UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale"

Transcript

1 Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Dll domnd ndvdule ll domnd d mercto Pensmo d un econom comost d n consumtor, denott con: 1,,n. L domnd ordnr del consumtore -esmo er l bene j è: x ( 1, 2, j m ) Isttuzon d Econom 2 1

2 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Tutt consumtor sono rce-tkers e l funzone d domnd d mercto er l bene j è: j ( n 1 n 1, 2, m, L, m ) 1 x j ( Se tutt consumtor fossero dentc 1, 2, m ). j ( 2 1, 2, M ) n x j ( 1,, m) dove M nm. Isttuzon d Econom 3 Unverstà degl Stud d Bergmo Fcoltà d Ingegner L domnd d mercto è l somm orzzontle (coè rezzo dto ) delle funzon d domnd ndvdul. E.g. suonmo che c sno solo due consumtor: A,B. Sommmo l domnd rezz 1, 1 Isttuzon d Econom 4 2

3 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner A x B x 1 Somm orzzontle delle curve d domnd degl ndvdu A e B x A 1 + Isttuzon d Econom x B 1 5 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Elstctà L elstctà msur l senstvtà d un vrble rsetto d un ltr. L elstctà dell vrble rsetto ll vrble Y è x, y x y / / x y Isttuzon d Econom 6 3

4 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Alczon del concetto d elstctà L elstctà uò essere ust er msurre: l vrzone dell qunttà domndt d un bene rsetto ll vrzone del roro rezzo; l vrzone dell qunttà domndt d un bene rsetto ll vrzone del rezzo d un ltro bene (elstctà ncroct); Isttuzon d Econom 7 Unverstà degl Stud d Bergmo Fcoltà d Ingegner L vrzone dell domnd rsetto l reddto; L vrzone dell offert l vrre del rezzo del bene; ecc. Isttuzon d Econom 8 4

5 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Elstctà dell domnd rsetto l rezzo Perché non utlzzre ù semlcemente l endenz dell curv d domnd er msurre l sensbltà dell domnd rsetto vrzon nel rezzo? Isttuzon d Econom 9 Unverstà degl Stud d Bergmo Fcoltà d Ingegner L endenz è oco nformtv! Esemo: un roduttore d utomobl rende che, rducendo d 500 Euro l rezzo d un dto modello, otrà vendere sul mercto euroeo, esemlr n ù ll nno. (Pendenz: / x -0.05) Isttuzon d Econom 10 5

6 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Quest nformzone h un sgnfcto dverso se l modello n questone è un utltr (rezzo Euro, vendte esemlr) o un uto d lusso (rezzo Euro, vendte esemlr). Per l utltr, un rduzone nel rezzo del 5% nduce un umento nell qunttà dello 0.5% Per l uto d lusso, un rduzone nel rezzo del 1% nduce un umento nell qunttà dello 50% Questo esemo suggersce che le vrzone debbno essere vlutte n termn ercentul. Isttuzon d Econom 11 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Inoltre, l endenz dende dll untà d msur: se l qunttà vensse defnt n lott d 1000 utovetture, l vrzone sull qunttà dverrebbe 10 e l endenz 50! Utlzzmo ertnto l seguente formulzone, che ermette l confronto nche tr ben dfferent Isttuzon d Econom 12 6

7 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner x1 / x1, 1 1 / 1 x 1 L elstctà è defnt come rorto d ercentul e qund non h untà d msur. L elstctà (dell domnd) è un msur d sensbltà ndendente dll scelt rbtrr dell untà d msur. Isttuzon d Econom 13 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Elstctà untule +h Qul è l elstctà dell domnd n un ccolo ntervllo? ", Isttuzon d Econom ' ' ( " ' h '). 14 7

8 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Chedmoc cos succede se h tende 0. +h ", ' ' ( ' " h '). Isttuzon d Econom 15 Unverstà degl Stud d Bergmo Fcoltà d Ingegner +h Se h 0, l secondo fttore dell formul esrme l endenz dell domnd (è un dervt) " ', ' ( " ' h ') ' ' d d Isttuzon d Econom 16 8

9 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner L formul, d d esrme l elstctà dell domnd rsetto l roro rezzo nel unto ', '). ( Isttuzon d Econom 17 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Elstctà (untule) rsetto l rezzo: esem, d d 1. b d d Suonmo che: - b. qund (- )/b Pertnto,, ( ) / b 1 b. Isttuzon d Econom 18 9

10 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner - b Se, /b Isttuzon d Econom 19 Unverstà degl Stud d Bergmo Fcoltà d Ingegner - b Qundo, / 2 2 / 2 1 /2 1 /2b 0 /b Isttuzon d Econom 20 10

11 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner - b Se, /2 1 /2b 0 /b Isttuzon d Econom 21 Unverstà degl Stud d Bergmo Fcoltà d Ingegner /2 - b, Domnd elstc /2b 1 (elstctà untr) Domnd rgd /b 0 Isttuzon d Econom 22 11

12 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Il secondo esemo è bsto sull funzone d domnd: k. Qund d d k 1 e dunque 1 k, k. Isttuzon d Econom 23 Unverstà degl Stud d Bergmo Fcoltà d Ingegner 2 Ad esemo, se -2, l elstctà ssume tle vlore n ogn unto dell curv d domnd. Isttuzon d Econom 24 12

13 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Rcvo totle ed elstctà dell domnd rsetto l rezzo Il rcvo totle delle mrese R() è dto dl rodotto tr rezzo e qunttà: R ( ) ( ). Rcordmo che l qunttà domndt è funzone del rezzo. Isttuzon d Econom 25 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Un vrzone del rezzo h due effett sul rcvo: uno dretto (dovut l cmbmento nel rezzo) ed uno ndretto (conness ll vrzone nell domnd). Se un umento nel rezzo d un bene mlc un rduzone modest nell qunttà domndt, l rcvo totle de vendtor ument. L effetto dretto (ostvo) è ù forte d quello ndretto (negtvo) In termn ù forml: un domnd rgd mlc un umento nel rcvo se l rezzo ument. Isttuzon d Econom 26 13

14 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Se un umento nel rezzo d un bene mlc un rduzone m nell qunttà domndt, l rcvo totle de vendtor s rduce. L effetto dretto (ostvo) è debole rsetto quello ndretto (negtvo) In termn ù forml: un domnd elstc mlc un rduzone nel rcvo se l rezzo ument. Isttuzon d Econom 27 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Chedmoc qundo l rcvo de vendtor, R ( ) ( ) ument. Il rcvo ument qundo l su dervt è ostv. Clcolmo qund l dervt del rcvo. dr d ( ) + d d d ( ) 1 + ( ) d Isttuzon d Econom 28 14

15 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Utlzzndo l defnzone d elstctà s ottene: dr d [ ] ( ) 1+ dr d Se 1 llor 0 un vrzone nel rezzo non cmb l rcvo de vendtor. Isttuzon d Econom 29 Unverstà degl Stud d Bergmo Fcoltà d Ingegner dr d [ ] ( ) 1+ dr Se nvece 1< 0 llor > 0 d Se l domnd è rgd, un vrzone nel rezzo ument l rcvo de roduttor. Isttuzon d Econom 30 15

16 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner dr d [ ] ( ) 1+ dr d E se < 1 llor < 0 Se l domnd è elstc, un vrzone nel rezzo rduce l rcvo de roduttor. Isttuzon d Econom 31 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Rcvo mrgnle ed elstctà dell domnd rsetto l rezzo Il rcvo mrgnle d un vendtore è l umento del rcvo n relzone d un umento ccolo (mrgnle) del rezzo o dell qunttà vendut. Abbmo gà nlzzto l relzone tr rcvo mrgnle e rezzo! Sesso è utle orre n relzone rcvo mrgnle e qunttà vendut. Isttuzon d Econom 32 16

17 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Denotmo con () l domnd nvers, coè l rezzo cu l vendtore uò vendere untà d rodotto. Allor: Per cu R ( ) ( ) RMg ( ) dr ( d ). Isttuzon d Econom 33 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Qund: dr( ) d( ) RM ( ) + ( ) d d Rccoglendo (): d ( ) ( ) + 1. ( ) d Isttuzon d Econom 34 17

18 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner d( ) RM( ) ( ) 1 +. ( ) d Rcordmo che l elstctà dell domnd è: er cu RM d d 1 ( ) ( ) 1 +. Isttuzon d Econom 35 Unverstà degl Stud d Bergmo Fcoltà d Ingegner 1 RM ( ) ( ) 1 +. Quest equzone colleg l vrzone nel rcvo er un vendtore ll sensbltà dell domnd rsetto l roro rezzo, coè ll elstctà dell domnd. Isttuzon d Econom 36 18

19 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner RM 1 ( ) ( ) 1 +. Se 1 llor RMx ( ) 0. Se 1 < 0 llor RMx ( ) < 0. Se < 1 llor RMx ( ) > 0. Isttuzon d Econom 37 Unverstà degl Stud d Bergmo Fcoltà d Ingegner Se 1 llor RM( ) 0. Vendere un untà ddzonle non cmb l rcvo del vendtore. Se 1< 0 llor RM( ) < 0. Vendere un untà ddzonle rduce l rcvo del vendtore. RM ( ) > 0. Se < 1 llor Vendere un untà ddzonle ument l rcvo del vendtore. Isttuzon d Econom 38 19

20 Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner Esemo con un domnd lnere. Allor ( ) b. R ( ) ( ) ( b ) (Il rcvo totle h form d rbol) e RM ( ) 2b. (Il rcvo mrgnle è lnere) Isttuzon d Econom 39 Unverstà degl Stud d Bergmo Fcoltà d Ingegner RM( ) 2b ( ) b R(q) /2b /b x /2b Isttuzon d Econom /b x 40 20

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

Campi Elettromagnetici e Circuiti I Leggi Fondamentali

Campi Elettromagnetici e Circuiti I Leggi Fondamentali Fcoltà d Ingegner Unerstà degl stud d P Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Legg Fondmentl Cmp Elettromgnetc e Crcut I.. 06/7 Prof. Luc Perregrn Legg fondmentl,

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Università degli Studi di Parma Facoltà di Economia INTRODUZIONE AL RISCHIO

Università degli Studi di Parma Facoltà di Economia INTRODUZIONE AL RISCHIO Unverstà degl Stud d Parma Facoltà d Economa Corso d PIANIFICAZIONE FINANZIARIA Professor Eugeno Pavaran INTRODUZIONE AL RISCHIO Nota ddattca d Gan Marco Ches Indce ) Premessa ag. ) Gl nvestment fnanzar

Dettagli

L offerta della singola impresa: l impresa e la massimizzazione del profitto

L offerta della singola impresa: l impresa e la massimizzazione del profitto L offert dell singol imres: l imres e l mssimizzzione del rofitto Qundo un imres ot er un ino di roduzione sceglie un certo livello di inut che le grntisc un dto outut L scelt del ino di roduzione h l

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze.

Ripasso di microeconomia ECONOMIA E FINANZA PUBBLICA. Teoria del consumatore. Lezione n. 1. Teoria del consumatore. Le preferenze. Università degli Studi di erugia Corso di Laurea Magistrale in Scienze della olitica e dell'mministrazione Lezione n. Riasso di microeconomia CONOMI FINNZ ULIC nza Caruso Le referenze Come i consumatori

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Che cos è un contratto incompleto?

Che cos è un contratto incompleto? Che cos è un contrtto ncomleto? S defnsce ncomleto l contrtto sottoscrtto d due o ù soggett cu termn sno osservbl dlle rt contrttul m non verfcbl ed esegubl enforceble con certezz e n v forzos d terze

Dettagli

Lezione 27. La legge di reciprocità quadratica.

Lezione 27. La legge di reciprocità quadratica. Lezone 7 Prereust: Congruenze modulo un ntero L legge d recroctà udrtc Dedchmo uest ultmo ctolo llo studo dell rsolubltà delle congruenze udrtche del to x (mod ), (*) dove è un ulss ntero e è un numero

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA DMANDE E RISPSTE DI MATEMATICA APPLICATA ALL ECNMIA Ques.36 - Cit il nome di qulche vribile incontrt in economi. Cos si uò dire circ il loro segno? Ris. 36 Sono vribili economiche: l quntità rodott e oert,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

PROBLEMI DI TRASPORTO

PROBLEMI DI TRASPORTO Metod e modell per l supporto lle decso Prof Ferddo Pezzell - Ig Lug De Gov PROBLEMI DI TRSPORTO OFFERT IMPINTI UTENTI DOMND ( ) (org) (destzo) ( b ) (5) (8) (2) 2 2 (2) (3) 3 3 (9) 4 (9) c COSTO UNITRIO

Dettagli

SISTEMI A PIÙ COMPONENTI

SISTEMI A PIÙ COMPONENTI Unverstà degl stud d MILNO Facoltà d GRRI El. d Chmca e Chmca Fsca Mod. 2 CHIMIC FISIC Lezone 8 nno ccademco 20010-2011 Docente: Dmtros Fessas Consderamo l sstema costtuto solamente da H 2 O nelle condzon

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30).

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30). ODELLO ONOINDICE Il rendmento d un ttolo uò essere scrtto come: R = a + β R (1) dove: R = rendmento dell -mo ttolo; a = comonente aleatora del rendmento, ndendente dall andamento del mercato; R = è varable

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Lezione 16. Costruibilità con riga e compasso.

Lezione 16. Costruibilità con riga e compasso. Lezone 6 Prerequst: Lezon 9, 5. Costrubltà on rg e ompsso. Defnzone 6. S F un mpo, e s K un su estensone. Un elemento ostruble su F se esste un estensone -rdle d F ontenente α. α K s de Quest defnzone

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale

Funzione di utilità. Un approfondimento della teoria del consumo. Utilità totale ed Utilità marginale Funzione di utilità Un pprofondimento dell teori del consumo Utilità totle ed Utilità mrginle Il consumtore tre enessere dl consumo di eni Supponimo di poter misurre il suo enessere in utils (unità di

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

La POLITICA di BILANCIO espansiva della DOMANDA Il Deficit spending Il DEBITO PUBBLICO

La POLITICA di BILANCIO espansiva della DOMANDA Il Deficit spending Il DEBITO PUBBLICO 1 Ettore Peyron P.A.S. 2014 Ddattca della MACROECONOMIA Lezone N 4 A Testo tratto dalle Dspense del Corso d Economa pubblca Unverstà degl stud d Torno Anno accademco 2010/2011 Facoltà d Economa Lezone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

INTERPOLAZIONE STATISTICA

INTERPOLAZIONE STATISTICA ITERPOLAZIOE STATISTICA ell esme d fenomen collettv spesso c trovmo confrontre le coppe d vlor tr due vrl potzzndo v s un relzone tr loro; è noto, d esempo, v s relzone tr prezzo e domnd d un ene, reddto

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni Unverstà d Rom "L Spenz" Fcoltà d Ingegner Corso d Lure n Ingegner Informtc Corso d Clcoltor Elettronc II Tem d'esme (Second prov) Alcun test e reltve soluzon Appello del 23 luglo 2002 Tem n. 2 Un cche

Dettagli

Simulatore cinematico di Robot 3R

Simulatore cinematico di Robot 3R Descrzone generle Smultore cnemtco d Robot R Voglmo smulre l movmento d un mnoltore ntroomorfo R costtuto d tre gunt rotzonl e tre brcc (o lnk) d ess conness. Tle robot è n grdo d muovers nello szo grze

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica

Affidabilità e Sicurezza delle Costruzioni Meccaniche 5 Calcolo strutturale a fatica olecnco d Torno Adblà e Scurezz delle Cosruzon eccnche 5 Clcolo sruurle c Eserczo 5- Un cco h le d c lern v ll D 50 ( 0 6 ) e crco unro d rour R 600 ; clcolre l le d c per 0 5 ccl. (0 5 ) 40. Dll equzone

Dettagli

Principali fattori ubicazionali Molto variabili da zona a zona costi di costruzione Concentrato. caratteristiche del mercato. fonte materie prime

Principali fattori ubicazionali Molto variabili da zona a zona costi di costruzione Concentrato. caratteristiche del mercato. fonte materie prime Anl Uczonle Progezone e Geone degl Ipn Indurl A.A. 04-05 Anl Uczonle Progezone e Geone degl Ipn Indurl A.A. 04-05 Unverà degl Sud d glr D.I... Scel dell uczone d un pno ndurle Prof. Ing. r Tere Pllon Prncpl

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Progettazione agli Elementi Finiti

Progettazione agli Elementi Finiti Progettzone gl Element Fnt Test Consglt: AA /, doente: Prof. Dro Amodo A. Guglott Element Fnt, Otto Edtore, R.D. Cook, D.S. Mlkus, M.E. Plesh, R.J. Wtt Conepts nd Appltons of Fnte Element Anlyss, th ed.,

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1

I coefficienti di elasticità della domanda: un esposizione algebrico-grafica 1 ppendce 4 I coeffcent d elastctà della domanda: un esposzone algebrco-grafca 1 Il calcolo de coeffcent d elastctà della domanda La teora e l ndagne economca hanno dentfcato numerosevarablchenflusconosullaquanttàdomandatadunbeneoservzo.traquestevsonol

Dettagli

Modelli localizzativi

Modelli localizzativi Mdell llzztv I nsumtr etergene hnn referenze nell selt d un ù rttersthe del ene. Ogn nsumtre mr un sl ene eret me dfferente dgl ltr. Se l ene dele nn è, s ntent d quell ù vn. Il st è l dsutltà. S uò rresentre

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Inps - Messaggio 27 marzo 2009, n. 6952

Inps - Messaggio 27 marzo 2009, n. 6952 Fondo Tesorer: v lber ll procedur per l pgmento dretto delle prestzon Antonno Cnnoto Esperto n mter prevdenzle Guseppe Mccrone Consulente del lvoro n Rom Inps - Messggo 27 mrzo 2009, n. 6952 Oggetto: Erogzone

Dettagli

Tavole dei fattori per il calcolo degli interessi in regime di capitalizzazione discontinua

Tavole dei fattori per il calcolo degli interessi in regime di capitalizzazione discontinua APPENDICE C Tvole dei fttori per il clcolo degli interessi in regime di cpitlizzzione discontinu Per lcuni vlori di i compresi tr ¼% e 25% i = tsso d interesse effettivo per periodo (tipicmente un nno)

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Università degli Studi di Bergamo

Università degli Studi di Bergamo Università degli Studi di Bergamo Facoltà di Ingegneria Prof. Filippini 2! 3! 4! 5!!! 6! Rete A Rete C Rete B 7!!! Rete A Internet Rete C Rete B 8!! 9! International National Regional Regional Local Local

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli