CARATTERISTICHE DEI SEGNALI RANDOM

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CARATTERISTICHE DEI SEGNALI RANDOM"

Transcript

1 CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random: Regstrazone nel tempo d un segnale generato da un sensore d pressone montato n una rampa d lanco d un mssle per la msura della pressone acustca generata da fum d scarco. Le sollectazon causate da tal presson possono determnare la rottura per fatca della struttura. 1

2 Poché sono necessar n molt d quest cas metod d anals spermentale, è mportante msurare ed analzzare con accuratezza segnal random. 2

3 TEMPO DI ACQUISIZIONE t 0 : S acqussce l segnale casuale dal tempo zero al tempo t 0, e s assume l segnale par a zero per t > t 0, assmlando l segnale casuale ad uno transtoro. Occorre determnate l tempo d taglo t 0 n manera tale che l segnale acqusto n 0 < t < t 0 sa un buon esempo statstco dell ntero segnale random. Acquszone del segnale nell ntervallo 0 < t < t 0 L esstenza d un valdo tempo d taglo mplca che process casual sano stazonar, coè che le loro propretà statstche (come l valore medo, l valore quadratco medo etc.) non cambno con l tempo. Quando questo è vero esste un certo t 0 corrspondente al lvello scelto d confdenza de rsultat. Regstrazone d lunghezza nfnta Regstrazone d lunghezza fnta rsultat precs c è una certa probabltà che sano corrett Un semplce metodo per determnare t 0 3

4 DESCRIZIONE STATISTICA DEI SEGNALI CASUALI: Descrzone dell ampezza della varable. Descrzone della rapdtà (contenuto n frequenza) della varable. Descrzone dell ampezza della varable: meda o valor medo valore quadratco medo radce quadratca meda funzone dstrbuzone dell ampezza S consder una varable random q da: Essendo q ( t), la meda o valor medo q ( t) è defnto T 1 q( t) lm T q ( t ) dt t 0 ( t) una componente costante d tutto l segnale e non nfluenza le sue fluttuazon è generalmente sottratta dal segnale totale, per avere un segnale a valor medo nullo. D ora nnanz s consdereranno solo segnal casual q con valor medo nullo. ( t ) 4

5 Valore quadratco medo: T 2 1 q t T q 2 ( ) lm ( t ) dt t 0 Indca l ampezza della varable casuale, ha le dmenson del quadrato della grandezza stessa. Radce quadratca meda o rms: 2 rms q ( t) q ( t) 5

6 Il valore quadratco medo e la radce quadratca meda danno una ndcazone della grandezza totale q ( t) e non della dstrbuzone della ampezze. S ntroduce allora la funzone dstrbuzone dell ampezza o funzone denstà d probabltà W ( q ). (HIST A; HIST B) S defnsce la probabltà P che q ( t ) s trov tra alcun valor specfc q 1 e q 1 +q come: dove Pr obabltà[ q 1 q q 1 q ] P[ q 1, q 1 q ] lm T t rappresenta l tempo totale n cu q ( t ) s trova nella banda q durante l ntervallo d tempo T. S defnsce la funzone dstrbuzone dell ampezza W ( q ): P[ q1, q1 q W1 ( q) lm q 0 q t T dalla defnzone segue che W 1 ( q )dq = Probabltà che q s trov n dq : q2 W1 ( q) dq q1 Probabltà che q cada tra q 1 e q 2. La funzone W 1 ( q ) può avere n teora un numero nfnto d dfferent forme, certe hanno trovato un precso modello matematco che descrve l processo fsco reale. La pù comune è la dstrbuzone Normale o Gaussana data da: q 1 2 W1 ( q ) e dove è la devazone standard. 6

7 7

8 DESCRIZIONE DELLA RAPIDITÀ (CONTENUTO IN FREQUENZA) DELLA VARIABILE: La radce quadratca meda (rms) e la funzone dstrbuzone delle ampezze sono suffcent per descrvere l ampezza d una varable casuale, ma non danno ndcazon sulla rapdtà d varazone nel tempo. Così due process random potrebbero entramb essere Gaussan con lo stesso valore numerco d ma uno può varare molto pù rapdamente che l altro. Autocorrelazone Denstà spettrale quadratca meda Funzone dstrbuzone dell ampezza Funzone d Cross-correlazone Cross denstà spettrale Funzone d autocorrelazone R() d una varable random q ( t ): la funzone q ( t ) 1 T R( ) lm q ( t) q ( t ) dt T 0 T è semplcemente q ( t ) traslata nel tempo d second. 8

9 Dstanza tra la testna d lettura e scrttura Veloctà del nastro Per = 0 la funzone d autocorrelazone R() è numercamente uguale al valore quadratco medo q 2 ( t ) della funzone. 9

10 In fgura sono rportat due R() per due q (t) varant n modo lento e rapdo Per ogn q (t), sa che esso var velocemente o lentamente, quando = 0, l prodotto q (t)* q (t+ ) è sempre postvo e l ntegrale da l massmo valore possble (q 2 ( t )). Per ogn spostamento ( 0), quando s unscono le part postve e negatve, la curva prodotto è una volta postva ed una volta negatva. Così se q (t) vara rapdamente, basta un pccolo valore d per causare questo abbattmento del valore, mentre una lenta varazone d q (t) rchede una maggore traslazone delle due curve. 10

11 Un altro metodo per determnare l contenuto n frequenza d un segnale random è la denstà spettrale quadratca meda. denstà spettrale quadratca meda trasformata d Fourer d R(). 11

12 In altre parole trasporta nel domno della frequenza le stesse nformazon che fornsce R() nel domno del tempo. Nello studo delle vbrazon la denstà spettrale quadratca meda è preferta. Per determnare come ogn parte del range d frequenza contrbusce al valore totale del valore quadratco medo della funzone, s può operare un fltraggo dell uscta con un rstretto fltro passa banda d ampezza come mostrato n fgura: 12

13 Denstà spettrale quadratca meda = ( ) q 2 rappresenta la denstà del valore quadratco medo poché: 2 ( ) * q Se s valuta () per un completo range d frequenze, s può dsegnare una curva rspetto ad. L area totale rspetto sottesa dalla curva () è par al valore quadratco medo totale q 2 ( t ). Se un q (t) con una nota () è applcato come ngresso ad un sstema lneare d rsposta n frequenza nota, la denstà spettrale quadratca meda dell uscta o (t) è calcolable con la relazone: q o o ( ) ( ) ( ) q 2 13

14 14

15 Una partcolare forma d () è d grande mpego: l rumore banco. Rumore banco perfetto: () = 1 per tutte le frequenze. Il rumore banco è usato come un segnale d test, allo stesso modo dell mpulso, perché entramb hanno un contenuto n frequenza unforme su tette le frequenze. Se () = C = costante qo q o( ) ( ) C 15

16 IMPIEGO DI DUE VARIABILI CASUALI: Funzone dstrbuzone dell ampezza W 1 (q 1,q 2 ) d due varabl casual q 1 (t) e q 2 (t) è data da: dove W q q (, ) lmlm Tq q t T q q 2 0 t rappresenta l tempo totale (durante l tempo T) che q 1 (t) e q 2 (t) s 16

17 trovano smultaneamente nella banda d valor compresa tra q 1 + q 1 e q 2 + q 2 q2b q1b Probabltà( q q q, q q q ) W ( q, q ) dq dq 1 a 1 1 b 2 a 2 2 b q a q a La W1 ( q1, q2) può avere una varetà nfnta d forme. La pù comune è la pù usuale è la dstrbuzone (normale) d Gauss bvarable. Scopo msurazone d W1 ( q1, q2): vedere se dat fsc seguono approssmatvamente qualche modello matematco semplce come la gaussana. ESEMPIO: se q 1 e q 2 rappresentano movment d vbrazone casuale d due part d macchne vcne, la conoscenza d W1 ( q1, q2) permette l calcolo della probabltà che le due part non s colpscano a vcenda. Funzone d Cross-correlazone R q1q2 ( ) per due varabl casual q 1 (t) e q 2 (t): ESEMPI R q q T ( ) lm T q t q t dt 0 1( ) 2( ) T La Cross denstà spettrale data da: 1 2 ( ) (o Cross denstà spettrale d potenza) è q q dove: 17 ( ) C ( ) Q ( ) q q q q q q C q1q2 ( ) = cospectrum Q q1q2 ( ) = quad spectrum

18 Q C q1q2 q1q 2 1 T ( ) lm lm ( q1 )( q dt T T 0 2 ) 0 1 T ( ) lm lm ( q1 ) ( q dt T T 0 2 ) 90 0 q 1 = uscta dal fltro passa banda con l ngresso q 1 (t) q 2 = uscta dal fltro passa banda con l ngresso q 2 (t) ( q 1 ) 90 segnale q 1 con fase spostata d 90. Nota: q1q2 () è una quanttà complessa mentre () è reale. Tramte la Cross denstà spettrale è possble determnare la funzone d trasfermento snusodale (q 0 /q )()d un sstema lneare. Invece utlzzando la denstà spettrale quadratca meda è possble determnare solo l ampezza e non l angolo d fase della funzone d trasfermento, se () è nota e () è msurata. Con la Cross denstà spettrale s può determnare sa l ampezza che la fase, tramte l equazone: q qqo ( ) 0 ( ) q ( ) dove qqo () è la cross denstà spettrale d q e q o ; q () è la denstà spettrale quadratca meda d q ; é necessaro qund msurare una denstà spettrale quadratca meda ed una cross denstà spettrale. q 18

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata Taratura: serve a trovare l legame tra l valore letto sullo strumento e l valore della grandezza fsca msurata Msure Meccanche e Termche Dsturb d trasduttor anello dnamometrco trasduttore d spostamento

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

$%&'$%()($ * +,* -. )) )/

$%&'$%()($ * +,* -. )) )/ !"# $%&'$%()($ * +,* -. )) )/ 1 0 *",13.4 5. '. 1.'$$$ 0 0 *,6 7. 4! 5.! 8 1.)&&9 0 ) ' " / : ; %! 6 " > @ # 5 &' ;" >. ;" >. >.. ; >. # 6 C "! #!#! )!*#!!#!+@

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

CHE COS E LA COMPLESSITA

CHE COS E LA COMPLESSITA CHE COS E LA COMPLESSITA E un termne d moda, ambguo perché rcco d sgnfcat nterdscplnar, a volte mpropramente usato sa n campo scentfco, che nel lnguaggo colloquale, gornalstco e d costume Inter centr d

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Capitolo V. Amplificatori operazionali

Capitolo V. Amplificatori operazionali Captolo V Amplfcator operazonal Sebbene gl amplfcator operazonal (op amp) sano n uso da molto tempo, le prme applcazon sono state nell ambto del calcolo analogco e della strumentazone. I prm amplfcator

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Campi magnetici variabili nel tempo. Esercizi.

Campi magnetici variabili nel tempo. Esercizi. Camp magnetc varabl nel tempo. Esercz. Mauro Sata Versone provvsora. Novembre 2014 1 Per comment o segnalazon d error scrvere, per favore, a: maurosata@tscalnet.t Indce 1 Induzone elettromagnetca. 1 2

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Materials Handling and Logistics Technology. Linea guida. Settembre 2010

Materials Handling and Logistics Technology. Linea guida. Settembre 2010 Materals Handlng and Logstcs Technology Lnea guda Settembre 2010 2 PAVIMENTI PER L USO DI CARRELLI PER VNA 1 Scopo 3 2 Rferment 3 3 Defnzon 4 4 Requst 5 4.1 Pavment 5 4.1.1 Generaltà 5 4.1.2 Deflessone

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Argomenti del corso Parte I Caratteristiche generali e strumenti terminali

Argomenti del corso Parte I Caratteristiche generali e strumenti terminali Unverstà del Salento Argoment del corso Parte I Caratterstche general e strument termnal 3. Prestazon general degl strument d msura: caratterstche statche Taratura statca Elaborazone statstca de dat Cenn

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

PONTE DELLA MUSICA - ROMA Analisi modale operazionale

PONTE DELLA MUSICA - ROMA Analisi modale operazionale g 0.01 g 0.04 g 5.00e-3 g 0.08 g 8.00e-3 g -9.00e-3 20:VACALE:14:+Y 0.00 s 2200.00-0.08 21:VACALE:14:+Z 0.00 s 2200.00-7.00e-3 22:VACALE:12:+Y 0.00 s 2200.00-0.05 23:VACALE:12:+Z 0.00 s 2200.00-0.01 24:VACALE:13:+X

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Determinazione del momento d inerzia di una massa puntiforme

Determinazione del momento d inerzia di una massa puntiforme Determnazone del momento d nerza d una massa puntorme Materale utlzzato Set d accessor per mot rotator Sensore d rotazone Portamasse e masse agguntve Statvo con base Blanca elettronca Calbro nteracca GLX

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

GLI ERRORI NELLA MISURA DEL RUMORE AMBIENTALE. G.Amadasi. S.C.S Controlli e Sistemi

GLI ERRORI NELLA MISURA DEL RUMORE AMBIENTALE. G.Amadasi. S.C.S Controlli e Sistemi S.C.S. Controll e Sstem S.r.l. Maggo 000 Pag. d 44 GLI ERRORI NELLA MISURA DEL RUMORE AMBIENTALE G.Amadas S.C.S Controll e Sstem S.C.S. Controll e Sstem S.r.l. Maggo 000 Pag. d 44 CONCETTI GENERALI DI

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN LABORATORIO/FISICO/DIDATTICO/INGEGNERIA VIA CLAUDIO, 1 8015 NAPOLI WWW.LAFIDIN.UNINA.IT - TEL. 081/7683603- FAX 081/768360 Corso

Dettagli