Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale"

Transcript

1 Calcolo Scentfco e Matematca Applcata Secondo Parzale, Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, Illustrare, medante l metodo delle dfferenze fnte, la rsoluzone numerca del seguente problema perbolco u tt = u xx + 4x 2 u x ( + 2x 2 u + cos 2 (x, x 3, t 8, u(, t = f, u(3, t = f 2, u(x, = x 2, u t (x, = x + 2. Dscutere le condzon su pass affnché le matrc de sstem sano nvertbl. 2. Illustrare la rsoluzone numerca del seguente problema debolmente non lneare: u xx + (3 + sn xu x + (sn(u u 5 = sn 2 (x, x 4, u( = f, u(4 = f Illustrare la rsoluzone numerca del seguente problema parabolco: u t = [( + x 4 u x ] x (3 + 2 sn(xu + f(x, x, u(, t = u(, t =, u(x, = g(x. Dscutere le propretà prncpal delle matrc del sstema. 4. a. Illustrare l procedmento d rsoluzone, medante gl element fnt, del seguente problema ellttco: ( [ + x 4 y 2 ] u ( [ + x 4 y 2 ] u x x y y sotto la condzone al contorno u Ω =. + (2 + cos[x + y]u = x 2 y 2, (x, y Ω,

2 b. Indcat con ϕ la box splne che assume l valore nel punto nodale (3, 4 e zero negl altr punt nodal e con ψ la box splne che assume l valore nel punto nodale (3 h, 4 + h e zero negl 2 altr, llustrare l procedmento per l calcolo del seguente ntegrale I = ϕ ψ dxdy, essendo T l trangolo d vertc { (3 2 h, 4 + h, (3, 4, (3 + 2 h, h}. Utlzzare l trangolo d rfermento. T

3 Calcolo Scentfco e Matematca Applcata Secondo Parzale, Ingegnera Meccanca. Illustrare, medante l metodo delle dfferenze fnte, la rsoluzone numerca del seguente problema perbolco u tt = u xx + 4x 2 u x ( + 2x 2 u + cos 2 (x, x 3, t 8, u(, t = f, u(3, t = f 2, u(x, = x 2, u t (x, = x + 2. Dscutere le condzon su pass affnché le matrc de sstem sano nvertbl. 2. Illustrare la rsoluzone numerca del seguente problema debolmente non lneare: u xx + (3 + sn xu x + (sn(u u 5 = sn 2 (x, x 4, u( = f, u(4 = f Illustrare, medante l metodo delle dfferenze fnte, la rsoluzone numerca del seguente problema parabolco u t = u xx + 4x 2 u x ( + 2x 2 sn 2 (2tu + 3 sn 2 (x, x 4, t 2, u(, t = f, u(4, t = f 2, u(x, = x 4 +. Dscutere le condzon su pass affnché le matrc de sstem sano nvertbl. Rsolvere tutt gl esercz. Valutazone degl esercz: 4, 2 8, 3 8.

4 Soluzon per l ngegnera ambentale:. Sano = x < x <... < x n < x n+ = 3 nod spazal equdstant [h = 3, x n+ = h] e = t < t <... < t m < t m+ = 8 nod temporal equdstant [k = 8, t m+ j = jk]. Allora u,j+ 2u j + u,j k 2 = [ u+,j+ 2u,j+ + u,j+ + u ] +,j 2u,j + u,j 2 h [ 2 + 4x2 u+,j+ u,j+ + u ] +,j u,j 2 ( + 2x 2 u j + cos 2 (x, dove =,..., n e j =,..., m. S conoscono dat u,j = f, u n+,j = f 2, u = x 2, dove =,,..., n, n + e j =,,..., m, m +. Qund bsogna rsolvere l sstema per u,j+ [ =,..., n] ( h + ( ( u 2 k 2,j+ + 2x2 u 2 +,j+ 2x2 u 2,j+ = 2u j u,j + u +,j 2u,j + u,j k x 2 u +,j u,j ( + 2x 2 u j + cos 2 (x, dove =,..., n e termn con pedc per = e + per = n sono da spostare alla parte a destra. La matrce del sstema è trdagonale. Essa è strettamente dagonalmente domnante e qund nvertble se + 2x x2 2 < h + 2 k. 2 Cò è vero se 2x2 per =,..., n, coè se < h [/2 max x 2 2 ] =, coè se n 53. 8

5 (,j+ (+,j+ (,j+ (,j (,j (,j (+,j C rmane l calcolo d u. S ha: u = u(x, k u(x, + ku t (x, + 2 k2 u tt (x, u + ku t (x, + 2 k2 [ u+, 2u + u, + 4x 2 u +, u, dove u = x 2, u t (x, = x + 2 e =,..., n. ] ( + 2x 2 u + cos 2 (x, 2. Sano = x < x <... < x n < x n+ = 4 nod equdstant [h = 4 n+, x = h]. Sa u = u(x, f = f(x. Allora bsogna trovare le soluzon del sstema d equazon non lnear dove F (u, u, u + F (u, u, u + =, =, 2,..., n, := u + 2u + u + (3 + sn x u + u + (sn(u u 5 sn 2 (x.

6 Sceglendo l punto d nnesco u [] = f + n + (f 2 f = (n + f + f 2, n + s applch l metodo d Newton-Raphson rsultando nell terazone u [k+] = u [k], u[k] F u (u [k], u[k] F (u [k], u [k] +, u [k] +. D conseguenza, per < ph 2 [con p = max(3 + sn x = 4, coè se < h oppure se n 7] s ha: 2 u [k+] = u [k] + u[k] + 2u[k] + u [k] + h 3+sn x (u [k] 2 + u[k] + (sn(u[k] u [k] 5 sn 2 (x, (sn(u [k] u [k] 4 ( cos(u [k] dove =,..., n e k =,, 2,.... S osserv che l denomnatore della frazone è postvo. 3. Sano = x < x <... < x n < x n+ = nod non necessaramente equdstant e sano, x x, x x x φ (x = x, x x x, x + x x + x, x x x +,, x + x, le funzon splne tal che φ (x = e φ (x j = per j. Allora la formulazone varazonale del problema è l seguente: Trovare, per t >, una funzone u(, t H(, tale che per ogn v H(, s ha: d dt = + u(x, tv(x dx ( ( + x 4 u x (x, tv (x + (3 + 2 sn(xu(x, tv(x dx f(x, tv(x dx.

7 Sosttuendo u = n j= c jφ j e v = φ s arrva al sstema lneare n c j(t j= n c j ( j= φ φ j dx = + φ φ j dx = ( ( + x 4 φ φ j + (3 + 2 sn(xφ φ j dx f(x, tφ (x dx, G(xφ (x dx, dove =,..., n. Introducendo le matrc real, smmetrche e trdagonal M e K (quest ultma chamata la stffness matrx come M j = φ φ j dx, K j = s ottene l problema d Cauchy { Mc (t = Kc(t + f(t, Mc( = g, ( ( + x 4 φ φ j +(3 + 2 sn(xφ φ j dx, dove c(t è l vettore colonna de coeffcent e f(t e g sono vettor colonna degl ntegral che rguardano f e g. Charamente, M è la matrce d Gram [rspetto al prodotto nterno n L 2 (, ] delle funzon splne. Sccome le splnes sono lnearmente ndpendent, gl autovalor d M sono tutt postv e qund M è nvertble. La stessa cosa vale per la stffness matrx K, pochè essa è la matrce d Gram [rspetto al prodotto nterno [u, v] = ( ( + x 4 u v + (3 + 2 sn(xuv dx n H (, che genera la topologa d H (, ]. Qund { c (t = M Kc(t + M f(t, c( = M g. 4a. Il problema ellttco con condzon d Drchlet ([ + x 4 y 2 ] u + (2 + cos[x + y]u = x 2 y 2,

8 ammette la seguente formulazone varazonale: Trovare u H(Ω tale che per ogn v H(Ω s ha: ( [ + x 4 y 2 ] u v+(2 + cos[x + y]uv dxdy = x 2 y 2 v(x, y dxdy. Ω Sano φ (x, y [ =,..., N] le funzon splne con supporto l unone d al massmo se trangol. Ponendo u = N j= c jφ j e v = φ s ha: N c j j= = Ω Ω ( [ + x 4 y 2 ] φ φ j + (2 + cos[x + y]φ φ j dxdy x 2 y 2 φ (x, y dxdy, dove =,..., N. Scrvendo quest ultmo sstema d equazon lnear nella forma Kc = f, dove la stffness matrx K è reale, smmetrca e sparsa, bsogna dmostrare l nvertbltà d K. Sccome +x 4 y 2 e 2+cos[x+y] sono funzon postve, la stffness matrx è la matrce d Gram [rspetto a un prodotto nterno d H (Ω che genera la topologa d H (Ω] delle funzon splne e quest ultme sono lnearmente ndpendent. D conseguenza, K ha soltanto autovalor postv e qund è nvertble. 4b. La trasformazone lneare che porta punt (s, t {(,, (,, (, } ne rspettatv punt { (3, 4, (3 2 h, 4 + h, (3 + 2 h, h} ha la forma { x = 3 2 hs + 2 ht, y = 4 + hs + 4 ht. Essa ha la matrce Jacobana ( ( xs x J = t = h h 2 2 y s y t h h, 4 essendo u 2 H (, [u, u] u 2 H (, Ω

9 per cu det J = 5 8 h2. Abbamo ora γ(s, t = s t e δ(s, t = s per le funzon lnear n (s, t T R [l trangolo d rfermento con vertc (,, (, e (, ] che s annullano n due delle tre vertc e prendono l valore nella terza. S calcol ( h h ( ( 4 6/5h Qund I = J T γ = 8 5 J T δ = 8 5 T h h = 2 2 ( h h ( 4 h h = 2 2 8/5h ( 2/5h 4/5h. ϕ ψ dxdy = (J T γ (J T δ det J dsdt T R = h2 = 4, essendo 2 = T R dsdt l area del trangolo d rfermento., T R T

10 Soluzon per l ngegnera meccanca:. Sano = x < x <... < x n < x n+ = 3 nod spazal equdstant [h = 3, x n+ = h] e = t < t <... < t m < t m+ = 8 nod temporal equdstant [k = 8, t m+ j = jk]. Allora u,j+ 2u j + u,j k 2 = [ u+,j+ 2u,j+ + u,j+ + u ] +,j 2u,j + u,j 2 h [ 2 + 4x2 u+,j+ u,j+ + u ] +,j u,j 2 ( + 2x 2 u j + cos 2 (x, dove =,..., n e j =,..., m. S conoscono dat u,j = f, u n+,j = f 2, u = x 2, dove =,,..., n, n + e j =,,..., m, m +. Qund bsogna rsolvere l sstema per u,j+ [ =,..., n] ( h + ( ( u 2 k 2,j+ + 2x2 u 2 +,j+ 2x2 u 2,j+ = 2u j u,j + u +,j 2u,j + u,j k x 2 u +,j u,j ( + 2x 2 u j + cos 2 (x, dove =,..., n e termn con pedc per = e + per = n sono da spostare alla parte a destra. La matrce del sstema è trdagonale. Essa è strettamente dagonalmente domnante e qund nvertble se + 2x x2 2 < h + 2 k. 2 Cò è vero se 2x2 per =,..., n, coè se < h [/2 max x 2 2 ] =, coè se n 53. 8

11 (,j+ (+,j+ (,j+ (,j (,j (,j (+,j C rmane l calcolo d u. S ha: u = u(x, k u(x, + ku t (x, + 2 k2 u tt (x, u + ku t (x, + 2 k2 [ u+, 2u + u, + 4x 2 u +, u, dove u = x 2, u t (x, = x + 2 e =,..., n. ] ( + 2x 2 u + cos 2 (x, 2. Sano = x < x <... < x n < x n+ = 4 nod equdstant [h = 4 n+, x = h]. Sa u = u(x, f = f(x. Allora bsogna trovare le soluzon del sstema d equazon non lnear dove F (u, u, u + F (u, u, u + =, =, 2,..., n, := u + 2u + u + (3 + sn x u + u + (sn(u u 5 sn 2 (x.

12 Sceglendo l punto d nnesco u [] = f + n + (f 2 f = (n + f + f 2, n + s applch l metodo d Newton-Raphson rsultando nell terazone u [k+] = u [k], u[k] F u (u [k], u[k] F (u [k], u [k] +, u [k] +. D conseguenza, per < ph 2 [con p = max(3 + sn x = 4, coè se < h oppure se n 7] s ha: 2 u [k+] = u [k] + u[k] + 2u[k] + u [k] + h 3+sn x (u [k] 2 + u[k] + (sn(u[k] u [k] 5 sn 2 (x, (sn(u [k] u [k] 4 ( cos(u [k] dove =,..., n e k =,, 2,.... S osserv che l denomnatore della frazone è postvo. 3. Sano = x < x <... < x n < x n+ = 4 nod spazal equdstant [h = 3, x n+ = + h] e = t < t <... < t m < t m+ = 2 nod temporal equdstant [k = 2, t m+ j = jk]. Allora t j t,j k = u +,j 2u j + u,j + 4x 2 u +,j u,j ( + 2x 2 sn 2 (2t j u j + 3 sn 2 (x, u j = f, u n+,j = f 2, u = x 4 +, dove =,..., n e j =,..., m +. Qund ( 2 h x2 sn 2 (2t j + k ( + 4x2 u 2 +,j = t,j k + 3 sn 2 (x, u j ( 4x2 2 u,j dove =,..., n, j =,..., m + e termn con prmo pedce per = e + per = n sono da spostare nella parte a destra. Per

13 ogn pedce j =,..., m + la matrce del sstema è trdagonale. Essa è strettamente dagonalmente domnante e qund nvertble se + 4x x2 2 < 2 h x2 sn 2 (2t j + k. Cò è vero se 4x2 per =,..., n, coè se < h [/ max 4x 2 ] =, coè se n

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione di Schrödinger 1D

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione di Schrödinger 1D Elettronca dello Stato Soldo Eserctazone d Laboratoro 1: Soluzone nuerca dell equazone d Schrödnger 1D Danele Ieln DEI Poltecnco d Mlano eln@elet.pol.t Contenut del Laboratoro Costruzone d un etodo nuerco

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica

Calcolo Scientifico e Matematica Applicata Scritto Generale, , Ingegneria Meccanica Calcolo Scientifico e Matematica Applicata Scritto Generale, 17.12.2018, Ingegneria Meccanica Valutazione degli esercizi: 1 4, 2 10, 3 8, 4 8 1. Risolvere, con il metodo degli integrali generali, il seguente

Dettagli

Verifica reti con più serbatoi (II)

Verifica reti con più serbatoi (II) Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Metodi iterativi per sistemi di equazioni lineari algebriche

Metodi iterativi per sistemi di equazioni lineari algebriche Captolo 17 Metod teratv per sstem d equazon lnear algebrche 171 Generaltà su metod teratv S fornsce la defnzone d convergnza per vettor e matrc Convergenza d vettor Una successone d vettor d n component

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione

Elettronica dello Stato Solido Esercitazione di Laboratorio 1: Soluzione numerica dell equazione Elettronca dello Stato Soldo Eserctazone d Laboratoro 1: Soluzone nuerca dell equazone d Scrödnger 1D Danele Ieln DEI Poltecnco d Mlano eln@elet.pol.t Contenut del Laboratoro Costruzone d un etodo nuercoper

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente.

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente. 5. Per la propretà d lneartà la tensone può essere espressa come = k g, doe g è la corrente del generatore. Utlzzando dat n Fgura a abbamo - = k 6, qund k = - ½. In Fgura b la corrente del generatore è

Dettagli

Risoluzione numerica di problemi differenziali alle derivate parziali

Risoluzione numerica di problemi differenziali alle derivate parziali Rsolzone nmerca d problem dfferenzal alle dervate parzal Rsolzone nmerca d PDE Dscretzzazone Sosttre al problema contno n problema dscreto Qal è l problema contno? Rsolzone nmerca d PDE Il problema contno:

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

Support Vector Machines. Macchine a vettori di supporto

Support Vector Machines. Macchine a vettori di supporto Support Vector Machnes Macchne a vettor d supporto Separator Lnear Percettrone La classfcazone bnara può essere vsta come un problema d separazone d class nello spazo delle feature m b b b > 0 b 0 b

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma

Fondamenti di Fisica Matematica: Secondo parziale Cognome e nome:...matricola:... es.1 es.2 es.3 es.4 es.5 somma Fondamenti di Fisica Matematica: Secondo parziale 6..03 Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 somma 7 7 0 6 6 30 Voto: es.+es.+es.3+max(es.4,es.5).

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08 VII eserctazone Una fattorzzazone che rvela propretà della matrce: La Sngular value decomposton (SVD) fattorzza una matrce rettangolare reale o complessa è utlzzata nelle applcazon: nella trasmssone d

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018. ognome Nome Matrcola Frma 1 Part svolte: E1 E E3 D Eserczo 1 A G7 6 B V G6 T V 1 D V 5 g11 0 G g1 g Supponendo not parametr de component e della matrce d conduttanza del trpolo T, llustrare l procedmento

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

Analisi Numerica I, a.a Docente: M.Gaviano

Analisi Numerica I, a.a Docente: M.Gaviano Eserctazone n.1 Anals Numerca I, a.a. 2004-2005 Medante MatLab 1) Costrusc le seguent matrc 0.9501 0.8913 0.2311 0.7621 0.6068 0.4565 0.4860 0.0185 0.8214 0.4447 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Programma. Esercz tpo svolt 3. Eserctazon

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3

Esercizio 1. Esercitazione 14 Dicembre 2012 Sistemi trifase e potenze R 3 R 1 R 2. simmetrico L 1 L 3 serctazone 4 Dcembre 0 Sstem trfase e potenze serczo L L L 00 f 50 Hz smmetrco Fg : Sstema trfase a stella S consder l crcuto d Fg e s calcolno le tre corrent d fase e le potenze attve, reattve ed apparent

Dettagli

La sincronizzazione. (Libro) Trasmissione dell Informazione

La sincronizzazione. (Libro) Trasmissione dell Informazione La sncronzzazone (Lbro) Problem d sncronzzazone La trasmssone e la dverstà tra gl OL del trasmetttore e del rcevtore ntroducono (anche n assenza d fadng) un errore d d frequenza, d fase e d camponamento

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Approssimazione minimax

Approssimazione minimax Approssmazone mnmax 1 Il problema dell approssmazone lneare Data una f(x) appartenente allo spazo vettorale F delle funzon real d varable reale, s scegle n F un modello, coè un nseme d funzon φ (x), =

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Tangenti a una conica: il metodo del Doppio sdoppiamento 1

Tangenti a una conica: il metodo del Doppio sdoppiamento 1 Tangent a una conca: l metodo del Doppo sdoppamento 1 Franco Goacchno Sunto Ecco un metodo alternatvo per determnare le tangent a una conca da un qualsas punto del pano. Esso consste nell applcare volte

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico Tracce assegnate durante l anno scolastco. Dsegna nel pano cartesano la retta d equazone, dopo averla scrtta n orma esplcta. Stablsc, sa gracamente ce analtcamente, se l B ; 3 appartene alla retta. punto.

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Fisica Generale LA N.1 Prova Scritta del 12 Febbraio 2018 Prof. Nicola Semprini Cesari

Fisica Generale LA N.1 Prova Scritta del 12 Febbraio 2018 Prof. Nicola Semprini Cesari Fsca Generale A N. Prova Scrtta del Febbrao 8 Prof. Ncola Semprn Cesar Meccanca: quest ) Al tempo t= una carrozza ferrovara comnca a muovers d moto rettlneo unformemente accelerato (a). Al tempo t=t, da

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Esercizi sui circuiti magnetici

Esercizi sui circuiti magnetici Esercz su crcut magnetc Eserczo a. Nel crcuto magnetco llustrato calcolare, trascurando la rluttanza del ferro, coeffcent d auto nduzone degl avvolgment e e l coeffcente d mutua nduzone tra due avvolgment

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli