Tangenti a una conica: il metodo del Doppio sdoppiamento 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tangenti a una conica: il metodo del Doppio sdoppiamento 1"

Transcript

1 Tangent a una conca: l metodo del Doppo sdoppamento 1 Franco Goacchno Sunto Ecco un metodo alternatvo per determnare le tangent a una conca da un qualsas punto del pano. Esso consste nell applcare volte la formula d sdoppamento che s utlzza per determnare le tangent n un punto appartenente alla conca n oggetto. In buona sostanza s utlzza la formula d sdoppamento una prma volta con lo scopo d determnare, a partre dall assegnato punto (x ;y ) da cu bsogna traccare le tangent t 1 e t alla conca, due punt d tangenza T 1 e T (che possono essere entramb concdent con se appartene alla conca e t 1 t, o non esstere affatto se è nterno alla conca e non esstono nè t 1 nè t ). Per determnare nfne, a partre da T 1 e T, le tangent t 1 e t possamo o utlzzare d nuovo, stavolta nel modo consueto, la formula d sdoppamento o semplcemente determnare le rette passant rspettvamente per punt e T 1 e per punt e T. E possble mplementare con un lnguaggo d programmazone o ancor pù agevolmente su un foglo elettronco le formule che, a partre dall nput costtuto da coeffcent della conca assegnata e dalle coordnate del punto assegnato, resttuscono coeffcent delle equazon delle rette tangent cercate e le coordnate de punt d tangenza. A proposto d crconferenze, ellss e perbol, nfne, è nteressante osservare che con questo metodo vengono determnate anche le tangent parallele all asse y, che utlzzando l tradzonale procedmento del fasco propro d rette d centro rmangono escluse; per l perbole, n partcolare, quando l punto (dverso dall orgne O) appartene a un suo asntoto s evta la falsa tangente costtuta dall asntoto stesso che nvece vene erroneamente rlevata dal metodo tradzonale (chamarla, come s usa fare, tangente mpropra è una contraddzone n termn, vsto che non tange l perbole n alcun punto reale, ma nel vrtuale punto all nfnto). 1 E possble spermentare l metodo tramte un applcazone VBA-Excel all ndrzzo

2 Per fssare le dee rferamoc a un esempo concreto: data la parabola P: y = x + 6x 5 ed l punto (3/; ) determnare le tangent a P passant per. 1. Data la parabola P: y = ax + bx + c e l punto (x ; y ) determnare gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ) tra P e le tangent t 1 e t passant per. a formula d sdoppamento y + y x + x t: = axx + b + c (1.1) fornsce la tangente n un punto T(x ; y ), a no ncognto, appartenente a P. Se n tale equazone sosttuamo x e y con le coordnate del punto n nostro possesso mponamo la condzone che la tangente, come voglamo, pass per, e ottenamo un equazone d 1 grado nelle ncognte x e y esprmente y n funzone d x : essa rappresenta la cosddetta Polare della parabola rspetto al punto, coè la retta passante per punt d tangenza con la conca delle tangent condotte da (se esse esstono). 3 + x + y 3 t: = x (1.) da cu l equazone della polare y = 3x 3 (1.3) Imponamo ora la condzone che T(x ; y ) appartenga a P : sosttuendo nell equazone P: y = x + 6x 5 x con x e y con y, o meglo con la sua espressone (1.3) contenente x, ottenamo un equazone d grado nell ncognta x, rsolvendo la quale avremo: I) valor dstnt d x, coè x 1 e x, e corrspondent valor dstnt d y, coè y 1 e y ( esterno a P : punt d tangenza dstnt T 1 (x 1 ; y 1 ) e T (x ; y ) n corrspondenza delle tangent dstnte t 1 e t passant per ) ; II) valor concdent d x e corrspondent valor concdent d y ( appartenente a P e concdente con l solo punto d tangenza T(x ; y ) relatvo all unca tangente t passante per T) ; III) nessun valore d x né dunque d y ( nterno a P : nessun punto d tangenza perché non esste nessuna tangente passante per ).

3 Il procedmento ora descrtto equvale pratcamente a rsolvere l sstema tra la conca e la sua polare rspetto a, determnando così gl eventual punt d tangenza. 3x 3 = x + 6x 5 (1.) y = 3x 3 da cu punt d tangenza x 1 = 1 x = T1 V T (1.5) 1 = = 3. Utlzzando nel modo usuale la formula d sdoppamento determnare le tangent n T 1 e T a P. a formula d sdoppamento (1.1) applcata a P, T 1 e T c fornsce le cercate tangent alla conca passant per l punto. y + x + 1 t 1 : = x coè t 1 : y = x (.1) y + 3 x + t : = x coè t : y = x 1 (.) Generalzzando quanto esposto ne paragraf precedent: 3. Il metodo del Doppo Sdoppamento Dat (x ; y ) e P: y = ax + bx + c: I) cerchamo gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ). A tale scopo sosttuamo nella formula d sdoppamento (1.1) x e y con x e y y + y x + x = axx + b t: + c (3.1) da cu l equazone della polare della parabola rspetto a y = ( ax + b) x + ( bx y + c) (3.) Post f = ax + b (3.3) g = bx y + c (3.) possamo rscrvere la (3.) nella forma semplfcata = fx g (3.5) y +

4 Qund rsolvamo l sstema d grado y = ax + bx + c y = fx + g (3.6) che dopo la sosttuzone dventa ax + ( b f ) x + c g = y = fx + g (3.7) coè, rcordando la (3.3) ax ax x + c g = y = fx + g (3.8) Rsolvendo con formula rdotta l'equazone d grado ottenamo = ( ax ) ac + ag (3.9) e dunque x = x ± a y = fx + g per = 1, (3.1) II) Determnamo le eventual tangent t 1 e t con la formula dello sdoppamento. y + y x + x t : = axx + b + c per = 1, (3.11) da cu t : y ( ax + b) x + bx y c = + per = 1, (3.1) Post m = ax + b per = 1, (3.13) q = bx y + c per = 1, (3.1) possamo rscrvere la (3.1) nella forma semplfcata t : y = m x + q per = 1, (3.15). Implementazone su foglo elettronco Basterà mplementare l procedmento del doppo sdoppamento utlzzando le formule descrtte nel paragrafo precedente. In partcolare: I) preparare 5 celle d nput chamandole a, b, c, x, y;

5 II) nelle celle preventvamente denomnate f, g, delta, x1, y1, x, y calcolare le formule, rspettvamente, (3.3), (3.), (3.9), (3.1). Nella formula relatva al dscrmnante rdotto prevedere un struzone condzonale =se(.) che, n caso d valore negatvo, mand n output l messaggo Il punto è nterno alla parabola: tangent nesstent ; III) preparare celle d output denomnate m1, q1, m, q n cu calcolare le formule, rspettvamente, (3.13) e (3.1). 5. Il metodo del Doppo Sdoppamento per l ellsse n forma canonca rferta a propr ass d smmetra x y Data l ellsse rferta a propr ass E: + = 1 ed l punto (x ; y ) β I) cerchamo gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ). Consderamo, n prma potes, l caso y. Sosttuendo nella formula d sdoppamento dell ellsse x e y con x e y ottenamo x x yy t: + = 1 β (5.1) da cu l equazone della polare dell ellsse rspetto a β x β y = x + y y (5.) Post β x f = y (5.3) β g = (5.) y possamo rscrvere la (5.) nella forma semplfcata y = fx + g (5.5) Qund rsolvamo l sstema d grado x y + = 1 β (5.6) = fx + g che dopo la sosttuzone dventa

6 ( β + f ) x + fgx + g β = y = fx + g (5.7) Rsolvendo con formula rdotta l'equazone d grado ottenamo = β ( β + f g ) (5.8) e dunque fg ± x = β + f = fx + g per = 1, (5.9) Se nvece y = la (5.1) dventa x x t: = 1 (5.1) da cu l equazone della polare dell ellsse rspetto a rsulta essere x = (5.11) x Qund rsolvamo l sstema d grado x y + = 1 β (5.1) x = x che dopo la sosttuzone dventa y = β 1 x (5.13) x = x da cu

7 x = x per = 1, (5.1) y = ± β 1 x S not che, essendo y =, la condzone d esstenza della frazone, x, equvale a escludere che concda con l centro d smmetra d E: cò è certamente lecto vsto che non esstono tangent a un ellsse che passno per l suo centro d smmetra; analogamente sarà verfcata la condzone d esstenza del radcale, < x, purché l punto non sa nterno all ellsse. II) Determnamo le eventual tangent t 1 e t con la formula dello sdoppamento. x x y y t : + = 1 β per = 1, (5.15) da cu t : β x x + yy β = per = 1, (5.16) Post a = β x per = 1, (5.17) b = y per = 1, (5.18) c = β per = 1, (5.19) possamo rscrvere la (5.16) nella forma semplfcata t : a x + b y + c per = 1, (5.) = 6. Il metodo del Doppo Sdoppamento per la crconferenza Data la crconferenza C: x + y + x + βy + γ = ed l punto (x ; y ) I) cerchamo gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ).

8 β Consderamo, n prma potes, l caso y. Sosttuendo nella formula d sdoppamento della crconferenza x e y con x e y ottenamo x + x y + y t: x x + y y + + β + γ = (6.1) da cu l equazone della polare della crconferenza rspetto a x + x + βy + γ y = x (6.) y + β y + β Post x + f = (6.3) y + β x + βy + γ g = y + β (6.) possamo rscrvere la (6.) nella forma semplfcata y = fx + g (6.5) Qund rsolvamo l sstema d grado x + y + x + βy + γ = y = fx + g (6.6) che dopo la sosttuzone dventa ( 1 + f ) x + ( fg + + βf ) x + g + βg + γ = y = fx + g (6.7) Chamat a, b, c 3 coeffcent dell equazone rsolvente, cerchamo le eventual soluzon real del sstema, chamandole, come al solto x per = 1, (6.8) β Se nvece y = la (6.1) dventa t: x x + x + x β + γ = (6.9) da cu l equazone della polare della crconferenza rspetto a rsulta essere β x γ x = x + (6.1)

9 β S not che, essendo y =, la condzone d esstenza x equvale a escludere che concda con l centro d C: cò è certamente lecto vsto che non esstono tangent a una crconferenza che passno per l suo centro. Infne rsolvamo l sstema d grado β x γ x = x + + βy + x + x + γ = (6.11) Chamat a = 1, b = β, c = x + x + γ 3 coeffcent dell equazone rsolvente con ncognta y, cerchamo le eventual soluzon real del sstema, chamandole, come al solto x per = 1, (6.1) II) Determnamo le eventual tangent t 1 e t con la formula dello sdoppamento. x + x y + y t : x x + y y + + β + γ = per = 1, (6.13) da cu t : ( x + ) x + ( y + β) y + x + βy + γ = per = 1, (6.1) Post a = x + per = 1, (6.15) b = y + β per = 1, (6.16) c = x + βy + γ per = 1, (6.17) possamo rscrvere la (6.1) nella forma semplfcata t : a x + b y + c per = 1, (6.18) = 7. Il metodo del Doppo Sdoppamento per l perbole n forma canonca rferta a propr ass d smmetra

10 Rsolvamo l caso delle tangent condotte dal punto (x ; y ) all perbole n x y forma canonca rferta a propr ass I: = 1; n modo analogo s β tratterà l caso d perbole con asse trasverso vertcale. I) cerchamo gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ). Consderamo, n prma potes, l caso y. Sosttuendo nella formula d sdoppamento dell ellsse x e y con x e y ottenamo x x yy t: = 1 (7.1) β da cu l equazone della polare dell perbole rspetto a β x β y = x (7.) y y Post β x f = (7.3) y β g = y (7.) possamo rscrvere la (5.) nella forma semplfcata y = fx + g (7.5) Qund rsolvamo l sstema d grado x y = 1 β = fx + g (7.6) che dopo la sosttuzone dventa ( β f ) x fgx g β = y = fx + g (7.7) Se l punto appartene a un asntoto dell perbole e solo n tal caso, la prma equazone ha coeffcente drettore ed l sstema è d 1 grado, con soluzone

11 g + β x 1 = fg 1 = fx 1 + g Cò è coerente con l esstenza, n tal caso, d una sola tangente all perbole. Se non appartene a nessuno de due asntot, nvece, rsolvendo con formula rdotta l'equazone d grado ottenamo = β ( β f + g ) (7.8) e, se tale numero è maggore uguale d, le soluzon fg ± x = per = 1, (7.9) β f = fx + g Se nvece y = la (7.1) dventa x x t: = 1 (7.1) da cu l equazone della polare della crconferenza rspetto a rsulta essere x = (7.11) x Qund rsolvamo l sstema d grado x y = 1 β (7.1) x = x che dopo la sosttuzone dventa y = β 1 x (7.13) x = x da cu

12 x = x per = 1, (7.1) y = ± β 1 x S not che, essendo y =, la condzone d esstenza della frazone, x, equvale a escludere che concda con l centro d smmetra d I ossa con l orgne O (caso gà dscusso); analogamente sarà verfcata la condzone d esstenza del radcale, > x, purché l punto non sa nterno a ram dell perbole. II) Determnamo le eventual tangent t 1 e t con la formula dello sdoppamento. x x y y t : = 1 β per = 1, (7.15) da cu t : β x x yy β = per = 1, (7.16) Post a = β x per = 1, (7.17) b = y per = 1, (7.18) c = β per = 1, (7.19) possamo rscrvere la (5.16) nella forma semplfcata t : a x + b y + c per = 1, (7.) = 8. Il metodo del Doppo Sdoppamento per una generca conca Rsolvamo l caso delle tangent condotte dal punto (x ; y ) alla conca C: x + βxy + γy + δx + εy + ζ = I) Cerchamo gl eventual punt d tangenza T 1 (x 1 ; y 1 ) e T (x ; y ). Sosttuendo nella formula d sdoppamento della conca x e y con x e y ottenamo

13 x y + y x x + x y + y t : x x + β + γy y + + δ + ε + ζ = (8.1) da cu l equazone mplcta della polare della conca rspetto a ( x + βy + δ) x + ( βx + γy + ε) y + δx + εy + ζ =. (8.) Chamat ap, bp e cp tre coeffcent d tale retta, se bp ne rendamo esplcta l equazone e, post f = ap/bp (8.3) g = cp/bp (8.) ottenamo y = fx + g (8.5) Qund rsolvamo l sstema d grado x + βx y + γy + δx + εy + ζ = y = fx + g (8.6) che dopo la sosttuzone dventa ( + βf + γf ) x + ( βg + γfg + δ + εf ) x + γg + εg + ζ = y = fx + g (8.7) Se la prma equazone ha coeffcente drettore ed l sstema è d 1 grado, coè se la conca è un perbole e l punto appartene a un suo asntoto (escluso l caso n cu anche l secondo coeffcente sa nullo, per l quale non esstono tangent alla curva) s ottene l unca soluzone γg + εg + ζ x 1 = ( βg + γfg + δ + εf ) 1 = fx 1 + g (8.8) esste coè una sola tangente all perbole. In tutt gl altr cas, nvece, dopo aver denomnato as, bs e cs tre coeffcent dell'equazone d grado del sstema (8.7), rsolvendo con formula rdotta ottenamo = bs as * cs (8.9) e, se, le soluzon

14 x y bs ± = per 1, (8.1) as = fx + g = Se nvece bp = (escluso l caso n cu anche ap =, nel quale d nuovo non esstono tangent), ossa se la polare è parallela all asse y, s rcava mmedatamente cp x1 = x = (8.11) ap e dunque rsolvamo l sstema d grado x + βx y + γy + δx + εy + ζ = cp (8.1) x = ap ottenendo, dopo la sosttuzone, cp cp cp γy + + δ + ζ = ε β y ap ap ap (8.13) cp x = ap Se γ = ed l sstema è d 1 grado, coè se la conca è un perbole e l punto appartene a un suo asntoto (escludendo d nuovo l caso n cu anche l secondo coeffcente sa nullo, per l quale non esstono tangent alla curva), come nel precedente caso (8.8), s ottene l unca soluzone cp x 1 = ap cp cp δ + ζ (8.1) ap ap y1 = cp β ε ap In tutt gl altr cas, nvece, dopo aver denomnato at, bt e ct tre coeffcent dell'equazone d grado del sstema (8.13), rsolvendo con formula rdotta ottenamo

15 = bt at*ct e, se, le soluzon. cp x = ap per bt ± y = at = 1, (8.15) (8.16) II) Determnamo le eventual tangent t 1 e t con la formula dello sdoppamento. yx + x y x + x y + y t : x x + β + γy y + δ + ε + ζ = per = 1, (8.17) da cu + βy + δ + γy + βx + ε + δx + εy t : ( x ) x ( ) y + ζ = per = 1, (8.18) Post a = x + βy + δ per = 1, (8.19) b = γy + βx + ε per = 1, (8.) c = δx + εy + ζ per = 1, (8.1) possamo rscrvere la (8.18) nella forma semplfcata t : a x + b y + c per = 1, (8.) =

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico Tracce assegnate durante l anno scolastco. Dsegna nel pano cartesano la retta d equazone, dopo averla scrtta n orma esplcta. Stablsc, sa gracamente ce analtcamente, se l B ; 3 appartene alla retta. punto.

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

50 Equazione generale delle coniche

50 Equazione generale delle coniche 50 Equazone generale delle conche Le curve pane studate nel paragrafo precedente (la crconferenza, l ellsse, l perbole, la parabola) hanno n comune la propretà d essere rappresentate da equazon algebrche

Dettagli

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V ESECZO SU DOD (Metodo degl Scatt) Determnarelatranscaratterstcav out (v n ) del seguente crcuto Dat del problema 5 o kω Ω 0 Ω Z -8 n ٧ 0.7 r D 0 Ω r Z 0 Ω r Ω D Z D o out Metodo degl scatt S determnano

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Luca Lietti

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Luca Lietti arametr RKS Dpartmento d Energa oltecnco d Mlano a a Masa 4-0156 MINO Eserctazon del corso FONDMENI DI ROESSI HIMII rof. uca ett ESERIZIONE 8 alcolo della temperatura d bolla e d rugada d una mscela n-butano/n-esano

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA CAPITOLO 33 LA CORRENTE ELETTRICA CONTINUA 1 L INTENSITÀ DELLA CORRENTE ELETTRICA 1! v! a t! F m e! E m t v! e t m! E Fssato l ntervallo d tempo t, s può scrvere! v! E 2 Q t 4,0 10 2 A 5,0 s 0,20 C 3 t

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Numeri complessi, polinomi - Risposte pagina 1 di 11 23

Numeri complessi, polinomi - Risposte pagina 1 di 11 23 Numer compless, polnom - Rsposte pagna d 0. a. I numer compless con Re () sono quell a destra della retta vertcale (retta compresa). Quell con modulo mnore d 4 sono all nterno della crconferena d centro

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente.

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente. 5. Per la propretà d lneartà la tensone può essere espressa come = k g, doe g è la corrente del generatore. Utlzzando dat n Fgura a abbamo - = k 6, qund k = - ½. In Fgura b la corrente del generatore è

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a)

I O R 2 R 1 E O. i 1 I X R 3. (figura - 2.0) (figura - 2.0a) ESEZO.0: ssegnata la rete lneare d fgura.0, realzzata con l collegamento d generator ndpendent, generator plotat ed element passv, s determn la corrente X che crcola nella resstenza. Sono not: ; O ; b

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Statistica di Bose-Einstein

Statistica di Bose-Einstein Statstca d Bose-Ensten Esstono sstem compost d partcelle dentche e ndstngubl che non sono soggette al prncpo d esclusone. In quest sstem non esste un lmte al numero d partcelle che possono essere osptate

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Lezione 6 - Analisi statica

Lezione 6 - Analisi statica eone 6 - nals statca [Ultmarevsone: revsone:5 5novembre 8] S consder la stessa struttura bdmensonale della leone precedente, ossa un nseme d trav collegate tra loro ed al suolo da opportun vncol. S vuole

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

ESERCIZIARIO SUI NUMERI COMPLESSI

ESERCIZIARIO SUI NUMERI COMPLESSI ESERCIZIARIO SUI NUMERI COMPLESSI I numer regnano sull unverso. PITAGORA Perché numer sono bell? È come chedere perché la Nona Snfona d Beethoven è bella. Se non ved perché, nessuno può spegartelo. Io

Dettagli

Il diagramma cartesiano

Il diagramma cartesiano Il dagramma cartesano Il pano cartesano Il dagramma cartesano è costtuto da due ass: uno orzzontale, l asse delle ascsse o della varable X, e uno vertcale, l asse delle ordnate o della varable Y. I due

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

VERIFICA DI MATEMATICA 3^C IPSIA 12 novembre 2016 rispondere su un foglio protocollo da riconsegnare entro 19 novembre 2016 NOME E COGNOME

VERIFICA DI MATEMATICA 3^C IPSIA 12 novembre 2016 rispondere su un foglio protocollo da riconsegnare entro 19 novembre 2016 NOME E COGNOME VERIFICA DI MATEMATICA 3^C IPSIA 12 novembre 2016 rspondere su un foglo protocollo da rconsegnare entro 19 novembre 2016 NOME E COGNOME 1 Determnare la lunghezza del segmento AB ne cas: A( 2 3 ; 3 4 )B

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito:

CIRCUITI ELETTRICI 1) Calcolare la resistenza equivalente del seguente circuito: CICUITI LTTICI ) Calcolare la resstenza equvalente del seguente crcuto: Dall esame del crcuto s deduce che la resstenza equvalente del crcuto è: 6 6 6 ( ) Ω ) Determna l ntenstà della corrente nel crcuto,

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Prova scritta di Elettronica I 26 giugno 2001

Prova scritta di Elettronica I 26 giugno 2001 Prova scrtta d Elettronca I 26 gugno 2001 Soluzone 1. Dato l seguente crcuto, determnare: Q3 BC179 BC179 Q4 RL 100k Q2 RE 2.3k I. l punto d rposo e parametr per pccol segnal. (S consgla d trovare la relazone

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro

LABORATORIO II. 1 La retta di regressione. NB create un nuovo foglio di lavoro LABORATORIO II B create un nuovo foglo d lavoro La retta d regressone Eserco. U PRIMO ESEMPIO DI RETTA DI REGRESSIOE LIEARE. Leggere attentamente paragraf.,. e. tutto Costrure la retta d regressone lneare

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1.

PROGRAMMAZIONE LINEARE. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino P. L. / 1. PROGRAMMAZIONE LINEARE Una pccola ntroduzone R. Tade R. Tade 2 LA PROGRAMMAZIONE LINEARE L obettvo del captolo consste nel fornre lo scheletro d un problema d programmazone lneare e gl strument concettual

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone.

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone. Captolo 7 I corp estes 1. I movment d un corpo rgdo Che cosa s ntende per corpo esteso? Con l termne d corpo esteso c s rfersce ad oggett per qual non è lecto adoperare l approssmazone d partcella, coè

Dettagli

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4 Lezone 1 RL n evoluzone lbera R L (0) = I 0 Esamnamo ora un caso smle al precedente n cu al posto del condensatore sa presente un nduttore L; la stora è la stessa, cambano solo protagonst. lmteremo ad

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Le quote e q sono incognite. Il sistema è ridondante: 3 equazioni (osservazioni) e 2 incognite.

Le quote e q sono incognite. Il sistema è ridondante: 3 equazioni (osservazioni) e 2 incognite. Compensazone con l metodo de mnm quadrat Introduzone Le msure geodetche e topografche, che n molt cas non rguardano solo dstanze e angol, ma anche quanttà non puramente geometrche, come ad esempo l'ntenstà

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per l'omogenetà delle relazon avremo [ ] ([ ]

Dettagli

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 23 aprile 2018 Rispondere su un foglio protocollo e riconsegnare entro le ore 12:45 NOME E COGNOME

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 23 aprile 2018 Rispondere su un foglio protocollo e riconsegnare entro le ore 12:45 NOME E COGNOME VERIFICA DI MATEMATICA ^F Lceo Sportvo 3 aprle 08 Rspondere su un foglo protocollo e rconsegnare entro le ore :45 NOME E COGNOME Consderamo la funzone f (a3 a+(a ). Determnare seguent valor: f (6) ; f

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli