Apprendimento Automatico e IR: introduzione al Machine Learning

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Apprendimento Automatico e IR: introduzione al Machine Learning"

Transcript

1 Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: 1

2 Sommaro Apprendmento automatco ML: motvazon Defnzone d ML Supervsed vs. unsupervsed learnng Algortm d Apprendmento Automatco Alber d Decsone Nave Bayes Addestramento e Stma de parametr n NB 2

3 erché apprendere automatcamente delle funzon Le nterazon tra gl oggett del mondo s possono esprmere con funzon Dal moto d panet nterazon gravtazonal Alla relazone tra nput/output negl algortm Apprendere tal funzon automatcamente 3

4 erché apprendere automatcamente delle funzon Le nterazon tra gl oggett del mondo s possono esprmere con funzon Dal moto d panet nterazon gravtazonal Alla relazone tra nput/output negl algortm Apprendere tal funzon automatcamente rsolverebbe molt problem rogetto Complesstà Accuracy 4

5 Avete gà vsto esemp d learnng d funzon 5

6 Regressone Lneare 6

7 olnom d grado 2 7

8 olnom d grado 3 8

9 Dstrbuzon d probabltà 9

10 Motvazon Un programma è una funzone d rscrttura La strnga d nput è rscrtta n quella d output Scrvere un programma per una dtta che: data una gerarcha d lvell organgramma dato un mpegato e le sue caratterstche determn l suo lvello nella gerarcha. Supponamo che le caratterstche sano mglaa, quant f devo scrvere nel mo programma? sempo: Se è stato assunto prma del 2000, è laureato, ha avuto esperenze all estero allora ha un lvello x. 10

11 Motvazon cont er scrvere tale programma: Dobbamo studare la gerarcha spesso non documentata esplctamente Dobbamo tenere conto d tutte le combnazon: Caratterstche/lvello gerarchco Soluzone: Apprendere tale funzone automatcamente da esemp. S accede al DB e s estraggono per ogn mpegato le caratterstche ed l suo lvello. 11

12 Apprendmento Automatco Langley, 2000: l Apprendmento Automatco s occupa de meccansm attraverso qual un agente ntellgente mglora nel tempo le sue prestazon nell effettuare un compto C. La prova del successo dell apprendmento è qund nella capactà d msurare l ncremento delle prestazon sulla base delle esperenze che l agente è n grado d raccoglere durante l suo cclo d vta. La natura dell apprendmento è qund tutta nella caratterzzazone delle nozon qu prmtve d compto, prestazone ed esperenza. 12

13 sperenza ed Apprendmento L'esperenza, per esempo, nel goco degl scacch può essere nterpretata n dvers mod: dat sulle vttore e sconftte pregresse per valutare la bontà o la nadeguatezza d stratege e mosse esegute rspetto all'avversaro. valutazone fornta sulle mosse da un docente esterno oracolo, guda. Adeguatezza de comportament dervata dalla autoosservazone, coè dalla capactà d analzzare partte dell'agente contro se stesso secondo un modello esplcto del processo partta e della sua evoluzone comportamento, vantagg,. 13

14 sperenza ed Apprendmento 2 ossamo qund parlare ne tre cas d: apprendmento per esperenza, o nduttvo, partte esegute e valutate n base al loro successo fnale, apprendmento supervsonato coè partte, stratege e mosse gudcate n base all'oracolo apprendmento basato sulla conoscenza relatva al task, che guda la formazone d modell del processo e modell d comportamento adeguato. 14

15 Apprendmento senza supervsone In assenza dell oracolo e d conoscenza sul task estono ancora molt mod d mglorare le propre prestazon, ad es. Mglorando l propro modello del mondo acquszone d conoscenza Mglorando le propre prestazon computazonal ottmzzazone 15

16 Apprendmento senza supervsone sempo: una collezone Mp3 può essere organzzata n gener clusterng: tale organzzazone è naturalmente gerarchca Il mgloramento avvene qund rspetto agl algortm d rcerca: la organzzazone gerarchca consente d esamnare solo membr dell nseme n alcune class gener. 16

17 L apprendmento automatco Apprendere la funzone da esemp: a valor real, regresson a valor nter fnt, classfcaton Supponamo d volere apprendere una funzone ntera: 2 class, gatto e cane fx {gatto,cane} Dato un nseme d esemp per le due class S estraggono le features altezza, baff, tpo d dentatura, numero d zampe. S applca l algortmo d learnng per generare f 17

18 Algortm d Apprendmento Funzon logche booleane, ad es., alber d decsone. Funzone d robabltà, ad es., classfcatore Bayesano. Funzon d separazone n spaz vettoral Non lnear: KNN, ret neural mult-strato, Lnear, percettron, Support Vector Machnes, 18

19 Alber d decsone tra le class Gatt/Can alto + d 50 cm? No Ha l pelo corto? S Output: Cane No No Ha baff? S. Output: Cane Output: Gatto 19

20 Selezone delle features con l ntropa L entropa d una dstrbuzone d class C è la seguente: Msura quanto una dstrbuzone è unforme stato dell entropa per nsem S 1 S n partzonat con gl attrbut d una feature: 20

21 Defnzone d robabltà 1 Sa Ω uno spazo e sa β una famgla d sottonsem d Ω β rappresenta la famgla degl event S defnsce allora la probabltà nel seguente modo: : β [ 0,1] 21

22 Defnzone d robabltà 2 è una funzone che assoca ad ogn evento un numero detto probabltà d nel seguente modo: Ω n... 1 se j 0, j 22

23 23 artzon fnte ed quprobabl S consder una partzone d Ω n n event equprobabl con probabltà 1/n. Dato un evento generco, la sua probabltà è data da : { } ossbl Cas Favorevol Cas : n n n n tot

24 robabltà condzonata A B la probabltà d A dato B B è l nformazone che conoscamo. S ha: A B A B B A A B B 24

25 25 Indpendenza A e B sono ndpendent ff: Se A e B sono ndpendent: A B A B A B B B A B A A B A B A

26 26 Teorema d Bayes Dmostrazone H H H H H H H H Def. prob. Cond. Def. prob. Cond. H H H

27 27 Categorzzatore Bayesano Dato un nseme d categore {c 1, c 2, c n } Sa una descrzone d un esempo da classfcare. La categora d s calcola determnando per ogn c c c c n n c c c n c c 1

28 Categorzzatore Bayesano cont Dobbamo calcolare: Le probabltà a posteror: c e le condzonate: c c s stmano da dat d tranng D. se c sono n esemp n D d tpo c,allora c n / D Supponamo che un esempo è rappresentato da m features: e e L 1 2 Troppe rappresentazon esponenzale n m; dat d tranng non dsponbl per stmare c 28 e m

29 29 Categorzzatore Naïve Bayes Assumamo che le features sano ndpendent data la categora c. Qund dobbamo stmare solo e j c per ogn feature e categora m j j m c e c e e e c L

30 sempo d classfcatore Naïve Bayes C {allergy, cold, well} e 1 sneeze; e 2 cough; e 3 fever {sneeze, cough, fever} rob Well Cold Allergy c sneeze c cough c fever c

31 sempo d classfcatore Naïve Bayes cont. robablty Well Cold Allergy c sneeze c cough c fever c {sneeze, cough, fever} well /0.0089/ cold /0.01/ allergy /0.019/ La categora pù probable è allergy nfatt: well 0.23, cold 0.26, allergy

32 Stma delle probabltà Frequenze stmate da dat d apprendmento. Se D contene n esemp nella categora c, e n j d n contengono la feature e j, allora: nj e j c n roblem: un corpus troppo pccolo. Una feature rara, e k, c :e k c 0. 32

33 Smoothng Le probabltà debbono essere aggustate perché l campone è nsuffcente n modo da rflettere meglo la natura del problema. Laplace smoothng ogn feature ha almeno una probabltà a pror, p, s assume che sa stata osservata n un esempo vrtuale d tagla m. e j c n j n + + mp m 33

34 Naïve Bayes per la classfcazone d document Modello a bag of words Generato per document n una categora Camponamento da un vocabolaro V {w 1, w 2, w m } con probabltà w j c. Lo smoothng d Laplace S assume una dstrbuzone unforme su tutte le parole p 1/ V and m V quvalente a osservare ogn parola n una categora esattamente una volta. 34

35 Tranng verson 1 V è l vocabolaro d tutte le parole de document d tranng D er ogn categora c C Sa D l sotto-nseme de document d D n c c D / D n è l numero totale d parole n D per ogn w j V, n j è l numero d occorrenze d w j n c w j c n j + 1 / n + V 35

36 Tranng verson 2 V è l vocabolaro d tutte le parole de document d tranng D er ogn categora c C Sa D l sotto-nseme de document d D n c c D / D n è l numero totale d coppe <w,d>, d D e w V. er ogn parola w j V, n j è l numero d document d c che contengono w j coè l numero delle coppe <w j,d> tale che d D w j c n j + 1 / n + V 36

37 Testng o Classfcazone Dato un documento d test X Sa n l numero d parole che occorrono n X Resttusc la categora: argmax c C c n j 1 a dove a j è la parola che occorre nella j- esma poszone n X j c 37

38 Sommaro Apprendere Automatcamente sgnfca svluppare un algortmo o una rsorsa per mlgorare le propre prestazon sstono dvers paradgm d ML orentat alla soluzone d problem e d domn dvers Nell apprendmento nduttvo l agente derva un algortmo n genere d classfcazone da un pool d esemp etchettat Supervsed vs. unsupervsed learnng Nell apprendmento basato su conoscenza l algortmo apprende una nuova formulazone algortmca usando un modello del task e del domno 38

39 Sommaro 2 Un tpo d apprendmento d base è quello probablstco dove apprendere sgnfca Descrvere l problema medante un modello generatvo che mette n relazone le varabl n nput e.g. sntom e quelle n output e.g. dagnos Determnare corretto parametr del problema.e. le dstrbuzon analtche o la stma delle probabltà dscrete Un esempo: clasfcazone NB caso dscreto Nella stma de parametr n NB un ruolo centrale è svolto dalle tecnche d smoothng: a partà d modello nfatt stmator errat producono rsultat nsoddsfacent 39

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

Corso di laurea in Economia marittima e dei trasporti

Corso di laurea in Economia marittima e dei trasporti Unverstà degl stud d Genova Corso d laurea n Economa marttma e de trasport Il problema del cammno mnmo n ret multobettvo Relatrce: Anna Scomachen Canddato: Slvo Vlla Dedcato a: Coloro che n me Hanno sempre

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Analisi e Sviluppo di una Rete Neurale Modulare basata su Mixture of Experts, e Confronto con Algoritmi di Boosting

Analisi e Sviluppo di una Rete Neurale Modulare basata su Mixture of Experts, e Confronto con Algoritmi di Boosting Tes d Dploma d Laurea n Informatca d Petro Mele matrcola 54304 Anals e Svluppo d una Rete Neurale Modulare basata su Mxture of Experts, e Confronto con Algortm d Boostng Relatore: Prof. Alberto Berton

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2

DBMS multimediali A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal A L B E R T O B E L U S S I B A S I D I D A T I A N N O A C C A D E M I C O 2 0 1 1 / 2 0 1 2 DBMS multmedal Def: Sono DBMS che consentono d memorzzare e recuperare dat d natura multmedale:

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

Dati di tipo video. Indicizzazione e ricerca video

Dati di tipo video. Indicizzazione e ricerca video Corso d Laurea n Informatca Applcata Unverstà d Urbno Dat d tpo vdeo I dat vdeo sono generalmente rcch dal punto d vsta nformatvo. Sottottol (testo) Colonna sonora (audo parlato e/o musca) Frame (mmagn

Dettagli

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i Markov Random Feld Teora e applcabltà nell elaborazone delle mmagn U ( f) = v [ 1 δ( )] 20 S N f f f * = arg mn f F { U( d f) + U( f) } Govann Banco Febbrao 1998 2 Manoscrtto depostato presso l Dp. d Ingegnera

Dettagli

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione

Dispense dell insegnamento di Laboratorio di GIS per la pianificazione Facoltà d Archtettura e Socetà Facoltà d Ingegnera Cvle, Ambentale e Terrtorale Centro per lo Svluppo del Polo d Cremona, Poltecnco d Mlano Va Sesto 41 26100 Cremona Master unverstaro nterfacoltà d II

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

Corso di Web Mining e Retrieval. - Introduzione al Corso - (a.a. 2012-2013) Roberto Basili

Corso di Web Mining e Retrieval. - Introduzione al Corso - (a.a. 2012-2013) Roberto Basili Corso di Web Mining e Retrieval - Introduzione al Corso - (a.a. 2012-2013) Roberto Basili 1 Overview WM&R: Motivazioni e prospettive Richiami di Algebra Richiami di calcolo delle probabilità Introduzione

Dettagli

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità

Speculazioni matematiche per la formalizzazione/descrizione di un Sistema di Gestione per la Qualità Speculazon matematche per la formalzzazone/descrzone d un Sstema d Gestone per la Qualtà S. Gorla (*), (**) R. Grass (*) Responsable Qualtà e Certfcazone Ctroën tala S.p.A. e consglere d gunta AcqCN, (**)

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

FORMAZIONE ALPHAITALIA

FORMAZIONE ALPHAITALIA ALPHAITALIA PAG. 1 DI 13 FORMAZIONE ALPHAITALIA IL SISTEMA DI GESTIONE PER LA QUALITA Quadro ntroduttvo ALPHAITALIA PAG. 2 DI 13 1. DEFINIZIONI QUALITA Grado n cu un nseme d caratterstche ntrnseche soddsfa

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Pianificazione dei Trasporti

Pianificazione dei Trasporti Unverstà degl Stud d Treste Facoltà d Ingegnera Corso d Panfcazone de Trasport Prof. Govann Longo Anno Accademco 2003-2004 APPUNTI d Panfcazone de Trasport Paolo Martns LA PIANIFICAZIONE DEI TRASPORTI

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda

Corso di TRASPORTI E AMBIENTE. ing. Antonio Comi Ottobre 2012. Modelli di domanda Corso d TRASPORTI E AMBIENTE ng. Antono Com Ottobre 2012 Modell d domanda 1 Struttura del sstema d modell per la smulazone de sstem d trasporto OFFERTA DI INFRASTRUTTURE E SERVIZI DI TRASPORTO MODELLO

Dettagli

UN APPLICAZIONE DELLE RETI BAYESIANE

UN APPLICAZIONE DELLE RETI BAYESIANE UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Polo delle Scenze e delle Tecnologe Dottorato d rcerca n Ingegnera delle Ret Cvl e de Sstem Terrtoral XVIII Cclo Indrzzo Infrastrutture Vare e Sstem d Trasporto

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa

Gianni Cicia (1), Marcella Corduas (2), Teresa Del Giudice (1), Domenico Piccolo (2) 1. Premessa L anals delle preferenze de consumator ne confront delle produzon d qualtà: uno studo del consumo d caffé equosoldale medante l modello CUB Gann Cca (), Marcella Corduas (2), Teresa Del Gudce (), Domenco

Dettagli

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I

IMMAGINE RICONOSCIMENTO. 6.1 La densità di vegetazione: l indice NDVI DELLA VEGETAZIONE SULL I CAPITOLO SESTO RICONOSCIMENTO DELLA VEGETAZIONE SULL I IMMAGINE QUICKBIRDIRD 6.1 La denstà d vegetazone: l ndce NDVI Allo scopo d caratterzzare la dstrbuzone della vegetazone sulle superfc d barena s è

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Generatori di Numeri Pseudocasuali

Generatori di Numeri Pseudocasuali CORSO DI LAUREA MAGISTRALE INGEGNERIA DELLE TECNOLOGIE DELLA COMUNICAZIONE E DELL INFORMAZIONE Generator d Numer Pseudocasual Dego Belvedere, Alessandro Brugnola, Alessa Vennarn Prof. Francesca Merola

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA

ADATTAMENTO DEI SISTEMI E DEI SERVIZI IDROPOTABILI A SCENARI DI CARENZA IDRICA La rcerca scentfca talana nel campo dell draulca: presentazone de rsultat de progett PIN 2008 Ferrara, 24-25 gennao 2013 ADATTAMENTO DEI SISTEMI E DEI SEVIZI IDOPOTABILI A SCENAI DI CAENZA IDICA Coordnatore:

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

PROGRAMMAZIONE DIDATTICA

PROGRAMMAZIONE DIDATTICA ISTITUTO ISTRUZIONE SUPERIORE STATALE CARLO GEMMELLARO CATANIA PROGRAMMAZIONE DIDATTICA ECONOMIA AZIENDALE A.S.: 2015/2016 Prof Pnzzotto Dana classe 5 b afm Obtv educatv OBTV ddattc trasversal Acqusre

Dettagli

PROGETTAZIONE PER IL DISASSEMBLAGGIO: APPLICAZIONE DI RETI NEURALI PER L ANALISI DELLA PROFONDITA DI SMONTAGGIO

PROGETTAZIONE PER IL DISASSEMBLAGGIO: APPLICAZIONE DI RETI NEURALI PER L ANALISI DELLA PROFONDITA DI SMONTAGGIO XIII ADM - XV INGEGRAF Internatonal Conference on TOOLS AND METHODS EVOLUTION IN ENGINEERING DESIGN Cassno, June 3 rd, 2003 Napol, June 4 th and June 6 th, 2003 Salerno, June 5 th, 2003 PROGETTAZIONE PER

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

La tua area riservata Organizzazione Semplicità Efficienza

La tua area riservata Organizzazione Semplicità Efficienza Rev. 07/2012 La tua area rservata Organzzazone Semplctà Effcenza www.vstos.t La tua area rservata 1 MyVstos MyVstos è la pattaforma nformatca rservata a rvendtor Vstos che consente d verfcare la dsponbltà

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli