LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE"

Transcript

1 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

2 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 2 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

3 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 3 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

4 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 4 Probabltà e Statstca La probabltà e la statstca sono due approcc complementar allo stesso problema che descrve fenomen non determnstc. La Teora della Probabltà s chede: ''dato un modello (probablstco) d questo fenomeno, cosa s può dre su dat che c s può aspettare dagl esperment (o dalle osservazon) effettuat su questo sstema''? La Statstca, dall'altro lato, s chede: ''fornt de dat generat da un espermento (oppure da osservazon) su questo sstema, cosa s può dre sul modello che descrve questo fenomeno?'' GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

5 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 5 Statstca anals quanttatva della varabltà de fenomen Statstca descrttva raccolta, organzzazone, sntes e anals d DATI (msure o rsultat d process d conteggo) Statstca nferenzale passaggo da un gruppo parzale d nformazon (CAMPIONE) a quello relatvo alla popolazone dalla quale l campone vene prelevato o può provenre. Completezza d una descrzone dettaglata Semplctà d una descrzone sntetca teora della stma test d potes desgn of experments GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

6 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 6 Prncpal fas d una ndagne statstca (Svluppo d tecnche per) Panfcazone Acquszone de dat Correttezza delle deduzon Elaborazone de dat Classfcazone de dat grezz e sntes Presentazone de dat Trm. 4 Trm. Est Anals Interpretazone GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

7 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve ESEMPIO GUIDA: questonaro student GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

8 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 8 Classfcazone de dat 1/2 Popolazone Indvduo tutt possbl oggett d una ndagne statstca un elemento d una popolazone Varable Una qualsas caratterstca d ogn ndvduo della popolazone soggetta a possbl varazon da ndvduo a ndvduo matem. X : POP ----> CARATTERISTICA tp d varable numerca contnua (MISURA) numerca dscreta (CONTEGGIO) nomnale (ordnale, non ordnale) GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

9 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 9 Dat numerc Numer msura processo d conteggo msure de pes o della temperatura de pazent numero d pazent operat n una certo gorno o quell dmess. GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

10 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 10 Popolazone: student che hanno seguto l corso tra l 1988 e 1l 1995 Indvduo: un sngolo student Varabl Classfcazone de dat 1/2 ANNO = anno d rlevazone; (nomnale-ordnale) SESSO = sesso degl student (= 1 Femmne, = 0 Masch); (numerca-dscreta-dcotomca) ETA' = età degl student (n ann); (numerca-contnua) PESO = peso degl student (n kg); (numerca-contnua) ALTEZZA = altezza degl student (n cm); (numerca-contnua) DIPSCI = student con maturtà scentfca (= 1 S, = 0 No); (numerca-dscreta-dcotomca) DIPCLA = student con maturtà classca (= 1 S, = 0 No); DIPTEC = student con maturtà tecnca (= 1 S, = 0 No); DIPALT = student con altro tpo d maturtà (= 1 S, = 0 No); COMPON = numero de component della famgla (compreso lo studente); (numerca-dscreta) OCCHIALI = student con occhal da vsta o lent a contatto (= 1 S, = 0 No); FUMO = student fumator (= 1 S, = 0 No); GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

11 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 11 Classfcazone de dat 2/2 Frequenze relatve Frequenze assolute Frequenze cumulatve percentuale d ndvdu avent una certa caratterstca numero d ndvdu avent una certa caratterstca percentuale d ndvdu avent un certo numero d caratterstca Dstrbuzone f : valore varable ----> frequenza Dstrbuzone cumulatva F : valore varable ----> frequenza cumulatva non decrescente da 0 a 1 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

12 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 12 Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = numero d osservazon FREQUENZA ASSOLUTA n = numerod osservazon uguale ad (conteggo) o nell -mo ntervallo(msura) La frequenza assoluta èun numeronterocompresotra 0 e N La somma dellefrequenzeassolute dà lnumerototale d osservazon n = N FREQUENZA RELATIVA f = n / N = numerod osservazon uguale ad I (conteggo) o nell -mo ntervallo(msura) La frequenza relatva èun numerorealecompresotra 0 e 1 La somma dellefrequenzerelatve dà SEMPRE 1 = = n f 1 N GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

13 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 13 ESEMPIO GUIDA: questonaro student student.xls GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

14 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = 2759 Varable d conteggo: numero d component famlar FREQUENZA ASSOLUTA FREQUENZA RELATIVA 14 student.xls utlzzo funzone frequenza n = N n = = N f 1 GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

15 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: CONTROLLI 2/2 N = numero d osservazon 15 FREQUENZA CUMULATIVA ASSOLUTA N La frequenza cumulatva assoluta è un numerontero crescenteda 0 ad N ogn frequenza cumulatva assoluta èla somma della frequenza assoluta + la frequenza cumulatva assoluta del datoprecedente. FREQUENZA CUMULATIVA RELATIVA F N = N 1 + n = k = 0 n k La frequenza cumulatva relatva èun numeroreale crescenteda 0 a 1 ogn frequenza cumulatva relatva èla somma della frequenza relatva + la frequenza cumulatva relatva del datoprecedente F = F 1 + f = k = 0 f k GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

16 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve Tabellad dstrbuzone dellefrequenze: 16 CONTROLLI 2/2 N = 2759 Varable d conteggo: numero d component famlar FREQUENZA ASSOLUTA FREQUENZA FREQUENZA cumulatva RELATIVA ASSOLUTA FREQUENZA cumulatva RELATIVA n = N = = n f 1 N GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

17 Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 17 Tabellad dstrbuzone dellefrequenze: CONTROLLI 1/2 N = 2759 Varable contnua: Età student.xls utlzzo strumento d anals: stogramma n = N = = n f 1 N èconvenente consderare delle class al posto delle sngole modaltàdstnte. Ogn classe vene dentfcata da due estrem (d snstra e d destra) che per l -esma class sono ndcat con c e c +1 (esempo: 19-0cm). Le class vanno scelte n modo che: l lvello d sntes delle nformazon sa adeguato; sano tra loro dsgunte; comprendano tutte le possbl modaltàdel carattere. GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa L anals delle preferenze de consumator ne confront delle produzon d qualtà: uno studo del consumo d caffé equosoldale medante l modello CUB Gann Cca (), Marcella Corduas (2), Teresa Del Gudce (), Domenco

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione Facoltà d Archtettura e Socetà Facoltà d Ingegnera Cvle, Ambentale e Terrtorale Centro per lo Svluppo del Polo d Cremona, Poltecnco d Mlano Va Sesto 41 26100 Cremona Master unverstaro nterfacoltà d II

Dettagli

ELEMENTI DI STATISTICA PARTE 1

ELEMENTI DI STATISTICA PARTE 1 ELEMETI DI STATISTICA PARTE. ITRODUZIOE. La parola statstca. Cenn storc.3 Gl studos.4 La statstca moderna.5 Le font statstche. DEFIIZIOI 3. Una defnzone d statstca 3. I fenomen collettv 3.3 Untà statstche,

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione UNIVERSITA DEL SALENTO CORSO DI LAUREA IN FISICA (a.a. 007/008) Corso d Laboratoro II (Prof. Antono D INNOCENZO) ESERCITAZIONE DI STATISTICA * Lo scopo d questa eserctazone è quello d comncare ad utlzzare

Dettagli

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità Speculazon matematche per la formalzzazone/descrzone d un Sstema d Gestone per la Qualtà S. Gorla (*), (**) R. Grass (*) Responsable Qualtà e Certfcazone Ctroën tala S.p.A. e consglere d gunta AcqCN, (**)

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

8.1 Sintesi, descrizione, interpretazione

8.1 Sintesi, descrizione, interpretazione 8.1 Sntes, descrzone, nterpretazone Molte duse tecnche d anals statstca multvarata consentono d studare smultaneamente un numero elevato d varabl sntetzzandone l azone snergca attraverso un numero rdotto

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

CHE COS E LA COMPLESSITA

CHE COS E LA COMPLESSITA CHE COS E LA COMPLESSITA E un termne d moda, ambguo perché rcco d sgnfcat nterdscplnar, a volte mpropramente usato sa n campo scentfco, che nel lnguaggo colloquale, gornalstco e d costume Inter centr d

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services Gl mpatt de cambament clmatc sull atmosfera e sul mare: l ruolo de Clmate Servces Maurzo Mauger Dpartmento d Fsca Va Celora 16 I20133 MILANO maurzo.mauger@unm.t Indce Descrzone dell UdR UnM Un esempo d

Dettagli

Modello di scelta per la distribuzione delle residenze per la pianificazione della mobilità urbana

Modello di scelta per la distribuzione delle residenze per la pianificazione della mobilità urbana Unverstà degl stud ROMA TRE Scuola Dottorale n Ingegnera Sezone Scenze dell Ingegnera Cvle XXIII Cclo Tes d Dottorato Modello d scelta per la dstrbuzone delle resdenze per la panfcazone della mobltà urbana

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

RISULTATI PRIMO RAPPORTO

RISULTATI PRIMO RAPPORTO INDAGINE EPIDEMIOLOGICA PRESSO LA POPOLAZIONE RESIDENTE A FALCONARA MARITTIMA E COMUNI LIMITROFI RISULTATI PRIMO RAPPORTO A cura d: Dott.ssa Elsabetta Meneghn Dott. Paolo Bal Dott. Mauro Marottn (ARPAM,

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione

Introduzione 2. Problema. I sali presenti nell acqua (all estrazione) causano problemi di corrosione. Soluzione Introduzone 2 Problema I sal present nell acqua (all estrazone) causano problem d corrosone Soluzone Separazone delle fas (acquosa ed organca) Estrazone petrolo Fase gassosa Fase lquda (acqua + grezzo)

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Definizione classica di probabilità

Definizione classica di probabilità Corso d Idrologa A.A. 0-0 Teora delle probabltà Prof. Ing. A. Cancellere Dpartmento d Ingegnera Cvle e Ambentale Unverstà d Catana Defnzone classca d probabltà Il concetto d probabltà ha trovato formalzzazone

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Modello idraulico - Rapporto tecnico. (Rev. 0b)

Modello idraulico - Rapporto tecnico. (Rev. 0b) ASAP LIFE06/ENV/IT/000255 ASAP_D4-3_ModelloIdraulcoRappTecnco_IT_0b 1/20 LIFE06/ENV/IT/255 A.S.A.P. Actons for Systemc Aqufer Protecton The ASAP proect s partally funded by the European Unon LIFE Programme

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA La rcerca scentfca talana nel campo dell draulca: presentazone de rsultat de progett PIN 2008 Ferrara, 24-25 gennao 2013 ADATTAMENTO DEI SISTEMI E DEI SEVIZI IDOPOTABILI A SCENAI DI CAENZA IDICA Coordnatore:

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Mobilità intergenerazionale e decisioni scolastiche in Italia

Mobilità intergenerazionale e decisioni scolastiche in Italia Mobltà ntergenerazonale e decson scolastche n Itala Danele Checch Unverstà d Mlano Luca Flabb Georgetown Unversty questa versone: 25 gennao 2006 Introduzone In un recente lavoro, Hanushek e Wößmann (2005)

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L.

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L. MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura d L.Bernard) 3.3. Dsegn d camponamento d Lorenzo Bernard 3.3.1. Una defnzone per ntrodurre

Dettagli

Progetto Formativo ECM per Tecnici di Radiologia Medica Sanitaria Diagnostica per immagini: produzione e gestione delle immagini digitali

Progetto Formativo ECM per Tecnici di Radiologia Medica Sanitaria Diagnostica per immagini: produzione e gestione delle immagini digitali Gornata 1 10/12/08 Progetto Formatvo ECM per Tecnc d Radologa Medca Santara Dagnostca per mmagn: produzone e gestone delle mmagn dgtal Azenda Ospedalera G. Brotzu - Caglar 10-12 Dcembre 2008, 7-9-14-16-21-23-28-30

Dettagli

Pianificazione dei Trasporti

Pianificazione dei Trasporti Unverstà degl Stud d Treste Facoltà d Ingegnera Corso d Panfcazone de Trasport Prof. Govann Longo Anno Accademco 2003-2004 APPUNTI d Panfcazone de Trasport Paolo Martns LA PIANIFICAZIONE DEI TRASPORTI

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA?

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA? WORKIG PAPER o 68 febbrao 2009 IL FIAZIAMETO DELLA SAITÀ I ITALIA: FIAZA AUTOOMA O DERIVATA? AGESE SACCHI JEL Classfcaton: H5, H75, H77 Keywords: Sstema santaro nazonale Federalsmo fscale socetà talana

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

COSTRUIRE UN PICCOLO SET DI DATI

COSTRUIRE UN PICCOLO SET DI DATI COSTRUIRE UN PICCOLO SET DI DATI Indvduazone degl obettv dello studo Indvduazone delle varabl che possono autare l raggungmento degl obettv dello studo Preparazone degl strument d rlevazone PATNO Numero

Dettagli

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia PROT. N 53897 ENTE EMITTENTE: OGGETTO: DESTINATARI: DATA DECORRENZA: CIRCOLARE N. 9 DC Cartografa, Catasto e Pubblctà Immoblare, d ntesa con l Uffco del Consglere Scentfco e la DC Osservatoro del Mercato

Dettagli

1. Una panoramica sui metodi valutativi

1. Una panoramica sui metodi valutativi . Una panoramca su metod valutatv La dottrna azendalstca rconosce l esstenza d var metod att a determnare l valore del captale economco d un mpresa. In partcolare, è possble ndvduare tre macro-tpologe

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Alla scoperta NOVITÀ PER. del MARE LE SCUOLE. infanzia primaria secondaria

Alla scoperta NOVITÀ PER. del MARE LE SCUOLE. infanzia primaria secondaria Alla scoperta NOVITÀ PER LE SCUOLE nfanza prmara secondara del MARE Area Marna Protetta d Mramare Il settore ddattco dell Area Marna Protetta d Mramare nasce quas trent ann fa con la gestone del WWF Itala,

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

La valutazione del rischio di non autosufficienza nelle assicurazioni

La valutazione del rischio di non autosufficienza nelle assicurazioni La valutazone del rscho d non autosuffcenza nelle asscurazon Long Term Care Susanna Levantes Sapenza Unverstà d Roma susanna.levantes@unroma1.t Roma, 26 aprle 2011 Contenut del semnaro Trend demografc

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli