Potenzialità degli impianti

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Potenzialità degli impianti"

Transcript

1 Unverstà degl Stud d Treste a.a Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1

2 Unverstà degl Stud d Treste a.a Impant ndustral Defnzone della potenzaltà dell mpanto Al fne d defnre la potenzaltà da assegnare ad un nuovo mpanto s rcorre n genere ad apposte rcerche d mercato tese a quantfcare la domanda d quel bene nel mercato d rfermento. Rspetto al mercato bsognerà pors qund degl obettv d copertura della domanda, n termn percentual, che dovranno essere ovvamente supportat da una poltca pubblctara e d dstrbuzone adeguata agl obettv che c s pone. Potenzaltà degl mpant 2

3 Unverstà degl Stud d Treste a.a Impant ndustral Determnazone della potenzaltà delle untà d produzone Indvduata la potenzaltà dell mpanto resta da defnre la potenzaltà effettva e nomnale degl mpant o untà d produzone (ad es. lnee). A tal fne bsogna: determnare l numero d untà; determnare l effettvo tempo d funzonamento delle stesse; stablre la resa (utlzzo); stablre lo scarto. Potenzaltà degl mpant 3

4 Unverstà degl Stud d Treste a.a Impant ndustral Msure della potenzaltà e della produttvtà Sa x un prodotto generco e sa un ntervallo d tempo. Attraverso msure perodche s possono rcavare le untà d prodotto x ottenbl nell untà d tempo (ora) n condzon operatve normal (d funzonamento delle macchne, dsponbltà e qualtà de materal ecc.). Tale grandezza è detta rtmo produttvo standard: RS x untà ora Potenzaltà degl mpant 4

5 Unverstà degl Stud d Treste a.a Impant ndustral S ntroduce noltre l tempo standard untaro del prodotto x: (1) TSU x 1 RS x ore untà S consder un nseme d prodott (famgla) lavorat secondo un mx assegnato; la potenzaltà d mx è (2) Pmx ( TPb ( QB + QS) + TPs ) + TS untà ora Potenzaltà degl mpant 5

6 Unverstà degl Stud d Treste a.a Impant ndustral Nella (2) s ha: QB quanttà d prodotto buona (conforme); QS quanttà d prodotto d scarto; TPb tempo mpegato per produrre QB; TPs tempo mpegato per produrre QS; TS tempo totale d rattrezzaggo. QB + QS) ( è l numero totale d untà prodotte ne dvers ntervall d tempo n cu l mpanto è stato n funzone. ( TPb + TPs ) + TS è l tempo dedcato alla produzone dello stesso nseme d prodott (buon o d scarto) pù l tempo tot. d set up nel passaggo da un prodotto ad un altro della stessa famgla. Potenzaltà degl mpant 6

7 Unverstà degl Stud d Treste a.a Impant ndustral Qund: Pmx quanttà tot. da produrre ore rcheste per produrre l mx assegnato S ha che: (3 ) ( + QS) [ RS( TPb + QB TPs )] A fronte d un mx assegnato, s possono rcavare le quanttà prodotte (stma) come somma d tutte le quanttà producbl n cascun ntervallo d funzonamento. Potenzaltà degl mpant 7

8 Unverstà degl Stud d Treste a.a Impant ndustral S not che l rtmo standard dpende dal prodotto (o famgla). Smlmente: (3 ) ( TPb + TPs ) qund l tempo totale d produzone è par (n condzon standard) alla quanttà totale da produrre dvso l rtmo standard. In base alla (3 ) s ha che dat RS e temp d produzone (depurat de temp d setup) s possono rcavare pezz total producbl n condzon standard. ( QB + QS RS ) Potenzaltà degl mpant 8

9 Unverstà degl Stud d Treste a.a Impant ndustral Esempo S consder una lnea d produzone con: tempo d apertura mpanto T400 ore Durante tale perodo è stato prodotto un mx d due prodott 1 e 2; temp sono stat: TPb ore TPs 1 0 ore RS (untà/ora); TPb ore TPs 2 5 ore RS (untà/ora). La lnea ha un rtmo produttvo massmo (Rmax) ossa una potenzaltà d targa (PT): PT800 (untà/ora) Potenzaltà degl mpant 9

10 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) S not che attraverso la (3 ) s stmano le quanttà ottenbl ne perod msurat (TPb e TPs ) se s lavora secondo rtm standard: untà producbl nel perodo T (NP) NP RS1( TPb1 + TPs1) + RS2( TPb2 + TPs2) (untà) Potenzaltà degl mpant 10

11 Unverstà degl Stud d Treste a.a Impant ndustral Assegnato un mx d produzone s può stmare la potenzaltà standard d mx con due espresson: dat: (3) Pmx le quanttà da produrre, l ncdenza meda degl scart, rtm standard, ( QB + QS RS + TS l tempo totale d rattrezzaggo standard. ( QB + QS) ) untà d mx ora Potenzaltà degl mpant 11

12 Unverstà degl Stud d Treste a.a Impant ndustral (4) Pmx RS ( TPb ( TPb + TPs + TPs ) ) + TS untà d mx ora dat: temp standard mpegat per produrre una certa quanttà, al lordo dell ncdenza (stmata) degl scart, l rtmo standard, l tempo totale d rattrezzaggo standard. S può volere esprmere la potenzaltà d mx non n untà d mx ma n untà equvalent d un prodotto k del mx. Potenzaltà degl mpant 12

13 Unverstà degl Stud d Treste a.a Impant ndustral S può ad esempo mpegare la (3): Pmx ( QB + QS) ( QB + QS) RS k k k + + ( QB + QS) ( QB + QS) RS j j j RS RS k j + TS untà equv.k ora Il valore d (QB+QS) j espresso n untà mx è convertto n untà k attraverso RS k /RS j. La quanttà d prodotto k che s può ottenere nel tempo d produzone (a rtm standard) derva dalla costanza del tempo per produrre j. Potenzaltà degl mpant 13

14 Unverstà degl Stud d Treste a.a Impant ndustral ( TPb j + TPs j ) ( QB + QS) RS j j ( QB + QS) RS k k ( QB + QS) k rappresenta la quanttà totale d prodotto k producble (n condzon standard) nel tempo ( TPb j + TPs j ) Potenzaltà degl mpant 14

15 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) Prodotto 1 ( QB + QS) ( TPb1 + TPs1) RS (ore) Prodotto 2 ( TPb ( QB 2 + TPs + QS) 1 2 ) ( ) ( QB + QS) RS 2 2 ( QB + QS) RS (untà equv. k) 1 1 Potenzaltà degl mpant 15

16 Unverstà degl Stud d Treste a.a Impant ndustral Produzone attesa n un tempo assegnato Due concett: tempo d apertura dell mpanto (T); stat possbl d un mpanto. T Ts tempo non lavoratvo H a (ore) Se l sstema d rlevazone lo consente s devono consderare dvers temp che corrspondono a stat dell mpanto. Potenzaltà degl mpant 16

17 Unverstà degl Stud d Treste a.a Impant ndustral Temp assorbt da fermate per cause esterne al reparto: TMo, mancanza ordn; TMm, mancanza materal; TSc, cause sndacal; Temp assorbt da fermate per cause nterne al reparto: TO, cause organzzatve d reparto (attese, mcroassentesmo ecc.); Queste due component determnano una stuazone n cu l mpanto è dsponble (potenzalmente) ma nattvo. Potenzaltà degl mpant 17

18 Unverstà degl Stud d Treste a.a Impant ndustral Temp assorbt da fermate per cause connesse all mpanto: TG, guast alla lnea o alla macchna; TM, fermate programmate per manutenzon; Queste determnano una stuazone n cu l mpanto è nattvo e non funzonante. Tempo mproduttvo : TPr, attvtà d prove e camponature; TS, attvtà d rattrezzaggo. Potenzaltà degl mpant 18

19 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) Sano: TMo8 ore TMm4 ore TSc0 ore TO7 ore TG16 ore TM10 ore TPr6 ore TS14 ore NB (untà conform prodotte) NT (untà total prodotte) Potenzaltà degl mpant 19

20 Unverstà degl Stud d Treste a.a Impant ndustral La potenzaltà teorca Pt d una macchna (o lnea) è qund: untà Pt PT A ora PT, potenzaltà d targa (o nomnale) A, coeffcente d dsponbltà A T TMo TMm T TMo TSc TO TG TMm TSc TO TM Potenzaltà degl mpant 20

21 Unverstà degl Stud d Treste a.a Impant ndustral Data qund la Pmx e l coeffcente d dsponbltà A, s può stmare per un perodo T (settmana, mese, anno) la potenzaltà attesa d perodo, coè la capactà produttva dsponble standard: CPD Pmx A T ' (untà) dove T' T TPr TSc TO Nel caso d stma s potzza che l ncdenza d prove, scoper e cause organzzatve sa quella desumble dal passato. Restano nvece ndetermnat (e non auspcabl) gl element TMo e TMm. Potenzaltà degl mpant 21

22 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) S rcava: T TMo TMm TSc TO TG TM A T TMo TMm TSc TO Pt PT A 800 0, ,4 (untà/ora) ,933 S not che l valore che s ottene moltplcando la Pmx per A (P mx) fornsce la potenzaltà d mx ottenble su perod medo-lungh tenuto conto dell ncdenza degl stat d guasto e fermata programmata, nell potes d conoscenza d TG e TM. Potenzaltà degl mpant 22

23 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) CPD Pmx A T ' P' mx T ' 693 0,933 ( ) (untà) Potenzaltà degl mpant 23

24 Unverstà degl Stud d Treste a.a Impant ndustral S not la dfferenza tra potenzaltà produttva e capactà produttva: la prma è una msura d flusso (untà/ora); la seconda è una msura d volume (untà) par all applcazone della msura d potenzaltà per un ntervallo temporale defnto (settmana, mese, anno). Per le anals a consuntvo s mpega spesso l coeffcente d utlzzo o d saturazone. Questo ndcatore s esprme come rapporto tra due temp che possono essere calcolat al netto o al lordo d ntervall d tempo che esprmono stat partcolar del sstema (TMo, TMm, TO ecc.), qualora sa possble dsporre d quest dat. Potenzaltà degl mpant 24

25 Unverstà degl Stud d Treste a.a Impant ndustral Coeffcente d utlzzo (7) U U Tempo effettvo d produzone Tempo d apertura mpanto T TMo TMm TSc TO TG T TM TPr qund (8) U [( TPb + TPs) + T TS] s è depurato T anche del tempo dedcato alla produzone d prova e alle camponature, n tal modo U è rappresentatvo del tempo utlzzato solo per produrre QB e QS. Potenzaltà degl mpant 25

26 Unverstà degl Stud d Treste a.a Impant ndustral Esempo (contnua) U [( ) + ( )] , Potenzaltà degl mpant 26

27 Unverstà degl Stud d Treste a.a Impant ndustral Moltplcando l numeratore e l denomnatore per Pmx, s ottene: [( TPb + TPs) + TS] Pmx (9) U T Pmx al numeratore s ha qund (cfr. (4)) la produzone standard ottenble n base alle ore effettve lavorate ( (QB+QS)); essa è rapportata alla produzone teorca ottenble nel tempo T. Potenzaltà degl mpant 27

28 Unverstà degl Stud d Treste a.a Impant ndustral In altr termn la (9) è l rapporto tra la capactà produttva utlzzata (CPU) e la capactà produttva teorca (CPT). Se al denomnatore s ntroduce l coeffcente d dsponbltà A e s sosttusce a T l tempo T, s ottene un ndce d saturazone rapportato alla capactà dsponble CPD. Potenzaltà degl mpant 28

LE MISURE DI PRESTAZIONE DEL

LE MISURE DI PRESTAZIONE DEL LE MISURE DI PRESTAZIONE DEL SISTEMA PRODUTTIVO-LOGISTICO GLI INDICATORI DI PRODUTTIVITÀ 1. La msura della produttvtà Ad un prmo lvello d osservazone, n termn aggregat per un'untà produttva o azenda, la

Dettagli

Il dimensionamento dei sistemi di fabbricazione

Il dimensionamento dei sistemi di fabbricazione Il dmensonamento de sstem d fabbrcazone 1 Processo d progettazone d un sstema produttvo Anals della domanda Industralzzazone d prodotto e processo (dstnte e ccl d lavorazone) Scelta delle soluzon produttve

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Corso di Sistemi di Controllo di Gestione SCG-E04 UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso d Allocazone de centr d servzo SCG-E04 Le fas del processo d msurazone de cost Fase 1 Rlevazone de cost Fase 2 Assegnazone de cost Cost drett (Drect cost) Attrbuzone

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo).

commutazione induttiva (carico induttivo); commutazione capacitiva (carico capacitivo). I crcut per la rduzone delle perdte devono essere dmensonat consderando le dverse condzon operatve che possono presentars durante l apertura e la chusura del Transstor. Per caratterzzare queste condzon,

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato:

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato: ESERCIZIO N. 1 Il canddato proceda a calcolare l tasso d congrua remunerazone reale dell azenda Gess al 31.12.2003 applcando l CAPM e l WACC della stessa azenda; dat d cu s dspone sono seguent: a) rendmento

Dettagli

Le misure di prestazione dei sistemi produttivi

Le misure di prestazione dei sistemi produttivi Le misure di prestazione dei sistemi produttivi Lucidi per per gli gli allievi del del corso di di Gestione della Produzione Industriale del del II II anno Prestazioni e condizioni operative LEVE DI DI

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI METODI PER LO STUDIO DEL LEGAME TRA VARIABILI IN UN RAPPORTO DI CAUSA ED EFFETTO I MODELLI DI REGRESSIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra

Dettagli

JOB SHOP versus FLEXIBLE MANUFACTURING SYSTEM

JOB SHOP versus FLEXIBLE MANUFACTURING SYSTEM JOB SHOP versus FLEXIBLE MANUFACTURING SYSTEM 1 DIMENSIONAMENTO DI UN SISTEMA PRODUTTIVO SECONDO LOGICHE JOB SHOP E MEDIANTE FLEXIBLE MANUFACTURING SYSTEM - FMS Un azenda del settore aeronautco produce

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

2.6 Diagramma di redditività e analisi CRQ (Costi, Ricavi, Quantità)

2.6 Diagramma di redditività e analisi CRQ (Costi, Ricavi, Quantità) Dspensa 3 2.6 Dagramma d reddtvtà e anals CR (Cost, Rcav, uanttà) L anals CR (Cost, Rcav, uanttà) è uno strumento molto utle e semplce per la progettazone e la gestone d un generco mpanto d produzone.

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Contabilità Interna Analisi Dei Costi Costo costi diretti costi indiretti overhead costi di prodotto costi di periodo CostoDelVenduto

Contabilità Interna Analisi Dei Costi Costo costi diretti costi indiretti overhead costi di prodotto costi di periodo CostoDelVenduto Contabltà Interna E' detta contabltà nterna, un nseme d ndc e procedure atte a studare le dmamche d spesa e guadagno d un'azenda a scopo puramente nformatvo e prvato. S dvde n alcune branche prncpal e

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO)

COSTI FISSI E VARIABILI E I problemi di MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) COSTI FISSI E VARIABILI E I problem d MAKE or BUY e IL BEP (IL PUNTO DI PAREGGIO) CF CV Un concetto d fondo Cost fss e cost varabl CF CV Orzzonte temporale e funzone d produzone Funzone d produzone nel

Dettagli

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE

COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE COMUNE DI SEREGNO PROVINCIA DI MONZA BRIANZA COMANDO PROVINCIALE VIGILI DEL FUOCO DI MILANO ALLEGATA AL PROGETTO DI LAVORI DI COSTRUZIONE NUOVA PALESTRA SCOLASTICA POLIVALENTE ATTIVITÀ NORMATA (D.M. 18.03.1996

Dettagli

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Statstca Applcata Vol. 17, n. 3, 2005 377 SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Gan Pero Cervellera Poste Italane, Dvsone Rete Terrtorale, Drezone Operazon, Svluppo Process Ducco

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

ISTRUZIONE OPERATIVA:

ISTRUZIONE OPERATIVA: Pagna 1 d 7 SETTORE LI CA calcestruzz AG aggregat LM LS AC AP da c. a. p. AL Acca da lamnat e INDICE: 1) Scopo 2) Campo d applcazone 3) Norma d rfermento 4) Defnzon e smbol 5) Responsabltà 6) Apparecchature

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Produzione di Processo e per Parti

Produzione di Processo e per Parti Produzone d Processo e per Part Questa dspensa vale sa per l modulo M1 d ntroduzone, che per l modulo M3 d dmensonamento de sstem produttv 1) Produzon per processo 1.1 Introduzone Nel Captolo 1 abbamo

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto CRESME Scenar d frenata per l comparto elettrco: l nodo della valorzzazone del prodotto Il mercato elettrco rappresenta uno de pù nteressant compart economc del nostro paese, caratterzzato da profonde

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone.

Si dice corpo rigido un oggetto ideale che mantiene la stessa forma e le stesse dimensioni qualunque sia la sollecitazione cui lo si sottopone. Captolo 7 I corp estes 1. I movment d un corpo rgdo Che cosa s ntende per corpo esteso? Con l termne d corpo esteso c s rfersce ad oggett per qual non è lecto adoperare l approssmazone d partcella, coè

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

DOMANDE TEORICHE 1 PARTE

DOMANDE TEORICHE 1 PARTE DOMANDE TEORICHE 1 PARTE 1) Trasformazone delle sorgent n regme costante: * Introdurre l legame costtutvo e la caratterstca grafca (dettaglandone le propretà ne punt d lavoro estrem: generatore a vuoto

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE TECNICHE DI PROGRAMMAZIONE IPOTESI SOTTOSTANTE: TECNICHE LINEARI (COEFFICIENTI FISSI DI PRODUZIONE) PREVISIONI (vendte, prezz de ben e de fattor) medante tecnche estrapolatve, econometrche e d mercato

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. CAPITOLO TERZO ECONOMIA DEL SISTEMA AGROALIMENTARE Sommaro: 1. L anals del mercato de prodott agrcol. - 2. Anals economca d un sstema d agr-marketng. - 3. Il concetto d benessere e l suo accertamento.

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 1 6 maggio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 1 6 maggio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Rcerca operatva Lezone # 1 6 maggo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/28? Modello d Wlson Le scorte sono

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

La sincronizzazione. (Libro) Trasmissione dell Informazione

La sincronizzazione. (Libro) Trasmissione dell Informazione La sncronzzazone (Lbro) Problem d sncronzzazone La trasmssone e la dverstà tra gl OL del trasmetttore e del rcevtore ntroducono (anche n assenza d fadng) un errore d d frequenza, d fase e d camponamento

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

INDAGINE ESAUSTIVA O CAMPIONARIA?

INDAGINE ESAUSTIVA O CAMPIONARIA? INDAGINE ESAUSTIVA O CAMPIONARIA? S rcorre certamente all ndagne per campone quando la rlevazone completa è mpossble e quando la determnazone delle modaltà possedute dalle untà n esame ne comporta la dstruzone

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 Calcolo del metodo patrmonale semplce con correzone reddtuale 1. Determnazone del patrmono netto rettfcato Dat blanco stato patrmonale al 31.12.01

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Il metodo della frazione critica per la stima delle CSR per gli Idrocarburi

Il metodo della frazione critica per la stima delle CSR per gli Idrocarburi Il metodo della frazone crtca per la stma delle CSR per gl Idrocarbur Ing. Iason Vergnell (vergnell@ng.unroma2.t) Laboratoro d Ingegnera Ambentale Dpartmento d Ingegnera Cvle e Ingegnera Informatca Unverstà

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo Obettv Il concetto d Reslenza applcato a terrtor rural Una proposta p metodologca Un esempo: dverstà e svluppo Concluson Interpretare terrtor rural come sstem soco-ecologc Analzzare le propretà della reslenza

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011 I metod mst Valutazone d mpresa a.a. 2010-2011 Lezon 18 e 19 aprle 2011 1 Il metodo msto n passato era l tpco metodo europeo per la stma del valore d captale economco consdera sa l elemento patrmonale

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli