lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt Misura:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:"

Transcript

1 Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt Msura: Espressone quanttatva del rapporto fra una grandezza ed un altra ad essa omogenea scelta come untà A pror non s conosce l valore d cò che s msura, al pù s avrà una dea sull ordne d grandezza. E qund necessaro fornre un errore, coè una stma della possble dfferenza tra l valore della msura e quello reale (che non conoscamo). La msura qund: E una espressone quanttatva Necessta d una grandezza d rfermento (ppm, mg/l, mg/kg) Necessta d una stma dell errore Il rsultato d una msura NON consste SOLO nel valore fornto dallo strumento, ma anche d un errore e d una untà d msura (la mancanza d uno d quest termn rende gl altr nutl). Una msura DEVE dare una nformazone COMPLETA. Esempo: Concentrazone dell elemento = 0.3 ± 0.01 ppm

2 L errore determna quanto affdable è la msura, la sua accuratezza e la sua precsone. Accuratezza: Stma d quanto l rsultato d una msura è vcno al valore reale della quanttà msurata Precsone: Stma della rpetbltà della msura (msure dverse della stessa quanttà devono convergere allo stesso rsultato) Bassa Accuratezza Bassa Precsone Alta Accuratezza Alta Precsone Bassa Accuratezza Alta Precsone (errore pccolo, valor medo lontano dal valore vero, errore sstematco) Alta Accuratezza Bassa Precsone (errore grande)

3 ATTENZIONE Da un punto d vsta spermentale, scrvere: è molto dverso! Non scrvere una cfra o un decmale nel rportare una data msura o numero ndca l mpossbltà d conoscere l valore d quella cfra Se scrvo 1.0 ndca che 1.0 Valor non not ma non per questo null

4 ATTENZIONE Non ha senso scrvere X = ± 0.1 X = 1.3 ± Attenzone a decmal ogn cfra scrtta n una msura ha un precso sgnfcato

5 Cenn d statstca ed elaborazone d dat geochmc Obettv della lezone: Statstca descrttva: le varabl Frequenze: tabelle e grafc Indc d poszone, d dspersone e d forma Meda e varanza d dat raggruppat Correlazone tra varabl Retta d regressone Una trattazone statstca de dat può essere utle per a) analzzare l attendbltà analtca b) per comprendere de process

6 Statstca Descrttva Ho un nseme d dat e l voglo descrvere, sntetzzare e commentare Deduttva Ho un nseme d dat e l utlzzo per fare deduzon su process che sto studando

7 Anals de Dat Supponamo d dover msurare una osservable (concentrazone d un elemento ì nel suolo della provnca) Faccamo qund N msure della osservable n questone 1. Dstrbuzone n frequenza Come procede l anals de dat?. Parametr della dstrbuzone: Stme dell osservable Medana Moda Valor medo 3. Parametr della dstrbuzone: Stme dell errore e dspersone Devazone Meda Varanza Devazone Standard

8 Dstrbuzone n Frequenza Se s vuole msurare una osservable, qund, è necessaro effettuare una o pù msure. Cascuna d queste msure ha, l pù delle volte, un rsultato dfferente. E qund possble costrure l grafco della dstrbuzone: Msuramo ad esempo la concentrazone chmca d un d elemento n un suolo XXX Eseguo 1 msure. Ottengo 1 numer dfferent. Costrusco un grafco che ha come ascssa l valore della msura, sulla ordnata l numero d volte n cu ho ottenuto tale msura. (Dstrbuzone n frequenza, f()) Stablsco un passo: n questo caso 0.1 g Se troppo pccolo 1 conteggo per canale/classe Se troppo grande tutte le msure n un canale/classe Il totale deve essere uguale al numero d msure 8

9 Frequenza Frequenza Frequenza Peso [g] Concentrazone (ppm) I punt sono dstrbut attorno ad un certo valore m La dspersone attorno a m è un ndce dell errore della msura Maggore è l numero delle msure maggore sarà la precsone con cu determnerò m Peso [g] Concentrazone (ppm) Concentrazone (ppm) Valore [g] Passo troppo largo Passo troppo stretto

10 Frequenza assoluta: Frequenze S consderno N dat da analzzare. I dat vengono suddvs n un opportuno numero d class; per ogn classe s ha: Frequenza relatva: numero d oggett del tpo -esmo 0 N f N 0 f 1 N f 1 N Frequenza percentuale: è la freq. relatva moltplcata per 100 Frequenza cumulatva assoluta: è la somma della freq. assoluta + la freq. cumulatva assoluta del dato precedente. N N 1 f 100 k0 k 0 N N

11 Dstrbuzon d frequenza cumulatva Il grafco della dstrbuzone cumulatva d frequenza assoluta è l seguente: Concentrazone ppm

12 Probabltà frequenza Concentrazone Peso [g] (ppm) Normalzzando rspetto al numero totale d msure s ottene la probabltà Concentrazone Peso [g] (ppm)

13 Curve d dstrbuzone NORMAL NORMAL Noof obs Noof obs UpperBoundares ( <= boundary) Epected Normal ,0 -,5 -,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5,0,5 UpperBoundares ( <= boundary) Epected Normal Noof obs Prncpal ndc statstc NORMAL I grafc fnora analzzat c danno nformazon qualtatve; possamo 7 6 quantfcarle 5 rcorrendo a seguent ndc. 4 3 Sano n osservazon numerche 1,,..., n 0 -,8 -,4 -,0-1,6-1, -0,8-0,4 0,0 0,4 0,8 1, 1,6,0 -,6 -, -1,8-1,4-1,0-0,6-0, 0, 0,6 1,0 1,4 1,8, UpperBoundares ( <= boundary) d poszone Epected Normal MODA MEDIANA MEDIA INDICI d dspersone SCARTO QUADRATICO MEDIO VARIANZA RANGE d forma ASIMMETRIA (SKEWNESS) CURTOSI ( KURTOSIS)

14 Parametr della dstrbuzone: Stme dell osservable Infnte Msure (N >> 1) Meda m m 1 lm N N Data una sere d N msure, cascuna con rsultato allora la meda m è defnta come: lm N f ( ) f ( ) f ( ) d f ( ) d Medana m 1/ Data una sere d N msure, cascune con rsultato allora la medana m 1/ è defnta come quel valore d tale che l 50% delle msure dano un rsultato superore ed l 50% nferore f ( ) f ( ) 50% 1 1 m ma = Moda Data una sere d N msure, cascuna con rsultato allora m ma è defnto come l valore per cu la probabltà della Popolazone sa massma

15 Medan, Quartles, Inter-Quartle Range and Bo Plots. Measures of Spread The range s not a good measure of spread because one etreme, (very hgh or very low value) can have a bg affect. The measure of spread that goes wth the medan s called the nter-quartle range and s generally a better measure of spread because t s not affected by etreme values. A remnder about the medan

16 The Medan The medan s the mddle value of a set of data once the data has been ordered. Eample 1. The repetton of 11 analyses of the element nckel (n ppm) n a sol are gven below. Fnd the medan value. 85, 15, 130, 65, 100, 70, 75, 50, 140, 95, 70 50, 65, 70, 70, 75, 85, 95, 100, 15, 130, 140 Sngle mddle value Ordered data Medan = 85 ppm

17 The Medan The medan s the mddle value of a set of data once the data has been ordered. Eample. The repeated analyses of a second sol revealed the followng contents of nckel (ppm) 85, 15, 130, 65, 100, 70, 75, 50, 140, 135, 95, 70 50, 65, 70, 70, 75, 85, 95, 100, 15, 130, 135, 140 Two mddle values so take the mean. Ordered data Medan = 90 ppm

18 Fndng the medan, quartles and nterquartle range, of the followng analyses of Th n sedments 6, 3, 9, 8, 4, 10, 8, 4, 15, 8, 10 Order the data Q 1 Q Q 3 3, 4, 4, 6, 8, 8, 8, 9, 10, 10, 15, Lower Quartle = 4 Medan = 8 Upper Quartle = 10 Inter-Quartle Range = 10-4 = 6

19 Drawng a Bo Plot. Eample 1: Draw a Bo plot for the data below Q 1 Q Q 3 4, 4, 5, 6, 8, 8, 8, 9, 9, 9, 10, 1 Lower Quartle = 5½ Medan = 8 Upper Quartle =

20 Drawng a Bo Plot. Eample : Draw a Bo plot for the data below Q 1 Q Q 3 3, 4, 4, 6, 8, 8, 8, 9, 10, 10, 15, Lower Quartle = 4 Medan = 8 Upper Quartle =

21 Quartle nferore Medana Quartle superore outler In alcun test suggerscono che la lunghezza de «baff» de whskers plot deve comprendere valor estrem della popolazone. Altr test suggerscono nvece che baff devono avere lunghezza par a: (Quartle sup- Quart nf) * 1,5 Evdenzando come «outlers» valor che escono da tale range.

22 Dstrbuzone del cromo e del nchel ne terren della provnca d Ferrara

23

24 NORMAL NORMAL Noof obs Noof obs UpperBoundares ( <= boundary) Epected Normal ,0 -,5 -,0-1,5-1,0-0,5 0,0 0,5 1,0 1,5,0,5 UpperBoundares ( <= boundary) Epected Normal NORMAL Noof obs MODA MEDIA 0 -,8 -,4 -,0-1,6-1, -0,8-0,4 0,0 0,4 0,8 -,6 -, -1,8-1,4-1,0-0,6-0, 0, 0,6 1,0 1,4 1,8, UpperBoundares ( <= boundary) Indc d poszone: E' defnta come l valore che ha la frequenza pù alta. E' quel valore che corrsponde alla somma d tutt valor 1, 1,6,0 dvsoepected l numero de valor stess. X Normal n X 1 n dove: X = esto -ma msura n = numero de dat (tagla del campone) MEDIANA E' quel valore al d sotto del quale cadono la metà de valor camponar. Gl ndc d poszone ndcano attorno a quale valore l campone de dat e poszonato m nteressa la dspersone de dat ntorno a tal valor N.B. NELLA DISTRIBUZIONE NORMALE MEDIA= MODA = MEDIANA

25 Parametr della dstrbuzone: Stme della dspersone de dat Devazone d d d m Nota: E poco utle Devazone meda ( a ) Nota: Se vensse tolto l modulo la sommatora sarebbe nulla Nota: La Devazone meda è una msura della dspersone delle msure attorno alla meda Varanza ( s ) m Nota: La varanza NON ha le stesse untà d msura della meda s a lm N 1 N 1 m lm N N Devazone standard ( s ) s s Nota: La devazone standard HA le stesse untà d msura della meda La Devazone standard descrve la dspersone delle msure attorno alla meda e qund quantfca l effetto delle fluttuazon statstche nelle condzon spermental d msura

26 INDICE DI ASIMMETRIA (Skewness) >0 coda a destra <0 coda a snstra =0 smmetrca CURTOSI Msura quanto la dstrbuzone è appuntta >3 poco appuntta =3 caso della dstrbuzone normale <3 molto appuntta

27 d d forma d dspersone d poszone Indc: Schema rassuntvo meda: N moda: punto d ma della dstrbuzone medana: valore sotto al quale cadono la metà de valor camponar. S dspongono dat n ordne crescente e s prende quello che occupa la poszone centrale (N dspar) o la meda de valor n poszone centrale (N par) varanza devazone standard range s s R skewness (coeff. d asmmetra) curtos: msura quanto la dstrbuzone è appuntta N 1 ma mn s N >3 poco appuntta <3 molto appuntta 3 >0 coda a ds <0 coda a sn =0 smmetrca s N 4

28 0 5 Frequency La Dstrbuzone Gaussana Le dstrbuzon normal sono contraddstnte da curve smmetrche a forma d campana e unmodal (moda meda e medana concdono). Hanno tutte la stessa forma ma sono caratterzzate (e completamente ndvdualzzate) da due valor: meda e varanza peso alla nascta

29 Caratterstche d una dstrbuzone Normale La curva Normale è Unmodale e smmetrca rspetto alla sua meda (μ) Frequenza relatvamente pù elevata de valor central e frequenze progressvamente mnor verso gl estrem. La meda, la medana e la moda della dstrbuzone concdono La Devazone Standard, rappresentata da s, ndca la quanttà d dspersone delle osservazon ntorno alla meda I parametr μ e σ defnscono n modo completo la curva

30 Dstrbuzone e probaltà

31 31 Meda Pesata Può captare che una grandezza sa stata msurata pù volte da persone o con tecnche dfferent Cascuna d queste msure a sua volta è l rsultato d molte msure e qund è nella forma Il calcolo del semplce valor medo potrebbe non essere convenente se le ncertezze non sono ugual o molto sml. E n generale pù corretto usare la meda pesata defnta come s s s 1/ 1 best best w w w w s s

32 Spesso le anals geochmche che effettuamo sono mult-elementar. Nasce qund l esgenza d osservare relazon fra le varabl. Correlazone tra varabl Fnora abbamo consderato una varable alla volta, ora tratteremo anals d tpo comparatvo: a. Osservo una varable su pu grupp d ndvdu b. Osservo pu varabl su un gruppo d ndvdu c. Entrambe le stuazon a. e b. Esste correlazone tra le varabl? Scatterplot, dagramma a dspersone Umdta' Evaporazone del solvente 35,3 11 9,7 11,1 30,8 1,5 58,8 8,4 61,4 9,3 71,3 8,7 74,4 6,4 76,7 8,5 70,7 7,8 57,5 9,1 46,4 8, 8,9 1, Evaporazone del solvente Evaporazone del solvente

33 Indc d varazone bdmensonal Date n osservazon congunte d varabl (, y ),(, y ),...,(, y ) 1 1 Covaranza camponara n n Se c,y >0 e y sono drettamente correlate Se c,y <0 e y sono nversamente correlate Se c,y =0 le varabl non sono correlate

34 Indc d varazone bdmensonal Indce d correlazone r y, Date n osservazon congunte d varabl c ss r 1, coè 1 r1 y r = 0.6 y r = 1 y r = -0.8 y r = -1 y r = 0 y r = 0 y v

35 EXCEL: Retta d regressone Eserczo: Stablre se c e dpendenza lneare tra l umdta del magazzno e l evaporazone d un certo componente chmco. Step1: Scatterplot Evaporazone del solvente Evaporazone del solvente Umdta' Evaporazone del solvente 35,3 11 9,7 11,1 30,8 1,5 58,8 8,4 61,4 9,3 71,3 8,7 74,4 6,4 76,7 8,5 70,7 7,8 57,5 9,1 46,4 8, 8,9 1, 8,1 11,9 Step: Coeffcente d correlazone Utlzzando la funzone =CORRELAZIONE(dat_1;dat_) ottengo r =

36 Regressone lneare: retta d regressone S vuole cercare la relazone lneare tra due varabl e y. Date n osservazon congunte d varabl cerco due coeffcent a e b tal che y=a+b pass l pù possble vcno a quest punt. Cerco a e b tal che n, f a b y a b 1 sa mnma (Metodo de mnm quadrat) 36

37 37 Metodo de mnm Quadrat (Per ottenere rette d regressone) Date delle coppe d msure ed y Sa l errore nella determnazone d molto mnore d quello relatvo a y Sa lneare l legame tra le due osservabl ed y Il problema consste nel trovare una tecnca per trovare coeffcent a e b che mnmzzano la dscrepanza tra la retta ed punt spermental b a y varanza con Msura varanza con Msura y s s s s s s s s s s s s s s y y b y y a

38 EXCEL: Retta d regressone Step3: Retta d regressone Usando ecel, avendo ga lo scatterplot selezono: Grafco-Aggung lnea d tendenza y = -0, , Sere1 Lneare (Sere1) y = -0, ,

39 D Guseppe et al. (014; Pubblcato su Cheme der Erde) Composzone de terren dell areale Ferrarese. Esempo d correlazone elementare 39

40 Posso fare n scatterplots per verfcare le correlazon fra tutt gl element analzzat 40

41 Il calcolo d tutt coeffcent d correlazone delle varabl d una data set va a costture una matrce d correlazone Ps L Na Mg Al K Ca V Cr Mn Fe Co N Cu Zn As Sr Pb L 1.00 Na Mg Al K Ca V Cr Mn Fe Co N Cu Zn As Sr Pb Questa matrce è relatva a dat ottenut attraverso anals ICP-MS d soluzon acquose che hanno nteragto con terren dell areale ferrarese (5 mg d suolo n 5 ml d acqua)

42 Esstono programm statstc che consentono l anals multdmensonale con l confronto smultaneo d n varabl (es dstnt element chmmc analzzat n molteplc campon). Sml elaborazon consentono d: - Identfcare dstnt element che correlano fra loro - Raggruppare campon che hanno smltudn Per esempo, nella fgura s vedono raggruppament (clusters) d campon ndvduat dall anals smultanea d tre parametr Intra-cluster dstances are mnmzed Inter-cluster dstances are mamzed Fndng groups of objects such that the objects n a group wll be smlar (or related) to one another and dfferent from (or unrelated to) the objects n other groups

43 Immagnamo che punt sottostant sano esprmano la concentrazone d var element d dstnt campon. Una cluster analyss c permetterà d dentfcare campon avent smltudn Parttonal Clusterng Orgnal Ponts A Parttonal Clusterng 43

44 Noton of a Cluster can be Ambguous How many clusters? S Clusters Two Clusters Four Clusters

45 Herarchcal Clusterng p1 p p3 p4 Tradtonal Herarchcal Clusterng Tradtonal Dendrogram p1 p p3 p4

46 46

47 47

48 48

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Statistica Descrittiva ed Inferenziale

Statistica Descrittiva ed Inferenziale Statstca Descrttva ed Inferenzale 1 Why Statstcs? A? A B Descrpton and Predcton Samples Analyss A1 A A B C Pared Samples Analyss MultSamples Analyss 1 Why Statstcs? Formal defnton of Probablty σ-feld 3

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI Captolo - Dalla teora degl error al trattamento de dat DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI LA MISURA DELLE GRANDEZZE Nel descrere fenomen, occorre da un lato elaborare de modell (coè delle

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione

Misure di dispersione. Introduzione. Statistica descrittiva. Distribuzioni di probabilità e funzioni di ripartizione. Indici di posizione UNIVERSITA DEL SALENTO CORSO DI LAUREA IN FISICA (a.a. 007/008) Corso d Laboratoro II (Prof. Antono D INNOCENZO) ESERCITAZIONE DI STATISTICA * Lo scopo d questa eserctazone è quello d comncare ad utlzzare

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Appunti delle lezioni di Laboratorio di Strumentazione e Misura

Appunti delle lezioni di Laboratorio di Strumentazione e Misura Sergo Frasca Appunt delle lezon d Laboratoro d Strumentazone e Msura Dpartmento d Fsca Unverstà d Roma La Sapenza Museo del Dpartmento d Fsca dell'unverstà La Sapenza Versone 5 ottobre 004 Versone aggornata

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli