Predimensionamento reti chiuse

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Predimensionamento reti chiuse"

Transcript

1 Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza fra numero d ncognte ( d) e d equazon ((N 1) d) è par al numero d magle. CAR. hj NODI EQ. DE MOTO DIAMETRI D M = () EQ. CONT. NODI PORTATE Q o Q1, d EQ. CONT. DIST. d PORTATE Q2, EQUAZIONI INCOGNITE In una rete chusa, nfatt, vale sempre la relazone: M = (N 1) M = numero d magle ndpendent (es. magle elementar) = numero totale d condotte (trasporto dstrbuzone) N = numero totale d nod (ntern estern) Metodo Cont per l predmensonamento S fssano arbtraramente M punt neutr S aprono le magle n corrspondenza d ess S utlzzano metod d predmensonamento delle ret aperte Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 1 / 13 ) Verfca ret chuse: blanco equazon/ncognte Il problema d verfca Tutt dametr commercal D sono stat assegnat S assegna l carco pezometrco h al nodo serbatoo (es. quota mnma) Incognte Equazon N 1 = carch h j a nod (al serbatoo l carco è mposto) = portate Q condotte trasporto o Q 1, sulla prma estremtà dstrbutrce d = portate Q 2, sulla seconda estremtà condotta dstrbutrce = equazon del moto su ogn condotta N 1 = equazon ndpendent d contnutà a nod d = equazon d contnutà sulle dstrbutrc Numero ncognte = numero equazon = l sstema è determnato. a presenza d equazon non lnear (eq. moto) rende dffcoltosa la soluzone Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 2 / 13 )

2 Verfca ret chuse: Metodo d Cross (blancam. carch) Step 1 Step 3 Step 2 EQ. DE MOTO CAR. hj NODI M = () INCOGNITE Q EQ. CONT. NODI PORTATE Q o Q1, d EQ. CONT. DIST. d PORTATE Q2, EQUAZIONI INCOGNITE NUOVE EQUAZ. NUOVE INCOGNITE 1. Elmnazone degl N 1 carch ncognt a nod; sosttuzone delle eq. del moto con M combnazon lnear ndp. nelle sole portate ncognte. 2. Introduzone d M nuove ncognte portate correttve nelle magle. S determnano arbtraramente d portate d prmo tentatvo che soddsfno tutte le equazon d contnutà, che vengono elmnate. 3. S rsolve l sstema rdotto delle sole M equazon defnte al punto 1 nelle M ncognte portate correttve nelle magle ntrodotte al punto Determnate le portate corrette su tutte le magle, s determnano carch pezometrc n tutt nod medante le eq. del moto e s esegue la verfca. Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 3 / 13 ) Verfca ret chuse: Metodo d Cross (blancam. carch) 1. Elmnazone degl N 1 carch ncognt a nod; sosttuzone delle eq. moto con M combnazon lnear ndpendent S ndvduano M magle ndpendent (es. magle elementar) S scegle arbtraramente un verso d percorrenza d cascuna magla m Un osservatore che percorre una magla m vede la lnea de carch pezometrc partre e arrvare alla stessa quota; sommando le varazon d carco: C t (m) k l δ m D n Q α C d (m) k l D n P (α 1) (Qα 1 1, Q α 1 2, ) = 0 m = 1,, M (1) C t (m) = nseme d condotte con funzone d solo trasporto percorse dalla magla m C d (m) { = nseme d condotte con funzone d dstrbuzone unforme percorse dalla magla m 1 se la portata Q è concorde al verso d percorrenza della magla m δ m = 1 se la portata Q è dscorde rspetto al verso d percorrenza della magla m = Il sstema è ancora determnato: M (N 1) d equazon = d portate ncognte Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 4 / 13 )

3 Verfca ret chuse: Metodo d Cross (blancam. carch) 2. Introduzone d M ncognte portate correttve nelle magle ; Elmnazone delle equazon d contnutà (I) S ndvduano d portate d tentatvo Q,Q 1, e Q 2, che soddsfno le (N 1) d eq. d contnutà a nod e sulle condotte con dstrbuzone. In generale queste portate d tentatvo non soddsfano l sstema (1). Questa soluzone d tentatvo è una scelta arbtrara fra M possbl soluzon: M grad d lbertà (dff. ncognte - equazon = d (N 1) d = M). e M soluzon del sstema d equazon d contnutà s ottengono aggungendo M portate correttve nelle magle Q k (postve nel verso d percorrenza della magla k): Q = Q M k=1 δ k Q k Q 1, = Q 1, M k=1 ɛ 1,k Q k Q 2, = Q 2, M k=1 ɛ 2,k Q k = e portate Q,Q 1, e Q 2, soddsfano anch esse tutte le equazon d contnutà che possono percò essere elmnate dal sstema. Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 5 / 13 ) Verfca ret chuse: Metodo d Cross (blancam. carch) 2. Introduzone d M ncognte portate correttve nelle magle ; Elmnazone delle equazon d contnutà (II) δ k = 1 se la portata Q è concorde al verso d percorrenza della magla k 1 se la portata Q è dscorde rspetto al verso d perc. magla k 0 se la condotta non è percorsa dalla magla k ɛ 1,k = ɛ 2,k = 1 se la portata Q 1, è concorde al verso d percorrenza della magla k 1 se la portata Q 1, è dscorde rspetto al verso d perc. magla k 0 se la condotta non è percorsa dalla magla k 1 se la portata Q 2, è concorde al verso d percorrenza della magla k 1 se la portata Q 2, è dscorde rspetto al verso d perc. magla k 0 se la condotta non è percorsa dalla magla k Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 6 / 13 )

4 Verfca ret chuse: Metodo d Cross (blancam. carch) 2. Introduzone d M ncognte portate correttve nelle magle ; Elmnazone delle equazon d contnutà (III) Il sstema d M equazon (1) s rscrve nelle sole M ncognte Q portate correttve nelle magle : C t (m) δ m k l C d (m) D n (Q M k=1 δ k Q k ) α [ (Q 1, M k l D n P (α 1) k=1 ɛ 1,k Q k ) α 1 m = 1,, M ] = 0 (Q 2, M k=1 ɛ 2,k Q k ) α 1 (2) Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 7 / 13 ) Verfca ret chuse: Metodo d Cross (blancam. carch) 3. Rsoluzone del sstema rdotto delle sole M equazon (2) nelle M ncognte portate correttve nelle magle (I) Cross propone un metodo teratvo per la soluzone del sstema (2) che consste nel consderare n cascuna equazone m-esma la sola portata correttva Q m relatva alla magla m (elmnamo le k ). Sstema approssmato: C t (m) δ mk (Q δ m Q m ) α C d (m) W [ (Q 1, ɛ 1,m Q m ) α 1 (Q 2, ɛ 2,m Q m ) ] α 1 = 0 (3) dove s è posto K = k l D n e W = k l D n P (α 1) m = 1,, M = a generca equazone m-esma contene la sola ncognta Q m. Il sstema s rscrve n forma compatta: f m ( Q m ) = 0 m = 1,, M Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 8 / 13 )

5 Verfca ret chuse: Metodo d Cross (blancam. carch) 3. Rsoluzone del sstema rdotto delle sole M equazon (3) nelle M ncognte portate correttve nelle magle (II) S lnearzzano le m equazon f m ( Q m ) = 0, svluppando n sere d Taylor n un ntorno d Q m = 0 e troncando al prmo ordne: f m ( Q m ) = f m (0) Q m O[( Q m ) 2 ] = 0 ( Qm =0) da cu s ottengono le portate correttve Q m d cascuna magla m: Q m = f m( Q m = 0) ( Qm =0) m = 1,, M Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 9 / 13 ) Verfca ret chuse: Metodo d Cross (blancam. carch) 3. Rsoluzone del sstema rdotto delle sole M equazon (3) nelle M ncognte portate correttve nelle magle (III) Posto Q m = 0 nella m-esma equazone del sstema (3) ottenamo: f m ( Q m = 0) = C t (m) δ m K (Q ) α C d (m) W [ (Q 1,) α 1 (Q 2,) α 1 ] Dervando la m-esma equazone del sstema (3) rspetto a Q m s ottene: = C t (m) δ2 mk α (Q δ m Q m ) α 1 C d (m) W (α 1) [ ɛ 1,m (Q 1, ɛ 1,m Q m ) α ɛ 2,m (Q 2, ɛ 2,m Q m ) α ] ( Qm =0) = K α (Q ) α 1 W (α 1) [ ɛ 1,m (Q 1,) α ɛ 2,m (Q 2,) α ] C t (m) C d (m) Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 10 / 13 )

6 Verfca ret chuse: Metodo d Cross (blancam. carch) 3. Rsoluzone del sstema rdotto delle sole M equazon (3) nelle M ncognte portate correttve nelle magle (IV) Consderazon su segn: [ ɛ 1,m (Q 1,) α ɛ 2,m (Q 2,) ] [ ] α = ɛ 1,m (Q 1,) α ɛ 2,m ɛ 1,m (Q 2,) α A B C Q 1, Q 2, Q 1, > Q 2, ɛ 1,m = 1 ɛ 2,m = 1 [ (Q 1,) α (Q 2,) α ] > 0 Q 1, Q 2, Q 1, Q 2, Q 1, < Q 2, ɛ 1,m = 1 ɛ 2,m = 1 [ (Q 1,) α (Q 2,) α ] > 0 }{{} <0 ɛ 1,m = 1 ɛ 2,m = 1 [ (Q 1,) α (Q 2,) ] α VERSO PERCORRENZA MAGIA m n generale s può scrvere: [ ɛ 1,m (Q 1,) α ɛ 2,m (Q 2,) ] α = (Q 1,) α ± (Q 2,) α dove l segno vale solo nel caso C d condotta con sezone neutra. Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 11 / 13 ) Verfca ret chuse: Metodo d Cross (blancam. carch) 3. Rsoluzone del sstema rdotto delle sole M equazon (3) nelle M ncognte portate correttve nelle magle (V) a m-esma equazone del sstema (3) lnearzzato s rscrve: Q m = C t (m) C t (m) δ m K (Q ) α K α (Q ) α 1 C d (m) C d (m) W [ (Q 1, ) α 1 (Q 2,) α 1 ] W (α 1) (Q 1, ) α ± (Q 2,) α (4) Nella prma al denomnatore non c è l segno d δ Nella seconda al denomnatore vale l segno solo se la condotta contene l punto neutro, dversamente vale l segno In genere occorre pù d una terazone per ottenere delle portate che blancno carch con approssmazone accettable (condzone d uscta). S rcorda che K = k l D n e W = k l D n P (α 1) Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 12 / 13 )

7 Verfca ret chuse: Metodo d Cross (blancam. carch) 4. Determnazone de carch pezometrc negl (N 1) nod Tutte le portate Q,Q 1, e Q 2, sono determnate. S assegna l carco pezometrco h al nodo serbatoo (es. quota mn) S determnano carch h j su restant N 1 nod utlzzando le equazon del moto, partendo del nodo serbatoo verso nod d estremtà: h 1, h 2, = Q α δ l k D n k l 1 D n P solo trasporto (α 1) (Qα 1 1, Q α 1 2, ) dstrbuzone = 1,, e eq. del moto sono n sovranumero rspetto alle ncognte h j ( > N 1): se calcol sono corrett ottenamo gl stess h j ndpend. dal percorso. e soluzon de carch pezometrc h j su nod vengono utlzzate per le verfche n funzonamento ordnaro e straordnaro. In caso d verfche negatve s cambano opportunamente dametr e s rpete tutto l procedmento d verfca con nuov dametr. Acquedott e Fognature - A.A R. Dedda B.3 - Ret chuse ( 13 / 13 )

Le reti di distribuzione

Le reti di distribuzione Le ret d dstrbuzone Dstrbuscono l acqua a tutte le utenze e per lo spegnmento degl ncend. Classfcazone delle condotte avvcnamento: doppa condotta (q h /2) almentatrc prncpal o condotte maestre: ossatura

Dettagli

Corso di Infrastrutture Idrauliche II

Corso di Infrastrutture Idrauliche II Corso d Infrastrutture Idraulche II a.a. 2006-2007 Laurea n Ingegnera Cvle Facoltà d Ingegnera Prof.ssa Elena Volp Rcevmento: Materale ddattco: evolp@unroma3.t martedì 15:30-16:30, Dpartmento d Scenze

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

IMPIANTI DI DISTRIBUZIONE

IMPIANTI DI DISTRIBUZIONE IMPIANTI DI DISTRIBUZIONE Schem caratterstc (serbato e rete d dstrbuzone) Con serbatoo d testata Con torrno pezometrco e serbatoo d estremtà Rete d tpo aperto Rete d tpo chuso Rete d tpo msto (ad albero)

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegnera Industrale INTRODUZIONE a CIRCUITI LEGGI d KIRCHHOFF Stefano Pastore Dpartmento d Ingegnera e Archtettura Corso d Elettrotecnca (043IN) a.a. 2013-14 Bblografa V. Danele, A. Lberatore,

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

Maurizio Giugni Titolo della lezione Reti di distribuzione idrica

Maurizio Giugni Titolo della lezione Reti di distribuzione idrica Maurzo Gugn Ttolo della lezone # Lezone n. Parole chave: Sstem acquedottstc. Ret d dstrbuzone. Corso d Laurea: Ingegnera per l Ambente e l Terrtoro Insegnamento: Infrastrutture Idraulche Emal Docente:

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario Crcut elettrc n regme stazonaro Component www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-00) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

STATO LIMITE ULTIMO DI INSTABILITA

STATO LIMITE ULTIMO DI INSTABILITA Corso d Teora e rogetto d ont A/A 013-014 - Dott. Ing. Fabrzo aolacc STATO IMITE UTIMO DI INSTABIITA oszone del problema Il problema della stabltà dell equlbro aste perfe6e: Il carco cr9co eulerano nfluenza

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA.

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA. MTODI P NISI DI IUITI Nel seguto vengono llustrat, medante esemp, alcun tra metod pù utlzzat per l'anals de crcut elettrc. Il problema che s vuole rsolvere è l seguente: assegnato l crcuto elettrco e le

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Appendice B Il modello a macroelementi

Appendice B Il modello a macroelementi Appendce B Il modello a macroelement Al fne d una descrzone semplfcata del comportamento delle paret nel propro pano, è stata svluppata una metodologa d anals semplfcata che suddvde la parete murara con

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

lim Flusso Elettrico lim E ΔA

lim Flusso Elettrico lim E ΔA Flusso lettrco Nel caso pù generale l campo elettrco può varare sa n ntenstà che drezone e verso. La defnzone d flusso data n precedenza vale solo se l elemento d superfce A è suffcentemente pccolo da

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Ing. Eugenio Ferrara Università degli Studi di Catania

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Ing. Eugenio Ferrara Università degli Studi di Catania Lezone PONTI E GRANDI STRUTTURE Prof. Per Paolo Ross Ing. Eugeno Ferrara Unverstà degl Stud d Catana de carch Engesser Guyon Courbon Introduzone L utlzzo d un metodo d rsoluzone rspetto ad un altro dpende

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

DOMANDE TEORICHE 1 PARTE

DOMANDE TEORICHE 1 PARTE DOMANDE TEORICHE 1 PARTE 1) Trasformazone delle sorgent n regme costante: * Introdurre l legame costtutvo e la caratterstca grafca (dettaglandone le propretà ne punt d lavoro estrem: generatore a vuoto

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Relazioni costitutive e proprietà dei componenti. Reti algebriche

Relazioni costitutive e proprietà dei componenti. Reti algebriche 43 Relazon costtute e propretà de component Ret algebrce Un componente elettrco (a 2 o pù morsett) s dce pro d memora (o senza memora, o adnamco) se la sua relazone costtuta esprme un legame tra tenson

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Dispensa LE RETI TOPOGRAFICHE. Elementi per il calcolo e la compensazione

Dispensa LE RETI TOPOGRAFICHE. Elementi per il calcolo e la compensazione Unverstà degl Stud d Palermo Facoltà d Ingegnera Dspensa LE RETI TOPOGRFICHE Element per l calcolo e la compensazone Vncenzo Franco Mauro Lo rutto Maggo . RILEVMENTO TOPOGRFICO..... SCHEMI MISURE STRETTMENTE

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

I materiali ferromagnetici sono fortemente non lineari a causa dell'insorgere di fenomeni di saturazione e degli effetti isteretici.

I materiali ferromagnetici sono fortemente non lineari a causa dell'insorgere di fenomeni di saturazione e degli effetti isteretici. POBLEM MGNETOSTTICO IN PESENZ DI MTEILI NON LINEI Normalmente dspostv magnetc sono costtut da notevol quanttà d materale ferromagnetco, al fne d sfruttare l'elevata permeabltà relatva ed ottenere un elevato

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Diodi. (versione del ) Diodo ideale

Diodi.  (versione del ) Diodo ideale Dod www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6-3-26) Dodo deale Il dodo deale è un componente la cu caratterstca è defnta a tratt nel modo seguente per (polarzzazone nersa) per (polarzzazone

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DINAMICO DI ASSI E ALBERI VIBRAZIONI FLESSIONALI Costruzone d Macchne 3 Generaltà Il problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc,

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Introduzione ai Minimi Quadrati

Introduzione ai Minimi Quadrati Introduzone a Mnm Quadrat Msure rpetute della medesma grandezza, esegute al lmte della precsone possble con l metodo e gl strument utlzzat, fornscono sempre rsultat dvers per la presenza degl error casual;

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

TORRI DI RAFFREDDAMENTO PER L ACQUA

TORRI DI RAFFREDDAMENTO PER L ACQUA TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli