.org www.proessore.mypoast.com www.marcochrzz.blogspot.com ro. arco Chrzz EESSA Il trasormatore è una mchna elettrca statca, coè prva d part n movmento.

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercizi di econometria: serie 1

Esercizi di econometria: serie 1 Esercz d econometra: sere Eserczo E data la popolazone dell Abruzzo classcata n se categore d reddto ed n tre class d età come segue: Reddto: () L... 4.. () L. 4.. 8.. () L. 8.... (4) L..... () L.....

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

DESTINAZIONE ORIGINE A B C A B C Esercizio intersezioni a raso - pag. 1

DESTINAZIONE ORIGINE A B C A B C Esercizio intersezioni a raso - pag. 1 ESERCIZIO Argomento: Intersezon a raso Data l ntersezone a raso a tre bracc rappresentata n fgura s vuole procedere al dmensonamento de suo element. I dat nzal necessar per la progettazone sono d seguto

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Determinazione del momento d inerzia di una massa puntiforme

Determinazione del momento d inerzia di una massa puntiforme Determnazone del momento d nerza d una massa puntorme Materale utlzzato Set d accessor per mot rotator Sensore d rotazone Portamasse e masse agguntve Statvo con base Blanca elettronca Calbro nteracca GLX

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Molla e legge di Hooke

Molla e legge di Hooke Molla e legge d Hooke Consderamo un corpo d massa m poggato su una superce prva d attrto ed attaccato all estremtà lbera d una molla e consderamo che la poszone d equlbro (F0) sa n 0 Ø Se la molla vene

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario Crcut elettrc n regme stazonaro Component www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-00) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo).

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo). I crcut per la rduzone delle perdte devono essere dmensonat consderando le dverse condzon operatve che possono presentars durante l apertura e la chusura del Transstor. Per caratterzzare queste condzon,

Dettagli

STATO LIMITE ULTIMO DI INSTABILITA

STATO LIMITE ULTIMO DI INSTABILITA Corso d Teora e rogetto d ont A/A 013-014 - Dott. Ing. Fabrzo aolacc STATO IMITE UTIMO DI INSTABIITA oszone del problema Il problema della stabltà dell equlbro aste perfe6e: Il carco cr9co eulerano nfluenza

Dettagli

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x)

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x) Qualtà ell aattamento una funzone y=f() a un nseme msure (y n funzone ) Date N msure coppe valor elle granezze e y, legate alla relazone y=f(;a,b), nell potes che le ncertezze sulle sano trascurabl e y

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

Correnti e circuiti resistivi

Correnti e circuiti resistivi Corrent e crcut resstv Intensta d corrente Densta d corrente Resstenza Resstvta Legge d Ohm Potenza dsspata n una resstenza R Carche n un conduttore cos(θ ) v m N v 0 Se un conduttore e n equlbro l campo

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

Appendice B Il modello a macroelementi

Appendice B Il modello a macroelementi Appendce B Il modello a macroelement Al fne d una descrzone semplfcata del comportamento delle paret nel propro pano, è stata svluppata una metodologa d anals semplfcata che suddvde la parete murara con

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

Tecniche di approssimazione Differenze finite

Tecniche di approssimazione Differenze finite Tecnche d approssmaone Derene nte Derene nte t Il metodo delle derene nte permette d trasormare un problema derenale n uno algebrco approssmato. Lmtando nalmente l problema al caso d una unone ncognta

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A. 2004-05 Esame Scrtto del 10/12/2004 Soluzone (sommara) degl esercz Eserczo 1: S vuole acqusre e convertre n dgtale la msura d deformazone d una

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli