LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE"

Transcript

1 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

2 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 2 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

3 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 3 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

4 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 4 Probabltà e Statstca La probabltà e la statstca sono due approcc complementar allo stesso problema che descrve fenomen non determnstc. La Teora della Probabltà s chede: ''dato un modello (probablstco) d questo fenomeno, cosa s può dre su dat che c s può aspettare dagl esperment (o dalle osservazon) effettuat su questo sstema''? La Statstca, dall'altro lato, s chede: ''fornt de dat generat da un espermento (oppure da osservazon) su questo sstema, cosa s può dre sul modello che descrve questo fenomeno?'' GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

5 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 5 Statstca anals quanttatva della varabltà de fenomen Statstca descrttva raccolta, organzzazone, sntes e anals d DATI (msure o rsultat d process d conteggo) Statstca nferenzale passaggo da un gruppo parzale d nformazon (CAMPIONE) a quello relatvo alla popolazone dalla quale l campone vene prelevato o può provenre. Completezza d una descrzone dettaglata Semplctà d una descrzone sntetca teora della stma test d potes desgn of experments GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

6 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 6 Prncpal fas d una ndagne statstca (Svluppo d tecnche per) Panfcazone Acquszone de dat Correttezza delle deduzon Elaborazone de dat Classfcazone de dat grezz e sntes Presentazone de dat Trm. 4 Trm. Est Anals Interpretazone GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

7 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve ESEMPIO GUIDA: questonaro student GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

8 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 8 Classfcazone de dat 1/2 Popolazone Indvduo tutt possbl oggett d una ndagne statstca un elemento d una popolazone Varable Una qualsas caratterstca d ogn ndvduo della popolazone soggetta a possbl varazon da ndvduo a ndvduo matem. X : POP ----> CARATTERISTICA tp d varable numerca contnua (MISURA) numerca dscreta (CONTEGGIO) nomnale (ordnale, non ordnale) GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

9 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 9 Dat numerc Numer msura processo d conteggo msure de pes o della temperatura de pazent numero d pazent operat n una certo gorno o quell dmess. GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

10 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 10 Popolazone: student che hanno seguto l corso tra l 1988 e 1l 1995 Indvduo: un sngolo student Varabl Classfcazone de dat 1/2 ANNO = anno d rlevazone; (nomnale-ordnale) SESSO = sesso degl student (= 1 Femmne, = 0 Masch); (numerca-dscreta-dcotomca) ETA' = età degl student (n ann); (numerca-contnua) PESO = peso degl student (n kg); (numerca-contnua) ALTEZZA = altezza degl student (n cm); (numerca-contnua) DIPSCI = student con maturtà scentfca (= 1 S, = 0 No); (numerca-dscreta-dcotomca) DIPCLA = student con maturtà classca (= 1 S, = 0 No); DIPTEC = student con maturtà tecnca (= 1 S, = 0 No); DIPALT = student con altro tpo d maturtà (= 1 S, = 0 No); COMPON = numero de component della famgla (compreso lo studente); (numerca-dscreta) OCCHIALI = student con occhal da vsta o lent a contatto (= 1 S, = 0 No); FUMO = student fumator (= 1 S, = 0 No); GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

11 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 11 Classfcazone de dat 2/2 Frequenze relatve Frequenze assolute Frequenze cumulatve percentuale d ndvdu avent una certa caratterstca numero d ndvdu avent una certa caratterstca percentuale d ndvdu avent un certo numero d caratterstca Dstrbuzone f : valore varable ----> frequenza Dstrbuzone cumulatva F : valore varable ----> frequenza cumulatva non decrescente da 0 a 1 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

12 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 12 Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = numero d osservazon FREQUENZA ASSOLUTA n = numerod osservazon uguale ad (conteggo) o nell -mo ntervallo(msura) La frequenza assoluta èun numeronterocompresotra 0 e N La somma dellefrequenzeassolute dà lnumerototale d osservazon n = N FREQUENZA RELATIVA f = n / N = numerod osservazon uguale ad I (conteggo) o nell -mo ntervallo(msura) La frequenza relatva èun numerorealecompresotra 0 e 1 La somma dellefrequenzerelatve dà SEMPRE 1 = = n f 1 N GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

13 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 13 ESEMPIO GUIDA: questonaro student student.xls GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

14 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = 2759 Varable d conteggo: numero d component famlar FREQUENZA ASSOLUTA FREQUENZA RELATIVA 14 student.xls utlzzo funzone frequenza n = N n = = N f 1 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

15 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: CONTROLLI 2/2 N = numero d osservazon 15 FREQUENZA CUMULATIVA ASSOLUTA N La frequenza cumulatva assoluta è un numerontero crescenteda 0 ad N ogn frequenza cumulatva assoluta èla somma della frequenza assoluta + la frequenza cumulatva assoluta del datoprecedente. FREQUENZA CUMULATIVA RELATIVA F N = N 1 + n = k = 0 n k La frequenza cumulatva relatva èun numeroreale crescenteda 0 a 1 ogn frequenza cumulatva relatva èla somma della frequenza relatva + la frequenza cumulatva relatva del datoprecedente F = F 1 + f = k = 0 f k GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

16 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: 16 CONTROLLI 2/2 N = 2759 Varable d conteggo: numero d component famlar FREQUENZA ASSOLUTA FREQUENZA FREQUENZA cumulatva RELATIVA ASSOLUTA FREQUENZA cumulatva RELATIVA n = N = = n f 1 N GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

17 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 17 Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = 2759 Varable contnua: Età student.xls utlzzo strumento d anals: stogramma n = N = = n f 1 N èconvenente consderare delle class al posto delle sngole modaltàdstnte. Ogn classe vene dentfcata da due estrem (d snstra e d destra) che per l -esma class sono ndcat con c e c +1 (esempo: 19-0cm). Le class vanno scelte n modo che: l lvello d sntes delle nformazon sa adeguato; sano tra loro dsgunte; comprendano tutte le possbl modaltàdel carattere. GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Lezione 2 le misure di sintesi: le medie

Lezione 2 le misure di sintesi: le medie Lezone le msure d sntes: le mede Cattedra d Bostatstca Dpartmento d Scenze spermental e clnche, Unverstà degl Stud G. d Annunzo d Chet-Pescara Prof. Enzo Ballone Lezone a- Statstca descrttva per varabl

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

Il trattamento dei dati a fini descrittivi

Il trattamento dei dati a fini descrittivi Il trattamento de dat a fn descrttv Rappresentazone de dat: Dstrbuzon d frequenza Rappresentazon grafche Dstrbuzon doppe Sntes de dat Calcolo d ndc: poszone, varabltà, forma Studo delle relazon tra due

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. d Metodologa clnca I metod per la sntes e la comuncazone delle nformazon sulla salute Come possamo trarre concluson attendbl su parametr a partre dalle stme camponare? I metod per la produzone delle

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

Statistica a.a. 2015/2016. Cos è la statistica. Statistica e Economia. Materiale didattico. Statistiche: al plurale, sinonimo di dati

Statistica a.a. 2015/2016. Cos è la statistica. Statistica e Economia. Materiale didattico. Statistiche: al plurale, sinonimo di dati Statstca a.a. 215/216 Materale ddattco Lbro d testo: Statstca, metodologe per le scenze economche e socal. Borra, D Cacco. McGraw-Hll. I lucd utlzzat a lezone, le eserctazon e l testo de passat appell

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa L anals delle preferenze de consumator ne confront delle produzon d qualtà: uno studo del consumo d caffé equosoldale medante l modello CUB Gann Cca (), Marcella Corduas (2), Teresa Del Gudce (), Domenco

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Ing. Enrico Grisan. Modelli di popolazione in farmacocinetica

Ing. Enrico Grisan. Modelli di popolazione in farmacocinetica Ing. Enrco Grsan Modell d popolazone n farmacocnetca Sommaro Modell a sngolo soggetto Modell d popolazone Naïve poolng Stme basate sul sngolo soggetto Modell a effett mst Lnearzzazone del modello 2 Ing.

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

RISULTATI PRIMO RAPPORTO

RISULTATI PRIMO RAPPORTO INDAGINE EPIDEMIOLOGICA PRESSO LA POPOLAZIONE RESIDENTE A FALCONARA MARITTIMA E COMUNI LIMITROFI RISULTATI PRIMO RAPPORTO A cura d: Dott.ssa Elsabetta Meneghn Dott. Paolo Bal Dott. Mauro Marottn (ARPAM,

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

ELEMENTI DI STATISTICA PARTE 1

ELEMENTI DI STATISTICA PARTE 1 ELEMETI DI STATISTICA PARTE. ITRODUZIOE. La parola statstca. Cenn storc.3 Gl studos.4 La statstca moderna.5 Le font statstche. DEFIIZIOI 3. Una defnzone d statstca 3. I fenomen collettv 3.3 Untà statstche,

Dettagli

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità Speculazon matematche per la formalzzazone/descrzone d un Sstema d Gestone per la Qualtà S. Gorla (*), (**) R. Grass (*) Responsable Qualtà e Certfcazone Ctroën tala S.p.A. e consglere d gunta AcqCN, (**)

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

PIANIFICAZIONE DEI TRASPORTI

PIANIFICAZIONE DEI TRASPORTI Unverstà d Caglar DICAAR Dpartmento d Ingegnera Cvle, Ambentale e archtettura Sezone Trasport PIANIFICAZIONE DEI TRASPORTI Eserctazone su modell d generazone A.A. 2016-2017 Ing. Francesco Pras Ing. Govann

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

8.1 Sintesi, descrizione, interpretazione

8.1 Sintesi, descrizione, interpretazione 8.1 Sntes, descrzone, nterpretazone Molte duse tecnche d anals statstca multvarata consentono d studare smultaneamente un numero elevato d varabl sntetzzandone l azone snergca attraverso un numero rdotto

Dettagli

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services Gl mpatt de cambament clmatc sull atmosfera e sul mare: l ruolo de Clmate Servces Maurzo Mauger Dpartmento d Fsca Va Celora 16 I20133 MILANO maurzo.mauger@unm.t Indce Descrzone dell UdR UnM Un esempo d

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

CHE COS E LA COMPLESSITA

CHE COS E LA COMPLESSITA CHE COS E LA COMPLESSITA E un termne d moda, ambguo perché rcco d sgnfcat nterdscplnar, a volte mpropramente usato sa n campo scentfco, che nel lnguaggo colloquale, gornalstco e d costume Inter centr d

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione Facoltà d Archtettura e Socetà Facoltà d Ingegnera Cvle, Ambentale e Terrtorale Centro per lo Svluppo del Polo d Cremona, Poltecnco d Mlano Va Sesto 41 26100 Cremona Master unverstaro nterfacoltà d II

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione UNIVERSITA DEL SALENTO CORSO DI LAUREA IN FISICA (a.a. 007/008) Corso d Laboratoro II (Prof. Antono D INNOCENZO) ESERCITAZIONE DI STATISTICA * Lo scopo d questa eserctazone è quello d comncare ad utlzzare

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Modello di scelta per la distribuzione delle residenze per la pianificazione della mobilità urbana

Modello di scelta per la distribuzione delle residenze per la pianificazione della mobilità urbana Unverstà degl stud ROMA TRE Scuola Dottorale n Ingegnera Sezone Scenze dell Ingegnera Cvle XXIII Cclo Tes d Dottorato Modello d scelta per la dstrbuzone delle resdenze per la panfcazone della mobltà urbana

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

Programma del corso. Programma del corso. Libri. Università di Firenze A.A. 2010/2011. Cicchitelli G. (2008) Statistica.

Programma del corso. Programma del corso. Libri. Università di Firenze A.A. 2010/2011. Cicchitelli G. (2008) Statistica. Unverstà d Frenze Corso d laurea n Statstca A.A. 2010/2011 STATISTICA parte I, A Programma del corso PARTE 1 Statstca descrttva unvarata Nozon d base Dstrbuzon, rappresentazon grafche Mede Indc d varabltà,

Dettagli

Mobilità intergenerazionale e decisioni scolastiche in Italia

Mobilità intergenerazionale e decisioni scolastiche in Italia Mobltà ntergenerazonale e decson scolastche n Itala Danele Checch Unverstà d Mlano Luca Flabb Georgetown Unversty questa versone: 25 gennao 2006 Introduzone In un recente lavoro, Hanushek e Wößmann (2005)

Dettagli

Analisi della Varianza

Analisi della Varianza Anals della Varanza Esempo: Una ndustra d carta usata per buste per salumere vuole mglorare la resstenza alla trazone del propro prodotto. S rtene che resstenza alla trazone = f(concentrazone d legno nella

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

Definizione classica di probabilità

Definizione classica di probabilità Corso d Idrologa A.A. 0-0 Teora delle probabltà Prof. Ing. A. Cancellere Dpartmento d Ingegnera Cvle e Ambentale Unverstà d Catana Defnzone classca d probabltà Il concetto d probabltà ha trovato formalzzazone

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli