Loop di inseguimento

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Loop di inseguimento"

Transcript

1 Loop d negumeno Un ngolo loop con feedbck unro h l eguene dgrmm blocch In le chem R può eere nerpreo come l lore dedero dell uc C menre l lore E rppreen l errore fr l uc deder e quell ule. Il compormeno d queo errore per rppreen lo edy e error o errore regme. Il eorem del lore fnle delle rforme d Lplce ene uo per deermnre l errore regme. Un condzone per ulzze queo eorem corremene è che u pol dell funzone C/R deono eere nel empno nro del pno.

2 Segnl d ngeo Segnl d ngreo- L errore regme deermn per un prcolre cle d egnl d rfermeno d ngreo che poono eere epre nel domno del empo come emplc poenze d come l grdno, l rmp l prbol ec. L rform d Lplce per que cle d egnl h l form A R, q q {,,... }

3 3 Sedy e error 3 lm lm lm lm lm lm lm lm lm lm G G G R R Prbol G G G R R Rmp G G G R R Grdno G R G R E G E C C R E ] lm[ ] lm[ E e

4 Tpo d em Tpo d em Con p d egnl d ngreo defn precedenemene l errore regme dpenderà dll funzone d rfermeno loop pero G p n n modo molo emplce. S defnce po d em n ccordo con l numero d pol d G p ll orgne del pno, e deno l po d em con N. L relzone fr l po d em N e l po d d rfermeno del egnle d ngreo q deermnl l form dell errore regme. L errore regme può ere re pobl forme: zero non-zero, un numero fno nfno L form del egnle d errore regme dpende dl lore d N-q. Se queo lore è poo l numerore d e luo, qundo prende queo lme llor l errore regme è zero. Se N-q è nego, l numerore d e luo / nel lme e l errore regme è. Se N-q è, l numerore d e è non-zero, con lore fno e coì è nche l errore regme. In queo co l errore regme è nermene correlo ll funzone loop pero G p lu. Se ume che l em loop chuo è ble l errore regme per un prcolre em con un prcolre funzone d rfermeno può eere rpdmene clcolo deermnndo N-q e e lundo G p e necero. e e Se lm lm R [ [ e ] N A A q, lm q N q [ N D {,,...} ], E ] lm e G R [ G p p ] N D N N D 4

5 Ingreo Ingreo Ingreo rmp Sedy e error grdno prbol Cone Cone d Cone d d pozone elocà ccelerz one p lm lm G G lm S defnce l po d em l numero n nel denomnore dell funzone G o n modo equlene l numero d negror nell orgne G G p n z p z p 5

6 Relzone fr ngreo, po d em, cone d errore co e errore regme Segnle d rfermeno n ngreo Cone d errore co N Cone d errore N Cone d errore N Cone d errore formul d errore Errore Errore Errore Grdno p Pozone p cone p p u k p k p Rmp Velocà cone u k k Prbol Accelerzone cone / u k k 6

7 Loop del econdo ordne G p m k m k 7

8 8 Error Regme V V A V A R

9 9 Accurezz mur r R R d R R B f n n E B E C x V E B B df j F df j F f E << >> η η σ η η σ η π β η β Rf h loop dl effeue mure n Per.45 B A per mur ngol u Accurezz B A per mur ngol u Accurezz 4,

10 g g V C d D N [ ] ' 3 Condz crc per neg.,, ] [ δ δ g g d g g g g d D D C D D S N N N D N S N C

11 Rpo l egnle doo d ermn d elocà e ccelerzone k k k V k k V k A V A R

12 Eempo S ogl negure un berglo elocà mm V mx 4 m/ec e ccelerzone mx 3 m/ec. L omm de due ge bb un mpezz d m. S ogl un errore d pozone n regme d elocà mm r m per ccelerzone null. S pozz k. G k k k k k m m V k k mx r , olendo n fe d ccelerzone rmnere enro l lme d un fner 6 m h : 5 4 ec k.ec 4 4 A k, con A dnz mm ed A A k k, k m 4 db per queon d blà un frzone d r. In l modo l loop è noo n ogn u pre

13 3 Funzone d rfermeno D N D N T T T T p p z z p p z z G p p z z G B B x B B x n n p p z z x n n n p n n p ς ς ς

14 4

15 BODE PLOTS We exmne how o plo dfferen erm h my pper n rnfer funcon. The ol repone wll be obned by ddng ll he repone. CONSTANT TERM log ± j jς j z k k j j ς j p n n j N H D 5

16 Zero nell orgne j log Polo nell orgne j

17 j z Approxme he mgnude repone of mple zero by wo lner cure before nd fer z Approxme he phe repone of mple zero by hree lner cure before.z fer z nd beween.z nd z SIMPLE ZERO log db HdB log j z log z log z, φ n 45, z 9, z 7

18 Approxme he mgnude repone of mple pole by wo lner cure before nd fer p Approxme he phe repone of mple pole by hree lner cure before.p fer p nd beween.p nd p NOTICE he pole nd zero repone re n oppoe drecon. log j p SIMPLE POLE CORNER FREQUENCY j p, φ n 45, p p 9,

19 H db BODE PLOT OF QUADRATIC ZERO The EXACT repone cn be pproxmed by BODE plo n erm of he corner frequency n jς log j n n 4log n ς, n n 9, n φ n 8, 9

20 H db BODE PLOT OF QUADRATIC POLE jς log j n n 4log n ς, n φ n 9, n 8, n

21 EXAMPLE Conruc Bode plo for H j j j Expre rnfer funcon n Sndrd form. STANDARD FORM H j j j Expre he mgnude nd phe repone. H log log j log j log j db - - φ 9 n n Two corner frequence, nd zero he orgn. Skech ech erm nd dd o fnd he ol repone.

22 j H Conruc Bode plo for j j H log log j log j log j db 6 db X X log 6dB φ n n X X

23 EXAMPLE Connued: Le u clcule H nd φ 5 rd/ec grphclly. H5 H log 5 / db 6 db φ log /. 9 log / 45 log 5 /

24 EXAMPLE Conruc Bode plo for H Expre rnfer funcon n Sndrd form. j j j 5 STANDARD FORM H.4 j j j 5 Expre he mgnude nd phe repone. H log.4 log j log j 4 log j 5 db φ - - n 9 n 5 Two corner frequence 5, nd zero. The pole 5 double pole. The lope of he mgnude -4 db/decde nd phe h lope -9 degree/decde. Skech ech erm nd dd o fnd he ol repone. 4

25 H j EXAMPLE Conruc Bode plo for j j 5 H db log.4 log j log j 4 log j 5 X O φ - n - 9 n 5 X O 5

26 EXACT RESPONSE OF QUADRATIC POLE H jς j n n H db log jς n j n BODE PLOTS φ n ς n n 6

27 7

28 Enecenze Un enecenz del egnle n ngreo cu un zzermeno dell errore n dnz o meglo n preenz d blncmeno l errore umerà un lore D D/C d blncmeno rporo ll ngreo del dcrmnore d empo. Tuo ene come e opere loop pero. S defnce memor del em lo comeno, dopo un empo θ dll ne n cu è erfc l enecenz, r l egnle d rezone c e l egnle che rebbe uo qulor non foe l enecenz. L memor del em può eere clcol lundo l ndmeno nel empo dell rpo del doppo negrore un ngreo del po: 8

29 9 Enecenze : d m prmo : mggore conrbuo è l che d' ermne l Nell precedene epreone G. d m nrform dee clcolre l' Perno 3 θ θ θ θ θ θ θ θ θ θ θ θ θ θ d m e e Nellepoe G d d d d d d D

30 3 Enecenze g g g m V d d m d m V D V D d D V V A d δ θ φ θ θ θ θ δ per m,

31 3 Enecenze,, η γ γ η η φ η δ g g dn d V D V D D C D C D e V e A e A V elocà del berglo l momeno dell enecenz VV mx. Al rorno del egnle dopo l enecenz può conderre l rpo del em un ngreo grdno del po A/ o rmp V/. L rpo del em l egnle, nell poe d k, k m 4 e qund k 4, le rpemene:

32 Specfche d em Impul rdr pr Velocà mm Errore d negumeno mmeo 75 m.5 µec m/ec 5 m Accelerzone mm 3 m/ec Tempo d memor 3 ec g g, g D 5 φ 5 k k η. 4 %, g 3 δ. '.5 ec δ z, r,.5 z r 4Vol, δ mv per k m 4 k k m ec, B k 4 ec 3

33 Schem blocch d un em d negumeno n dnz 33

34 Dcrmnore DEL 34

35 35

36 36

37 37

38 38

39 39

40 4

41 4

42 4

43 43

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

ESERCIZIO: RISPOSTA AL GRADINO #1 S R. v o C E

ESERCIZIO: RISPOSTA AL GRADINO #1 S R. v o C E IZIO: IPOT GDINO # v Q v v r π v π - g m v π v - Fgur Fgur OUZION ) Deermnne dell frequen d gl nferre nell'e d l dmnne Innnu, devn deermnre vlr de rmer del mdell ccl egnl rver l clcl del un d lvr del rnr.

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

MOTI. Per descrivere un moto è necessario specificare la posizione del corpo in ogni istante. E quindi necessario definire un sistema di coordinate:

MOTI. Per descrivere un moto è necessario specificare la posizione del corpo in ogni istante. E quindi necessario definire un sistema di coordinate: MOTI Meccnic: Cinemic: Dinmic: brnc dell fiic che udi il moo dei corpi e le fore che lo fnno rire decrie il moo dei corpi en fre riferimeno eplicio lle fore che gicono u di ei è lo udio dell relione eplici

Dettagli

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Esercitazioni Capitolo 11 Impianti di condizionamento

Esercitazioni Capitolo 11 Impianti di condizionamento serczon Cpolo Impn d condzonmeno ) S suppon ce r emperur 0 C e umdà rel 80% en rffredd fno ll emperur d 0 C. Vlure l qunà d pore condenso per d r secc l lello del mre (P 000 (P) ) ed ll quo d 000 (m )

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

VERIFICA DEL FUNZIONAMENTO DI UN FILTRO PASSA BASSO E DI UN FILTRO PASSA ALTO RC.

VERIFICA DEL FUNZIONAMENTO DI UN FILTRO PASSA BASSO E DI UN FILTRO PASSA ALTO RC. EIFIA DE FUNZIONAMENTO DI UN FITO PAA BAO E DI UN FITO PAA ATO. IIEO DEE AIAZIONI HE I HANNO NEA IPOTA IN PEENZA DI UNA EITENZA DI AIO, DI UNA EITENZA DI OGENTE, DI ENTAMBE. vercherà l nluenz d un ressenz

Dettagli

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione Lnertà Elemento lnere: preent un relzone mtemtc lnere fr cu ed effetto. Eempo: v/ relzone lnere 0 e αv relzone non lnere lnertà omogenetà ddtvtà Se l ngreo vene moltplcndo per un fttore cotnte, l uct rult

Dettagli

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s Eercizione n 3 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gbriele F)A.A. 1/11 Cinemic (b) 1. Un rzzo eore, lncio in ericle, le per 1 min con ccelerzione cone = m/, dopodiché, conumo uo il combuibile,

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIFICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 2-3 mplfcatore

Dettagli

Componenti dinamici. Carica e flusso. Si considera un bipolo e si indicano con v(t) e i(t) la sua tensione e la sua corrente

Componenti dinamici. Carica e flusso. Si considera un bipolo e si indicano con v(t) e i(t) la sua tensione e la sua corrente omponen nmc.e.ng.unbo./pers/msr/c.hm ersone el --3 rc e flusso S conser un bpolo e s ncno con e l su ensone e l su correne Defnzone: crc ssoc ll correne q q Unà msur: coulomb Defnzone: flusso ssoco ll

Dettagli

18 Luglio 2002 recupero seconda prova

18 Luglio 2002 recupero seconda prova 8 Luo recupero econda prova Eerczo ATTENZIONE: errore d tampa ne teto: a f.d.t. G ( ) deve avere un oo zero, qund non è + + 7 3 3 G () = 7 3, ma G () 7 3 = (*) o G () = (**) + + + + + + 3 3 3 (entrambe

Dettagli

MODELLO MATEMATICO DI UN MOTORE CC

MODELLO MATEMATICO DI UN MOTORE CC POITECNICO DI TOINO III Fcolà Ingegne ell Infozone Coo ue n Ingegne Mecconc MODEO MATEMATICO DI UN MOTOE CC AESSANDO FASSIO UGIO 26 Ince. Inouzone...3 2. Equzon Coue...3 2.. Mooe CC...3 2.2. Mooe, Moouoe,

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A Eerczo n.1 Un pll vene lnct con veloctà nzle d odulo Fcoltà d nener Prov crtt d Fc NO & VO 1-07-03 - opto rovre: L pozone (coè le coordnte x e y) dell pll dopo 3 econd l odulo dell veloctà dell pll dopo

Dettagli

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali Creep ei melli Compormeo cldo di sruure moo e bi-dimesioli Curve di creep - diverse emperure Curve di creep emperur cose T T m T B T T r Sforzo-empo di rour Di rour Relzioi empirice ell curv - T

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanca 7-8 Puno maerale Corpo d dmenson rascurabl rspeo allo spazo nel quale s muoe e neragsce con alr corp Approssmazone Terra-Sole R d Earh Sun-Earh 6 6.4 m.5 m 4.3 5 E una buona approssmazone? - rba

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y Geometr Anlt Dstnz tr due punt nel pno rtesno P ( x x ) + ( y ) P y Punto medo d due punt nel pno rtesno M x + x y + ( x ; y ) ; M M y Are d un trngolo nel pno rtesno prtre dlle oordnte de suo x y punt

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Università del Sannio

Università del Sannio Unersà del Snno Corso d Fsc Leone 7 Dnmc del puno merle III Prof.ss Sefn Percc Trsformon gllene ed nrn relsc del II prncpo dell dnmc I Consdermo un ssem d rfermeno nerle ed un secondo ssem d rfermeno non

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza 1 12/03/1997 I.M. 33,03 Idoneo ammesso/a 2 11/06/1997 B.F. 33,01 Idoneo ammesso/a 3 02/02/1998 T.A. 32,75 Idoneo ammesso/a 4 09/04/1997 B.M. 32,75 Idoneo ammesso/a 5 05/03/1998 M.S. 32,74 Idoneo ammesso/a

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici Inroduzone a Modell d Duraa: Alun Modell Paramer a.a. 2009/2010 - Quaro Perodo Prof. Flppo DOMMA Corso d Laurea Spealsa/Magsrale n Eonoma Applaa Faolà d Eonoma UnCal 1. Esponenzale Modell Paramer Le funzon

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III. a III.3)

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

APPUNTI DI CALCOLO NUMERICO. Equazioni differenziali ordinarie

APPUNTI DI CALCOLO NUMERICO. Equazioni differenziali ordinarie Inroduzone APPUNTI DI CALCOLO NUMERICO Equzon dfferenzl ordnre Molm fenomen rel oono eere modellzz rme equzon dfferenzl ordnre o equzon n cu ono correle un funzone ncogn e le ue derve fno ll ordne m Ere

Dettagli

Zona Frattura critica. Tenacità del materiale

Zona Frattura critica. Tenacità del materiale 1 Perché l frur frgile si verifichi è necessrio il conemporneo verificrsi delle re segueni condizioni: livello di sollecizione elevo (nche se inferiore ll ensione di rour); presenz di un difeo (cricc)

Dettagli

Forma Locale Vuoto. rote. rot Eo Eo. V y. V z. E x. E y. Fisica III 1. Forma locale della legge di Gauss. Forma locale della legge di Gauss.

Forma Locale Vuoto. rote. rot Eo Eo. V y. V z. E x. E y. Fisica III 1. Forma locale della legge di Gauss. Forma locale della legge di Gauss. F gg Gu. F u F gg Gu.,,,, g. (,, g w, à gu :., u.,,,, F. : Gé qu è g u g u bb : u è à è. U. g g. U U U u g. b u à g g u u. u. U u è u gg qu b u u. u u u u è qu u. u u., g, u è u., gg Gu, à è u u. qu u

Dettagli

STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI

STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI STABILITA DEI SISTEMI IN RETROAZIONE CRITERIO DI ROUTH ESERCIZI U( ) + Stilità dei itemi in retrozione G( ) Y ( ) G( ) N ( ) G DG ( ) W ( ) G( ) NG ( ) 1 + G( ) D ( ) + N ( ) G G Nel co di un itemi G()

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 09-0 mplfcatore

Dettagli

Le basi del calcolo statistico

Le basi del calcolo statistico L s dl clcolo sttstco qulro sttstco d prtcll su n stt possl: dscrzon dl sstm: ndvdur l stt possl mcrostt mdnt rltv numr quntc clcolr l nr dll -smo stto clcolr l dnrzon dll -smo stto clcolr l proltà d un

Dettagli

CITTA' DI ALGHERO PROVINCIA DI SASSARI - SETTORE V - QUALITA' DELLA VITA II AMBITO POLITICHE DI AFFIANCAMENTO E DI SOSTEGNO ALLE FAMIGLIE

CITTA' DI ALGHERO PROVINCIA DI SASSARI - SETTORE V - QUALITA' DELLA VITA II AMBITO POLITICHE DI AFFIANCAMENTO E DI SOSTEGNO ALLE FAMIGLIE 1 A.N. 01/01/1958 11 2 A.F. 07/05/1966 13 3 A.C. 07/10/1941 17 4 A.S. 05/12/1987 11 5 A.A. 14/03/1978 11 6 A.T. 22/12/1959 11 7 A.D. 18/09/1983 10 8 A.C. 17/06/1941 17 9 A.M. 11/05/1975 11 10 B.A. 15/08/1972

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2)

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2) 1 Cp. 3 Sudo de modell ler e zor el domo d 3.1 Iroduzoe Lo udo d u modello memco el domo d è d gr lug pù emplce d quello el domo del empo quo, co opporue operzo, rece rformre l modello couo, geerle, d

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli eercizi CPITOLO 2 LUNGHEZZE 0. Qundo l monet f un giro, i pot di un percoro che è ugule ll miur dell u circonferenz, circ 8, cm. 3 UNITÀ DI MISUR DELL RE 6 RE DEL PRLLELOGRMM E DEL TRINGOLO

Dettagli

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A )

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A ) Fondameni di comunicazioni eleriche (Ing. Eleronica - A.A.-) E. g (, ) rec / dipende dalla variabile aleaoria avene denià di probabilià uniforme nell inervallo [,]. rovare valor medio ed auocorrelazione

Dettagli

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Inegrle Deno. Il prolem del clcolo delle ree Suddvsone dell nervllo [,] n soonervll che ne cosuscono un przone De. Przone S chm przone P dell nervllo [,] un nseme d n+ pun =<

Dettagli

ALLE ORE I CANDIDATI DOVRANNO PRESENTARSI NELL'AULA INDICATA MUNITI DI DOCUMENTO DI IDENTITA'

ALLE ORE I CANDIDATI DOVRANNO PRESENTARSI NELL'AULA INDICATA MUNITI DI DOCUMENTO DI IDENTITA' TEST DI INGRESSO 10 APRILE 2015 DISLOCAZIONE AULE (Test valido per: Giurisprudenza; Interfacce e Tecnologie della Comunicazione; Scienze e Tecniche di Psicologia Cognitiva; Servizio Sociale; Sociologia;

Dettagli

CITTÀ DI IMOLA MEDAGLIA D'ORO AL VALOR MILITARE PER ATTIVITA' PARTIGIANA

CITTÀ DI IMOLA MEDAGLIA D'ORO AL VALOR MILITARE PER ATTIVITA' PARTIGIANA Inf.Com. Campanella 1 T.L. Domanda/ricev.N.21171 19/01/2015 Fratelli e Stradario - 65 2 S.A. Domanda/ricev.N.21208 21/06/2015 Fratelli e Stradario - 65 3 R.E. Domanda/ricev.N.21009 17/07/2015 Fratelli

Dettagli

Risoluzione Numerica di Equazioni Differenziali Ordinarie

Risoluzione Numerica di Equazioni Differenziali Ordinarie Rsolzone Nmer d Eqzon Derenzl Ordnre Per l solzone d n eqzone derenzle del prmo ordne onsdermo l segene Problem vlor nzl o Problem d C: ' ondzone nzle * < Teorem d essenz ed nà: S den e onn n S S { [ *]

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

ESEMPIO Esercizi relativi al calcolo delle prestazioni di un velivolo a getto

ESEMPIO Esercizi relativi al calcolo delle prestazioni di un velivolo a getto SMPIO ercizi reltivi l clcolo delle pretzioni di un velivolo getto Dto un velivolo getto BIMOTOR d 160 poti crtterizzto di eguenti dti =70000 Kg S=10 m b=34 m CDo=0.00 e=0.80 CL MX (pulito) = 1.40 CL MX_TO

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013 Iiuzioni di Probabilià Laurea magirale in Maemaica prova cria del 0/6/03 Exercie. (puni 8 circa) Sia W un moo browniano reale. Sia ϕ : 0, + 0, + una funzione crecene, ia c : 0, + 0, + una funzione miurabile;

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

MECCANICA STATICA CINEMATICA DINAMICA

MECCANICA STATICA CINEMATICA DINAMICA MECCANICA STATICA CINEMATICA DINAMICA CINEMATICA DESCRIVE IL MOTO INDIPENDENTEMENTE DALLE CAUSE CHE LO PRODUCONO O LO MODIFICANO DINAMICA STUDIA IL MOTO IN RELAZIONE ALLE CAUSE (FORZE) CHE LO PRODUCONO

Dettagli

TESTI. Esercizio 4 2. Esercizio 6 Avete una distanza D da percorrere.

TESTI. Esercizio 4 2. Esercizio 6 Avete una distanza D da percorrere. TESTI Eeczo Cnndo u bn d un o d feo u cu nno eeguendo de lo, un peon ene de colp d ello n lonnnz ulle ene d feo. S che l uono popg con elocà d F. k/ nel feo e con elocà.4 k/ nell. Se ppogg l oeccho u bn

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Tecnologie dei sistemi di controllo

Tecnologie dei sistemi di controllo Tecnologe de tem d controllo Rcham d fondament d automatca rof.. Magnan Anal e rogetto de tem d controllo Funzon d trafermento d uo corrente E necearo conocere. Rota allo calno. alcolo d modulo e fae rm

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

( ) ( ) ( ) Modulo C Unità 1 Il moto rettilineo. Sistemi di riferimento e moto

( ) ( ) ( ) Modulo C Unità 1 Il moto rettilineo. Sistemi di riferimento e moto Siemi di riferimen e m Un crp è in m qund l u pizine ripe d un lr crp, un cme riferimen, ri nel emp. Il pun merile durne il u m decrie un line de Trieri del m. E può eere reiline curiline ed il m dicei

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

F σ. max. min. max. med. min. Y max. a K min. K max F BW. max. Y min. K K max. Y a. min

F σ. max. min. max. med. min. Y max. a K min. K max F BW. max. Y min. K K max. Y a. min σ 2 mx min w mx BW B mx min med min K mx Y mx K min Y min t K K mx K min Y 1 σ Pur essendo i vlori di σ mx e di σ min costnti nel tempo, i vlori di K mx e K min sono crescenti, perché, con l ccumulrsi

Dettagli

Rendite a rate costanti posticipate in regime di interessi composti

Rendite a rate costanti posticipate in regime di interessi composti Redte rte cott regme d tere compot Redte rte cott potcpte regme d tere compot /32 Redte rte cott potcpte regme d tere compot 2/32 Redte rte cott potcpte regme d tere compot VALORE ATTUALE DI UNA RENDITA

Dettagli

( x) n x. 0 altrove = 1. f n. g n

( x) n x. 0 altrove = 1. f n. g n co : L sm d Co l o d Vl. Ism d Co: Cosdo [ ] sddvdo l sm l cossco C [ /] U [/ ] o d ovo l oo oo C [ /9] U [/9 /] U [/ 7/9] U [8/9 ] Io l ocdmo s h ch: C C C */ C 4*/9 C / L sm d Co: I o d Vl: C C chso

Dettagli

STATO TENSIONALE IN SITO

STATO TENSIONALE IN SITO STATO TENSIONAE IN SITO 1.1 Preione totle verticle W z W = γ z A A σ = W/A = γ z preione totle verticle è pri l peo dell unità di volume del terreno γ moltiplict per l profondità z dl pino cmpgn σ=γ z

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Equazioni esplicite. Doppi-bipoli di ordine zero. Equazioni esplicite. Doppi-bipoli ideali di ordine zero. Governati da due equazioni

Equazioni esplicite. Doppi-bipoli di ordine zero. Equazioni esplicite. Doppi-bipoli ideali di ordine zero. Governati da due equazioni Dopp-pol d ordne zero Equzon esplte Goernt d due equzon ƒ ƒ (t) (,,, ) (t) (,,, ) pre d derte ed ntegrl (t) (t) Trsformzone n ltre due equzon equlent, espltte n delle 4 e (grndezze dpendent). Esempo per

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

TEORIA dei CIRCUITI Ingegneria dell Informazione

TEORIA dei CIRCUITI Ingegneria dell Informazione TEOI de CICUITI Ingegnera dell Informaone DOPPI IPOLI Sefano Paore Dparmeno d Ingegnera e rcheura Coro d Teora de Crcu 5IN a.a. 3-4 N-polo Un componene a n ermnal n-polo ha, a caua d IK e IIK, fao un ermnale

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Prova scritta di Elettronica I 26 giugno 2001

Prova scritta di Elettronica I 26 giugno 2001 Prova scrtta d Elettronca I 26 gugno 2001 Soluzone 1. Dato l seguente crcuto, determnare: Q3 BC179 BC179 Q4 RL 100k Q2 RE 2.3k I. l punto d rposo e parametr per pccol segnal. (S consgla d trovare la relazone

Dettagli

!! "# $ "# %&% '" (! ) *# + ) * %&% '" ( , - %., , - / 0.1,! '2/ -, - +, - /3 ) 4 " ( 4 / # " $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 :.!

!! # $ # %&% ' (! ) *# + ) * %&% ' ( , - %., , - / 0.1,! '2/ -, - +, - /3 ) 4  ( 4 / #  $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 :.! !! "# $ "# %&% '" (! ) *# + ) * %&% '" (! ) *# +, - %.,, - / 0.1,! '2/ -, - +, - /3 ) 4 " ( 4 / # " $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 9!! :.! ! "# $ %! & '( # $ % $) *+,+,$ " " "# # % +-. # $ /#&#

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica olecnco d Torno Adblà e Scurezz delle Cosruzon eccnche 5 Clcolo sruurle c Eserczo 5- Un cco h le d c lern v ll D 50 ( 0 6 ) e crco unro d rour R 600 ; clcolre l le d c per 0 5 ccl. (0 5 ) 40. Dll equzone

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

Mat-Es3.Doc: Stabilità via Luogo Radici

Mat-Es3.Doc: Stabilità via Luogo Radici Mt-E.Doc: Stbilità vi Luogo Rdici Luogo delle Rdici (Rlocu, Rlocfind) Definizione del proceo g()» n=;t=;t=/;t=/;» d=[t ];d=[t ];d=[t ];» g=tf(n,d);g=tf(n,d);g=tf(n,d);» gtc=g*g*g Trnfer function (otto

Dettagli

Università di Cagliari DIT Idraulica Corso di Costruzioni Marittime. Corso di Costruzioni Marittime. (modulo B) A. A

Università di Cagliari DIT Idraulica Corso di Costruzioni Marittime. Corso di Costruzioni Marittime. (modulo B) A. A (modulo B) A. A. 010-011 Esercizione N. Su un fondle sbbioso di rofondià ssegn si deve relizzre un sisem di briccole er l ccoso di nvi eroliere. Sono revise briccole flessibili cosiuie d n li d cciio sezione

Dettagli

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva

A.A. 2016/17 Graduatoria corso di laurea in Scienze e tecniche di psicologia cognitiva 1 29/04/1997 V.G. 53,70 Idoneo ammesso/a * 2 27/12/1997 B.A. 53,69 Idoneo ammesso/a * 3 18/07/1997 P.S. 51,70 Idoneo ammesso/a * 4 12/05/1989 C.F. 51,69 Idoneo ammesso/a * 5 27/01/1997 P.S. 51,36 Idoneo

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato.

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato. MULIIBRAORI i dice muliirore un circuio che può ere solo due possiili si dell usci. li si possono essere di due ipi: so sile, so qusi sile. o sile: il circuio rimne in queso so finché non si ineriene dll

Dettagli

Modelli di utilità aleatoria

Modelli di utilità aleatoria corso d Teora de Sstem d Trasporto Modell d utltà aleatora PROF. ING. UMBERTO CRISALLI Dpartmento d Ingegnera dell Impresa crsall@ng.unroma.t Iscrzone al corso Modell d offerta ü Da effettuars anche on

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

ESERCIZIO Punto di riposo

ESERCIZIO Punto di riposo 1/8 ESERCIZIO 1 1.1 - Punto di riposo Selatensioned uscita ènulla, ènullaanchelacorrentenellaresistenza dicaricor L edunque le correnti di canale dei transistor sono uguali tra loro; pertanto, nell ipotesi

Dettagli

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Principali fattori ubicazionali Molto variabili da zona a zona costi di costruzione Concentrato. caratteristiche del mercato. fonte materie prime

Principali fattori ubicazionali Molto variabili da zona a zona costi di costruzione Concentrato. caratteristiche del mercato. fonte materie prime Anl Uczonle Progezone e Geone degl Ipn Indurl A.A. 04-05 Anl Uczonle Progezone e Geone degl Ipn Indurl A.A. 04-05 Unverà degl Sud d glr D.I... Scel dell uczone d un pno ndurle Prof. Ing. r Tere Pllon Prncpl

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo

campionatore - converte un segnale a tempo continuo in una sequenza sono quindi presenti sia variabili a tempo discreto sia variabili a tempo Ingegneria e ecnologie dei Siemi di Conrollo Campionameno e ricoruzione dei egnali Luigi Biagioi DEIS-Univerià di Bologna el. 5 9334 e-mail: lbiagioi@dei.unibo.i Ricoruore di ordine zero Ponendo la equenza

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE

Test ammissione CdL in Economia aziendale ed Economia e commercio GRADUATORIA GENERALE GRADUATORIA INIZIALI COG E 741 BM 24/10/1997 1 83,125 29,00 37,50 737 RG 14/11/1997 2 81,250 24,00 41,00 471 AN 14/01/1998 3 80,625 25,00 39,50 893 GF 27/09/1997 4 80,000 23,50 40,50 579 DL 22/03/1997

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice

Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice Sudio delle ocillzioi di u ie -oll Ocillore roico eplice L equzioe del oo II legge dell diic è: d k [] d L oluzioe di que equzioe differezile del II ordie coefficiei coi è: e φ [] Derido ifi l [] e oiuedo

Dettagli

3. MODELLI MATEMATICI

3. MODELLI MATEMATICI 3. MODE MAEMA ASSFAZONE DE MODE iemi ono decrii da opporuni modelli maemaici. Poiamo claificarli in re caegorie: Modelli maemaici nel dominio del empo o in campo reale Decrivono il comporameno del iema

Dettagli