1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P"

Transcript

1 . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero s>0 ed un numero ff 2 (0; ) tal che P s ff 8; 2 E: Teorema Sa k una catena d Markov regolare con sazo degl stat E; allora esste un' unca msura nvarante ß er cu rsulta: () ßP = ß () lm n! (n) = ß ; 2 E Inoltre la veloct a d convergenza n () e esonenzale. La msura ß vene anche detta stazonara. Prma d dmostrare questo teorema, ntroducamo alcune notazon e rsultat relmnar de qual avremo bsogno. Sa data una catena d Markov dscreta (CM) e suonamo er semlct a d dentfcare lo sazo degl stat con l'nseme E = f; 2; :::; Ng; sa noltre P = ( ) la matrce delle robablt a d transzone della CM e denotamo con (n) la robablt a d transzone dallo stato allo stato n n ass. Sa μ una robablt a su E; μ u o essere ensata come un vettore aartenente al s.. d R N : S = fx 2 R N : x 0; x =g Rcordamo che una msura μ 2 S s dce nvarante se μp = μ; coé seμ e unautovettore snstro d P relatvo all'autovalore ; o c o che e lo stesso, se μ e un autovettore d P T relatvo all'autovalore :. Osservamo che ogn matrce stocastca P (er la quale coé P = ) ammette semre un autovalore, dcamo = ; e tutt gl altr autovalor sono n modulo non sueror a : Infatt s verfca subto che l vettore con comonent tutte ugual a e un autovettore d P relatvo all'autovalore : Inoltre, se e un qualunque altro autovalore d P relatvo all'autovettore u e max ;::;N u = u h er un certo h» N; s ha: e qund: da cu segue»: u h = N u h = h u» N N h u h u»u h N h = u h * Quest aunt sono arte ntegrante del corso: M. Abundo, Probablt a 2, laurea n Matematca, Unverst a Tor Vergata, a.a. 2003/ 2004.

2 2. 8μ 2 S s ha μp 2 S: Infatt, (μp ) 0; noltre: N (μp ) = μ = = μ = μ = ove nell' ultmo assaggo abbamo usato l fatto che P = ; essendo P una matrce stocastca. 3. S ρ R N e un s.. chuso e lmtato, dunque e comatto. 4. Se μ 0 2 S e la dstrbuzone o msura d robablt a nzale della CM, ovvero (μ 0 ) = P ( 0 = ) ed essa e nvarante, coé μ 0 P = μ 0 ; allora, osto μ n : = μ0 P n ; s ha μ n = μ 0 ; nfatt μ n = μ 0 P n =(μ 0 P )P n = μ 0 P n = ::::: = μ 0 P = μ 0 : Sccome P ( n = ) = ::: P ( 0 = 0 ) 0 2 :::: n =(μ 0 P n ) =(μ n ) 0 n s ottene allora che se la dstrbuzone nzale μ 0 e nvarante, allora er ogn n s ha P ( n = ) =P ( 0 = ); ovvero la dstrbuzone doo n ass e la stessa d quella nzale. 5. Per ogn msura nzale μ 0 assegnata (anche non nvarante), μ n = μ 0 P n e una successone d robablt a su E; coé d element d S; sccome S e comatto, da questa : successone s u o estrarre una sottosuccessone μ n k = μ ν convergente, er ν!; ad un vettore ß 2 S: Inoltre ß e nvarante; nfatt ß = lm ν! μ 0P ν = lm ν! μ 0P ν = lm ν! (μ 0P ν )P = ßP 6. S e un s.. dello sazo metrco R N ; ertanto eredta qualunque dstanza d( ; ) nr N : Rcordamo che una dstanza su uno sazo metrco V e una funzone d : V V! [0; ) tale che: () d(x; y) 0 8x; y 2 V e d(x; y) =0se e solo se x = y; () d(x; y) = d(y; x) 8x; y 2 V (roret a smmetrca) ; () d(x; y)» d(x; z)d(z; y) 8x; y; z 2 V (dsuguaglanza trangolare) Ad esemo, n R N ossamo consderare la dstanza Eucldea: d E (x; y) =d((x ;x 2 ; :::; x N ); (y ;y 2 ; :::; y N )) : =ψ N 2 = (x y ) 2! 2

3 ma esstono nfnte altre dstanze, er esemo: oure d (x; y) : = d 2 (x; y) : = N = x y max fx y g =;::N Le dstanze d E e d sono equvalent, nel senso che esstono costant A; B > 0 tal che: A d (x; y)» d E (x; y)» B d (x; y) (er esemo, er N = 2; la rma d queste dsuguaglanze e soddsfatta er 0 < A < 2=2); analogamente de e d 2 sono equvalent, ovvero esstono costant C; D > 0 tal che: C d 2 (x; y)» d E (x; y)» D d 2 (x; y) Dunque, le dstanze d E ;d e d 2 sono tutte equvalent tra loro. C o sgnfca che, data una successone d vettor fx ν g; se d E (x ν ;y)! 0; ν!; allora x ν converge a y anche con la metrca fornta dalle altre dstanze, e vceversa. Dunque, rtornando al nostro dscorso, se d e una qualunque dstanza n S equvalente alla dstanza Eucldea d E e d E (μ ν ;ß)! 0; allora s ha anche d(μ ν ;ß)! 0; ν!: 7. La msura nvarante ß trovata al unto 5 non e necessaramente unca, se P non ossede certe roret a. 8. Introducamo ora la dstanza su S defnta da: d(μ 0 ;μ 00 )= 2 N = μ 0 μ 00 ; μ 0 ;μ 00 2 S Essa e equvalente alla metrca Eucldea. Osservamo che: 0= μ 0 μ 00 = (μ 0 μ 00 )= (μ 0 μ 00 ) (μ 00 μ 0 ) (Λ) ove P denota la somma rsetto agl ndc er qual termn sono ostv. S ha allora: d(μ 0 ;μ 00 )= 2 N = μ 0 μ 00 = = 2 (μ 0 μ 00 ) 2 (μ 00 μ 0 )= (er (Λ)) 3

4 = (μ 0 μ 00 )» μ 0» μ 0 = 9. Lemma Sa Q =(q ) una matrce stocastca. Allora, 8μ 0 ;μ 00 2 S : () d(μ 0 Q; μ 00 Q)» d(μ 0 ;μ 00 ) () se esste 0 <ff< er cu q ff 8; allora: d(μ 0 Q; μ 00 Q)» ( ff)d(μ 0 ;μ 00 ) P P Prova. () S ha (μ 0 Q) = μ0 q e (μ 00 Q) = μ00 q : Allora: d(μ 0 Q; μ 00 Q)= (μ 0 μ 00 )q» (μ 0 μ 00 )q = (μ 0 μ 00 ) q Ma P q» P q =: Dunque, abbamo ottenuto: d(μ 0 Q; μ 00 Q)» (μ 0 μ 00 )=d(μ0 ;μ 00 ) P che rova la tes. P P () La somma nel calcolo d d(μ0 Q; μ 00 Q) non u o essere una somma su tutt gl ndc : Infatt, se fosse μ0 q > μ00 q 8; allora sarebbe anche: P μ 0 q > μ 00 q ma c o e assurdo, essendo entramb membr dell' ultma dsuguaglanza ugual a ( nfatt P μ0 q = P μ0 (P q ) = P μ0 = ): Dunque, almeno un ndce, dcamo 0; e mancante nella somma P q : Qund: q» 6= 0 q» q 0» ff eesendo q ff 8; : Infne: d(μ 0 Q; μ 00 Q)» ( ff) (μ 0 μ 00 ) q» (μ 0 μ 00 )=( ff)d(μ0 ;μ 00 ) 4

5 che rova l secondo asserto. Dmostrazone del Teorema ergodco () Abbamo g a rovato al unto 5 che esste (almeno) una msura nvarante ß che e l lmte d una sottosuccessone fμ ν g estratta da fμ n g: In realt a nell'otes che P e regolare, coé esstono un numero 0 <ff<edun ntero s>0taleche (s) ff>0 8; ; s ha che fμ n g e una successone d Cauchy. Per mostrare c o, basta osservare che er ogn coa d nter h<k: d(μ h ;μ k )=d(μ 0 P h ;μ 0 P k )» ( ff)d(μ 0 P h s ;μ 0 P k s )» ( ff) 2 d(μ 0 P h 2s ;μ 0 P k 2s )» :::::» ( ff) m d(μ 0 P h ms ;μ 0 P k ms )» ( ff) m! 0 er h; k! oché, se h = ms ; con ntero < s; allora m = (h )=s! er h! : Ne assagg d sora abbamo alcato l Lemma con P s n luogo d Q; osservando che d(μ 0 P h ms ;μ 0 P k ms )» ; semre er l Lemma. Dunque fμ n g e una successone d Cauchy nella metrca d; ertanto rsulta addrttura d(μ n ;ß)! 0; n!: Occorre ora rovare che esste un' unca msura nvarante. Suonamo er assurdo che esstano due msure nvarant ß e ß 2 tal che ß = ß P e ß 2 = ß 2 P: Dunque s ha anche ß = ß P s ; ß 2 = ß 2 P s ; er l Lemma, abbamo: d(ß ;ß 2 )=d(ß P s ;ß 2 P s )» ( ff)d(ß ;ß 2 ) Questo mlca che deve avers d(ß ;ß 2 )=0;.e. ß = ß 2 : () Sceglamo μ 0 = (0; :::; 0; ; 0; :::; 0) nel quale tutte le comonent sono nulle, tranne l' -esma che vale : Allora μ 0 P n e la dstrbuzone d robablt a f (n) g ;::;N : Sccome μ 0 P n! ß; s ha: lm n! (n) = ß Andamo ora a stmare la veloct a dconvergenza d (n) a ß : Tenendo conto che ßP = ß; s ha: d(μ n ;ß)=d(μ 0 P n ;ß)=d(μ 0 P n ;ßP n ) e, osto n = ks h; h<s;l'ultma dstanza s scrve: che, er l Lemma rsulta essere d(μ 0 P h (P s ) k ;ßP h (P s ) k )» ( ff) k d(μ 0 P h ;ßP h )» ( ff) k essendo d(μ 0 P h ;ßP h )» : Abbamo dunque ottenuto: d(μ n ;ß)» ( ff) k =( ff) n=s ( ff) h=s = fn dove abbamo osto f =( ff) =s < : Dunque, la veloct a d convergenza e esonenzale. C o conclude la dmostrazone del Teorema ergodco. fh 5

6 2. Matrce d transzone ad n ass In questa sezone c occueremo del calcolo eslcto della matrce d transzone ad n ass d una CM, ovvero della matrce P n = ( (n) ) l cu elemento d osto ; raresenta P ( n = 0 = ): Rcordamo dall' algebra lneare la nozone d matrce dagonalzzable. Sa A una matrce quadrata d ordne N con autovalor ; 2 ; :::; N e suonamo che er cascuno de ; = ; ::; N; la molteclt a geometrca uguagl la moltelct a algebrca; allora A e dagonalzzable, coé esste una matrce U d ordne N; tale che U AU e una matrce dagonale e rsulta U AU =Λ=dag( ; 2 ; :::; N ) La matrce U ha er colonne gl N autovettor ndendent d A: Consderamo ora, al osto d A; la matrce d transzone P d una CM con sazo degl stat E = f; 2; :::; Ng; e suonamo che gl autovalor d P sano tutt dstnt. Allora, P e dagonalzzable e rsulta P = UΛU ; ertanto, come e mmedato verfcare, s ha P n = UΛ n U : Effettuamo l calcolo eslcto d P n ; nel caso n cu P e una matrce stocastca d ordne 2; con element strettamente ostv, coé essa e la matrce delle robablt a d transzone d una CM regolare a due stat; P u o essere osta nella forma: P = a a dove a; 2 (0; ): Gl autovalor d P sono: =e 2 = a con 2» (v. unto. della recedente sezone), ed ess sono dstnt; dunque: Λ= 0 0 a I due autovettor relatv a e 2 sono, a meno d un fattore d roorzonalt a: S ha allora: e Dunque: v = U = U = a a v 2 = a a P n = UΛ n U = 0 a a a 0 ( a ) n a 6 a a

7 ed effettuando calcol s ottene nfne: a P n a a = a a a ( a )n a a a Le due rghe (ugual) della rma matrce sono costtute dalle comonent del vettore ß delle robablt a stazonare (ß e l' autovettore snstro d P relatvo all'autovalore ); che e : Abbamo allora ottenuto: ß = ß ß 2 = ove T e la matrce (non stocastca) data da: a a a P n = ß ß 2 ß ß 2 n 2 T T = a a a La veloct a d convergenza nel teorema ergodco e fornta allora dalla quantt a n 2 ove, come abbamo vsto, 2»: u vcno a zero e l secondo autovettore d P; maggore e la veloct a dconvergenza d (n) a ß er n!: 7

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea:

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea: G. Parmeggan 3/6/9 Algebra e matematca dscreta, a.a. 8/9, Scuola d Scenze - Corso d laurea: parte d Algebra Informatca ESERCIZIO TIPO Sa A(α) α, dove α è un numero reale non negatvo. (a) Per qual α real

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Variabili casuali doppie

Variabili casuali doppie Varabl casual doe Una varable casuale doa (,) è una funzone defnta sullo sazo degl event che assoca ad ogn evento una coa d numer real (x,y) (x 1, y 1 ) S y 1 A B y (x, y ) (x 3, y 3 ) C y 3 x 1 x x 3

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas

Equilibri Chimici. Processi chimici indipendenti & reazioni in fase gas Equlbr Chmc Process chmc ndendent & reazon n fase gas Process stechometrc ndendent (1) Un rocesso stechometrco ndendente è costtuto da un nseme d relazon quanttatve tra le varazon del numero d mol d cascun

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

Media aritmetica (ponderata)

Media aritmetica (ponderata) I calcol che abbamo vsto fnora s ossono effettuare se s dsone d tutte le osservazon relatve alle N untà statstche. Tuttava, sesso accade che s debba oerare con tabelle d dstrbuzon d frequenze. Grado n

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

Sulla teoria di Z in L = {+,<}

Sulla teoria di Z in L = {+,<} Sulla teora d Z n L = {+,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore

Esempi di canali DMC ed esercizi su: 1) Calcolo della capacità di canale. 2) Calcolo della probabilità di errore Argoment della Lezone Esem d canal DMC ed esercz su: Calcolo della caactà d canale Calcolo della robabltà d errore 3 Verca della dsuguaglanza d Fano Eserczo Sa data una sorgente bnara con smbol ed avent

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

STATO DI TENSIONE IN SEZIONI MASSICCE. Sforzo normale

STATO DI TENSIONE IN SEZIONI MASSICCE. Sforzo normale STATO DI TENSIONE IN SEZIONI MASSICCE Sforzo normale In caso d sforzo normale trazone o comressone, s assume che nelle sezon della trave suffcentemente lontane da vcolo e dalle forze alcate, essta solo

Dettagli

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007

Università di Verona Prof. S. De Marchi Verona, 30 gennaio 2007 LABORATORIO DI CALCOLO NUMERICO Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 30 gennao 2007 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere ordnat come

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006 LABORATORIO DI CALCOLO NUMERICO : Gruppo A Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 6 febbrao 2006 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere

Dettagli

Variabili casuali. Variabili casuali

Variabili casuali. Variabili casuali Varabl casual Assegnato uno spazo d probabltà (S, A, P[.]) s densce varable casuale una unzone avente come domno lo spazo de campon (S) e come codomno la retta reale. S Le varabl casual s ndcano con lettere

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

termodinamica dei gas perfetti V i Funzione di stato Trasformazione isotermica di un gas perfetto: Q isot = L isot V = cost L = 0

termodinamica dei gas perfetti V i Funzione di stato Trasformazione isotermica di un gas perfetto: Q isot = L isot V = cost L = 0 termodnamca de gas erfett Equazone d stato de gas erfett: = nrt Prmo rnco della termodnamca: U = Q - L Q = nc T, er una trasformazone socora Q = nc T, er una trasformazone sobarca Lavoro: L = Energa nterna

Dettagli

Meccanica Dinamica dei sistemi

Meccanica Dinamica dei sistemi Meccanca 7-8 Dnamca de sstem 5 W Dnamca de sstem d unt materal Laoro er un sstema d unt materal er la artcella -esma: O r m F dw n dr F ds T dw F dr F W F dr W + W n n m, m, W W + W E m d Laoro totale

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 1 =103 2 2 =97 3 3 =90 4 4 =119

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

APPUNTI 1 SU: DISTRIBUZIONI CONGIUNTE, COVARIANZA E RETTA DI REGRESSIONE 1 Distribuzioni congiunte Spesso nelle applicazioni si e portati a considerar

APPUNTI 1 SU: DISTRIBUZIONI CONGIUNTE, COVARIANZA E RETTA DI REGRESSIONE 1 Distribuzioni congiunte Spesso nelle applicazioni si e portati a considerar APPUNTI 1 SU: DISTRIBUZIONI CONGIUNTE, COVARIANZA E RETTA DI REGRESSIONE 1 Dstrbuzon congunte Spesso nelle applcazon s e portat a consderare p u quantt a aleatore e a confrontarne l comportamento. C o

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

1) Codifica di sorgente sub-ottima: algoritmi di Shannon, Shannon-Fano.

1) Codifica di sorgente sub-ottima: algoritmi di Shannon, Shannon-Fano. Argoment della Lezone ) Codfca d sorgente sub-ottma: algortm d Shannon, Shannon-Fano. 2) Codfca d sorgente basata su blocch 3) Sorgent con memora 4) Codfca d sorgent d Markov 5) Codfca unversale e codfca

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio Formulazone e Notazon Algortmo d Carler- Pnson er roblem d Job Sho Schedulng: un esemo Notazon o C M ( o r, q -esma oerazone del ob Temo d rocessamento d o Macchna che deve rocessare o Clque (nseme d oerazon

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Teoria dell informazione e Meccanica Statistica

Teoria dell informazione e Meccanica Statistica Teora dell nformazone e Meccanca Statstca L. P. Gugno 2007 Rporto qu una breve rassegna dell approcco alla Meccanca Statstca medante la teora dell nformazone. Partamo dalla consderazone che la probabltà

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Sia G = ({1, 2,..., n}, E) un grafo orientato. Definizione di matrici di Adiacenza e di Transizione del grafo G: 1 ij E

Sia G = ({1, 2,..., n}, E) un grafo orientato. Definizione di matrici di Adiacenza e di Transizione del grafo G: 1 ij E Sa G ({1, 2,..., n}, E) un grafo orentato. Defnzone d matrc d Adacenza e d ranszone del grafo G: { { 1 j E 1/deg() j E Adac(G) j 0 j / E, rans(g) j 0 j / E ( deg() #arch uscent dal vertce ). Notamo che

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Eserctazon a grupp svolte. Esercz tpo

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Eserctazone del corso d Statstca rof. Domenco Vstocco Dott.ssa aola Costantn 8 Aprle 008 Eserczo n. S consder un campone d 00 student d cu s conoscono le seguent probabltà dstnt secondo l sesso (Mmascho,

Dettagli

Capitolo 3 - Sistemi a coda (parte I)

Capitolo 3 - Sistemi a coda (parte I) Aunt d Ret d Telecomuncazon Catolo 3 - Sstem a coda (arte I) Introduzone... Legge d Lttle...4 Fattore d utlzzazone...9 Esemo: sstema G/G///... Sstema a coda M/M/... Introduzone: uso delle catene d Marov...

Dettagli

Lezione 2 le misure di sintesi: le medie

Lezione 2 le misure di sintesi: le medie Lezone le msure d sntes: le mede Cattedra d Bostatstca Dpartmento d Scenze spermental e clnche, Unverstà degl Stud G. d Annunzo d Chet-Pescara Prof. Enzo Ballone Lezone a- Statstca descrttva per varabl

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

Esercizi sui circuiti magnetici

Esercizi sui circuiti magnetici Esercz su crcut magnetc Eserczo a. Nel crcuto magnetco llustrato calcolare, trascurando la rluttanza del ferro, coeffcent d auto nduzone degl avvolgment e e l coeffcente d mutua nduzone tra due avvolgment

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI GIOVANNI GAIFFI, CORSO DI ALGEBRA 1 2010/2011 NOTA: FA PARTE DEL PROGRAMMA SOLO LA CONOSCENZA DELL ENUNCIATO DEL TEOREMA

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Programma. Esercz tpo svolt 3. Eserctazon

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli