ALCUNE TECNICHE di INTEGRAZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ALCUNE TECNICHE di INTEGRAZIONE"

Transcript

1 LCUNE TECNCHE di NTEGRZONE D riordre: f( ) d F( ) F ( ) f( ) F ()d F() fi: ()d f()d F() D f()d f() fi: D f()d DF() F() f() f ()d g() d f() d f () f()d g() d d e d e d e log l d ( g ) d g os d ( o g ) d o g se shd h hd sh TELL DEGL NTEGRL MMEDT d l se d os os d se d rse d rg d h h d h sh N..: seguei lvol o soo osideri egrli mmedii, ed i l so e è rihies l soluzioe uilizzdo oorue eihe d l d rse (Vedi Meodo er Sosiuzioe) d l (Vedi Meodo er Sosiuzioe o er Pri) RELZON UTL Relzioe Esemio f() d l f() d l( ) f() N..: l l, oihé R 0 f () 6 f() f ()d - se osd se

2 NTEGRZONE er PRT Formul Giusifizioe Esemio l d rg d os d e os d d f g f g f g form f g Formul l d l d l form f g formul rgd rgd rg Tle formul deriv dll Deriv di u Prodoo: egrdo f g f g f g i f g f g f g f g f g f g formul Risoluzioe form f g formul os d form f g formul e os d e os d e os d l d rg se d se se d se os rissumedo: e os d e os e se quidi: e osd e os se d l e ( se)d e os d rg l form f g e sed e os formul e os e se e os d e os d e os e se d d d rg d rg rg d rg e sed e os d LCUN MPORTNT ESEMP

3 Esemio Risoluzioe rse d d d d Formul g f FORM = d d = d d d d = d d = rse d osservdo he rse rse (N..: rse( y) = rsey) e rissumedo: rse d d quidi: rse d quidi: rse d Co: d N 0, d d d d = d d d = d d = Oss.: i riolre er = si h: rg d

4 () f()d Formul f( ()) ()d NTEGRZONE er SOSTTUZONE Giusifizioe Tle meodo deriv dll regol dell deriv di fuzioe omos: si F() u rimiiv di f() N..: f()d F() () f() F () deriv di Fuzioe Comos F () F( ()) F () () f () () quidi F(()) = F() è u rimiiv di f () (), ioè: F() f( ()) () d F f( ()) Osservzioe: L sosiuzioe = () riodue, l iegrle f () d ll iegrle f ( ()) () d he uò essere iù semlie. () d Osservzioe: Quidi, se G( ) è u rimiiv di f () (), suoedo NVERTLE, e him h() l su ivers, ioè = () = h(), llor u rimiiv di f() è G( ()) = G(h()).!!! Sesso oviee segliere il mimeo di vriile ell form = h() (Vedi esemi) () Osservzioe: f()d f( ()) ()d si osserv he d si uò ierrere,o uso di liguggio(do he ell formul l sriur ()d NON è il rodoo di () o d ): d () d. ri eimee si uò oerre o i differezili, do he se si oer o l sosiuzioe = (), llor differezido è: d () d he se si roede o l sosiuzioe h() = (h ivers di ), si uò eimee oerre o i differezili, oihé: h() = differezido è: h () d d deriv di fuzioe ivers d d d () d () Esemio Risoluzioe Osservzioi l d e e l Modo d e d d rse rsel l(l ) d Modo l e d l d d l l l d l d d form f g Formul l d d rse rsel l d l d l d l l ll l d d d d d d d d l l d () Si iegr er ri (): divisioe di oliomi

5 d d LCUN MPORTNT ESEMP d se d os d se os d os os d se os os d rse os d os d se os rse = h h h d sh d hd d d h d sh h l d se iveriile os os rse rse (N..: rse( y) = rsey) e e e e sh ; h h sh = R h 0 h h f :R R / y sh è iveriile ed d Premess: (Tri) f :R R / y h NON è iveriile quidi se e osider l resrizioe f : 0; ; / y h he risul iveriile ed f è f è him seshy e si h: f :R R / l y y him sehy e si h: f : ; 0; R / l y y Si oe: = h o 0, e roededo i modo logo ll esemio reedee si h: l( ) DERVTE di FUNZON NTEGRL Teorem dimosrzioe Esemio h() ()d O (h()) h() F () F() h() F () ()d h() F () (h()) h () (h()) h () y Si oe: y = h() ed g(y) ()d F() = (g o h)() = g(h()) O quidi: (Deriv di fuzioe Comos) F () = g (h())h () = g (y)h () m è: (Teorem Fodmele del Clolo egrle) g(y) (y) (h( )) quidi : F() (h()) h() h() Xo h() h() h() È: F () ()d ()d ()d ()d ()d h() h() Xo Xo Xo Quidi: F () d d h() h() ()d ()d Xo Xo d d h() ()d Xo Toerem Preedee (h ()) h () (h()) h () h() d ()d d Xo se F () d 0 F () os se os F () os d F() os os

6 6 NTEGRLE del TPO d D() () N POLNOMO D() POLNOMO () N N..: si osidero i si ei quli D() h rdii REL DSTNTE, REL MULTPLE, COMPLESSE SEMPLC N..: Si uò suorre, sez erdere i geerlià he si: grdo(n()) grdo(d()) oihé, SE FOSSE grdo(n()) grdo(d()) llor S ESEGUE l DVSONE r N() e D() oeedo (Q(), R() riseivmee Quoziee e Reso dell divisioe): NTEGRL RZONL di SE l d l l d d d d d 6 6 d q so 0 somoe si d ) )( ( d si deermio, / ) (... quidi: l l d d d d so 0 u QUDRTO sego, è, meo del N..: Si osider 0 lrimei l iegrle è del io già ro d d d modo: si deermio, / quidi: l d d d d modo: si f omrire Numerore l deriv del deomiore: l d l ) l( d 0 d d d d d

7 so 0 SCOMPONE(i R) si NON SE = 0 llor l iegrle è : d q e si riodue l io rgz dz z d rg 0 rg 0 d 0 d 6 6 d 6 d 6 d d 0 si f omrire Numerore l deriv del deomiore oeedo u somm di iegrli io: d f() f() ed d d rg ) l( rg ) l( d ) l( d ) l( d ) l( d ) l( ) l( d d d d d d

8 8 N.: Per oeere u formul geerle, er d o 0 llor si roede ome egli esemi visi: rg rg d d d d d rg d 0 N..: Se si vuole oeere u formul geerle, er d q o 0 llor si roede ome egli esemi visi: rg q ) l( rg q ) l( q ) l( d q ) l( d q ) l( d q ) l( d q ) l( q ) l( d q d d q d q d q d q rg q ) l( d q 0

9 NTEGRL io: N( ) D( ) d o D() he h rdii REL DSTNTE ESEMPO d è: + - = ( - )( + ) d d C or si deermio,,c / ( )( ) ESEMPO C ( )( ) ( ) C( ) ( )( ) ( )( ) C C ( )( ) C 0 / quidi: C... / C / 6 d d d 6 d ( ) d d 6 d l l l 6 N( ) NTEGRL io: D( ) d o D() he h rdii REL he MULTPLE d è: =...(Ruffii)... = ( - )( - ) d d 8 ( )( ) C or si deermio,,c / ( )( ) ( )( ) ( ) C C C 9 ( ) ( )( ) C( ) ( ) 0 quidi: C... C C d d d d l l ( )( )

10 NTEGRL io: N( ) D( ) d o D() he h rdii COMPLESSE SEMPLC ESEMPO d è: - + o Rdii Comlesse (Semlii) or si deermio,,c / ( ) C D ( ) C D ( C) ( C D) ( C D) D ( ) ( ) ( ) ( ) ( ) ( ) ( ) d d d 6 l d 6 ( ) l d 6 ( ) l d 6 ( ) l d 9 ( ) l l d 9 rg( ) d rg( C D d ) C 0 C D 0 /... C D C D D / d 0

11 NTEGRZONE di LCUNE FUNZON RRZONL TPO: d 0 Meodo: si rsform risoluive) d i u iegrle io d o d,risolviili er Sosiuzioe (o lido diremee le formule Si 0 d d d d d se 0 llor oso: + = d = d ed = d

12 se 0 llor oso: + = d = d ed ( ) = d Si 0 d d d d d TPO: q d 0 q Meodo: si rsform d i u somm di iegrli del io: f () io d ed f() d ifi: q q d d q d d q q q d d d q d d

13 TPO Si idihi o: R(,,,...) d d u fuzioe rziole delle quià, d, d,... o: i N - 0, i N - 0, ed d - 0 ( lrimei os e) d ESEMPO d ui: quidi: L egrle R (, d, d,... )d si riodue ll iegrle di u fuzioe rziole o l sosiuzioe: o = m..m. i d d si oe: ( ) d d ( ) d d d d è l iegrle di u fuzioe rziole d

14 or si deermio,,c / d l rg quidi d / C D =... / C 0 D / d d d l l rg l rg ESEMPO 6 d si oe: d ui: d = 6 d ed essedo: si h quidi: 6 d 6 6 d d 6 6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! TPO Si idihi o: R(, ) u fuzioe rziole delle quià, o: L egrle R(, ) d si riodue ll iegrle di u fuzioe rziole o l sosiuzioe: d o = m..m. i

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni)

Algebra. c d. 1. Operazioni con le potenze. 2. Operazioni con le frazioni. 3. Identità notevoli. (somma algebrica tra frazioni) ler. Oerzioi o le oteze m m m m : m / m m m, m / m. Oerzioi o le rzioi d d somm leri tr rzioi d rodotto tr rzioi d d d : rorto tr rzioi d otez di u rzioe 3. Idetità otevoli. 3 3, 3 3 3, 3 3 3 3,, 4 4 3

Dettagli

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b].

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b]. INTEGRALI INDEINITI L deermizioe di u uzioe primiiv è u prolem iverso quello dello sudio dell deriv di u uzioe. Il osro prolem diviee or. D u uzioe y deii i u iervllo [,] voglimo rovre se esise u uzioe

Dettagli

Integrali indefiniti

Integrali indefiniti Primitiv di u fuzioe Itegrli idefiiti U fuzioe F() si die primitiv di u fuzioe i u itervllo I se, per ogi I: F = U fuzioe mmette ifiite primitive, he differisoo u dll ltr per u ostte dditiv. L fmigli delle

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

q a n+1 = a n q S n = q n 1 na 1 5. a = b a = b a = b 6. a b b a b ( a ; b a b a 2 b 2 ( a; b )

q a n+1 = a n q S n = q n 1 na 1 5. a = b a = b a = b 6. a b b a b ( a ; b a b a 2 b 2 ( a; b ) Numeri reli Rdili doppi + ± ± Suessioi Suessioi ritmetihe { } + d + ( d S + d Equzioi di seodo grdo Suessioi geometrihe q se q { } q + q S q se q + + ± (, + Disequzioi di seodo grdo T + + Sio, le rdii

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fodmei di elecomuiczioi - SEGNALI E SPERI Prof. Mrio Brber [pre ] 1 Fodmei di LC - Prof. M. Brber - Segli e speri [pre ] Covoluzioe Defiizioe: w 3( = ( w1 * w ( w1 ( w ( d L covoluzioe è oeu:

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

ANALISI MATEMATICA I MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO f(x) = x 1 si x + q, a) calcolare il domiio di f; (1 uto) b) studiare la ositività e l itersezioe co gli assi; (3 uti) c) stabilire se f ha asitoti orizzotali, verticali, obliqui;

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice

Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice Sudio delle ocillzioi di u ie -oll Ocillore roico eplice L equzioe del oo II legge dell diic è: d k [] d L oluzioe di que equzioe differezile del II ordie coefficiei coi è: e φ [] Derido ifi l [] e oiuedo

Dettagli

1 α. Corso di Statistica Facoltà di Economia. θ θ. X σ. Lezione n 24. Francesco Mola INTERVALLI DI CONFIDENZA. Stime puntuali Stime intervallari

1 α. Corso di Statistica Facoltà di Economia. θ θ. X σ. Lezione n 24. Francesco Mola INTERVALLI DI CONFIDENZA. Stime puntuali Stime intervallari Corso di aisia Faolà di Eoomia Leioe 4 INTERVALLI DI CONFIDENZA ime uuali ime iervallari aa 000-00 00 Fraeso Mola θ θ θ θ 3 θ 4 aa 000-00 saisia-fraeso mola Iervalli di ofidea Livello di ofidea o Livello

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

Integrazione numerica

Integrazione numerica Docee: Cludo Esco esco@usur. Iegrzoe umerc Lezoe s su ppu del pro. Mrco Gvo Iegrzoe umerc Iegrzoe umerc Formule d qudrur. Grdo d esezz. 3 Meodo de coece deerm. 4 Formule d qudrur erpolore. 5 Formule d

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali Creep ei melli Compormeo cldo di sruure moo e bi-dimesioli Curve di creep - diverse emperure Curve di creep emperur cose T T m T B T T r Sforzo-empo di rour Di rour Relzioi empirice ell curv - T

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA Università egli Stui i rento Corso i Lure in Ingegneri elle eleomunizioni ESERCIZI SVOLI DEL CORSO DI RASMISSIONE NUMERICA Prof Lorenzo Bruzzone ESERCIZIO Costruire un oie vente n=3, k=2 on rità isri,

Dettagli

Facoltà di Economia. θ θ. francesco mola. Lezione n 18

Facoltà di Economia. θ θ. francesco mola. Lezione n 18 Corso di aisia Faolà di Eoomia a.a. 00-00 fraeso mola Esemio : u u amioe asuale di 8 egoi di arioli sorivi la media seimaale di saree vedue da iasu egoio risulaa ari a 00. i sa he ella oolaioe la deviaioe

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+ Cpiolo II RAPPRESENAZIONE DEI SEGNALI NEL DOMINIO DELLA REQUENZA. II. - Segli periodici. U segle, rppreseo d u fuzioe rele o compless s( di vribile rele, si dice periodico se esisoo vlori di li che, per

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1

LE POTENZE. volte. a ogni potenza con esponente nullo è uguale a 1 POTENZE AD ESPONENTE NATURALE LE POTENZE Si deiisce otez co bse e esoete u umero turle e si scrive.... ttori tutti uuli ll bse : csi rticolri: co. volte oi otez co esoete ullo è uule il rodotto di co oi

Dettagli

Serie di Fourier Discrete Fourier Transform (versione 1.0, 18/01/2006)

Serie di Fourier Discrete Fourier Transform (versione 1.0, 18/01/2006) Sri di Fourir Disr Fourir rsfor (vrsio., 6) Ig. Giuspp Fdl Dip. Elroi, Ifori Sisisi Uivrsià dgli Sudi dll Clbri Eil: fdl@si.dis.uil.i Sviluppo i sri di Fourir U sgl () è -priodio s vl l rlzio: ( ) ( )

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Matematica Capitolo 2. Successioni. Ivan Zivko

Matematica Capitolo 2. Successioni. Ivan Zivko Mtemtic Cpitolo Successioi Iv Zivko Defiizioe U successioe ( ) è u isieme di ifiiti umeri orditi:,, 3,.,. Può essere defiit come u fuzioe: N R, Mtemtic Rppresetzioe Per rppresetre u successioe si possoo

Dettagli

Introduzione all uso di MATLAB

Introduzione all uso di MATLAB Itroduzioe ll uso di MATLAB Miscioe Giusee g.miscioe@virgilio.it Idice Descrizioe di MATLAB Defiizioe di mtrici Accesso gli elemeti di u mtrice Oerzioi comui sulle mtrici Oerzioi lgebriche tr mtrici Esemio:

Dettagli

Unità Didattica N 09 I RADICALI

Unità Didattica N 09 I RADICALI 1 Uità Didttic N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 06) Divisioe di due rdicli 07)

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

13. Determinante di una matrice quadrata

13. Determinante di una matrice quadrata Determite di u mtrice qudrt Defiizioe Dti umeri reli,,,,, (-), (-), col simbolo i idiceremo l loro somm ( + + + + + (-) + (-) + ) Quidi, i i := + + + + + (-) + (-) + i Esempio y i = y + y + y + y + + y

Dettagli

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8.

1. (Punti 8) Deteminare modulo e argomento delle soluzioni della seguente equazione nel campo complesso. 1 x = 0. x 2 e 8. Corso di Laurea i Igegeria Biomedia ANALISI MATEMATICA Prova sritta del giugo 7 Fila. Esporre il proedimeto di risoluzioe degli eserizi i maiera ompleta e leggibile.. Puti 8) Detemiare modulo e argometo

Dettagli

Esame di Ricerca Operativa - 29 gennaio 2008 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 29 gennaio 2008 Facoltà di Architettura - Udine - CORREZIONE - Esme di Rier Oeri - 9 gennio 8 Folà di rhier - Udine - CORREZIONE - Prolem ( ni): Un sieri riginle rode re ii di ore (, e C) ilizzndo i segeni ingredieni: frin, o, le, zhero e nn. In riolre, l nn, he ò

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Studio matematico dei sistemi di controllo

Studio matematico dei sistemi di controllo Studio matematico dei sistemi di cotrollo Studio di u sistema fisico x(t segale di igresso (eccitazioe SISTEMA FISIO y(t segale di uscita (risosta y(t è legata a x(t da u equazioe differeziale che diede

Dettagli

FORMULE DI MATEMATICA FINANZIARIA. Montante semplice r = saggio o tasso di interesse C 0 = Capitale iniziale t = tempo. Sconto semplice razionale

FORMULE DI MATEMATICA FINANZIARIA. Montante semplice r = saggio o tasso di interesse C 0 = Capitale iniziale t = tempo. Sconto semplice razionale FORMULE DI MTEMTI FINNIRI Ieee elie I I I I Moe elie ggio o o di ieee ile iizile eo ( ) oo elie ziole oo elie oeile o io Ieee ooo ( ) I Moe ooo ueo di i oo ooo loi oi Foul geele R e vloi iii - e vloi oiii

Dettagli

Esercizi ed esempi. Esercizio 6. M. Bianco

Esercizi ed esempi. Esercizio 6. M. Bianco recursie suroutie ergesort(dti,, workspce) iteger, itet(i) :: iteger, itet(iout),diesio() :: dti iteger, itet(iout),diesio() :: workspce iteger :: iddle Esercizi ed esepi M. Bico! l sequez lug e` gi` ordit

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Igegeria delle Telecomuicazioi Prova scritta del -2-27 Esercizio. puti) Sia = {, y) R 2 :, y 3 + }. a) 3 puti) Utilizzare il teorema di Stokes o Poicaré-Carta) per calcolare d dy

Dettagli

I appello - 8 Gennaio 2019

I appello - 8 Gennaio 2019 Aalisi Maemaica - A.A. 08/9 Prove scrie di Aalisi Maemaica - A.A. 08/09 Corso di Laurea i Igegeria Civile Corso di Laurea i Igegeria Iformaica ed Eleroica I appello - 8 Geaio 09 Svolgere i seguei esercizi,

Dettagli

Il linguaggio dell energia

Il linguaggio dell energia Il liguggio dll rgi Abbimo iso h l rgi pozil è dfii, om E p mgy f -mgy i Ou dl lolo dl loro fo dll sro pr ofigurr il sism, l loro fo i rsiuio h soo form di rgi ii. I ssz di rio, l rgi pozil, si rsform

Dettagli

test [ A ] - soluzioni

test [ A ] - soluzioni test [ A ] - soluzioi 1. k - 1 / e Posto f ( ) log, si h f ( ) ( log + 1 ) 0 per e - 1 /. Ioltre f ( e ½ ) - 1 / e.. y ( ) rctg ½ log ( 1 + ) + 1 Itegrdo per prti : rctg d rctg - d 1+ rctg ½ log ( 1 +

Dettagli

( x) ( ) ( )( ( ) ( ) ( ) ( ) )

( x) ( ) ( )( ( ) ( ) ( ) ( ) ) C Boccccio Apputi di Alisi Mtemtic CAP IV CAP IV FUNZIONI REALI Per due fuzioi reli f : X R e g : X R si defiiscoo le uove fuzioi f g : X R, f g : X R ed f g : X R l modo seguete: X : f g = f g X : ( )(

Dettagli

Indice. Le derivate. Successioni e serie numeriche

Indice. Le derivate. Successioni e serie numeriche Iie pitolo Suessioi e serie umerihe. Suessioi umerihe Rppresetzioe grfi, Suessioi mootòe,. Limiti elle suessioi Suessioi overgeti, Suessioi ivergeti, Suessioi ietermite, 6. Teoremi e operzioi sui limiti

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

FORMULARIO DI MATEMATICA

FORMULARIO DI MATEMATICA TEST UIVERSITARI FACILI - uitest.isswe.et FORMULARIO DI MATEMATICA Sommrio ALGEBRA... DISEQUAZIOI... 5 GEOMETRIA... 6 GEOMETRIA AALITICA... 7 FUZIOI ESPOEZIALI LOGARITMI... 9 TRIGOOMETRIA... CALCOLO COMBIATORIO...

Dettagli

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI FATTI NUMERICI & PROPRIETÀ dell SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE lle SUPERIORI QUADRATI & RADICI NOTEVOLI ² = = ² = 4 4 = ² = 9 9 = 4² = 6 6 = 4 5² = 5 5 = 5 6² = 6 6

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI

INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Adolfo Scimoe FORMULE INTEGRAZIONE Pag INTEGRAZIONE INDEFINITA DI ALCUNE CLASSI DI FUNZIONI Iegrazioe delle fuzioi razioali frae Se la frazioe è impropria, cioè il grado del umeraore è maggiore o uguale

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

IL CONCETTO DI LIMITE

IL CONCETTO DI LIMITE IL CONCETTO DI LIMITE DEFINIZIONE DI LIMITE Si f u fuzioe defiit i u itoro di x 0 dicimo che f x=l se e soltto se, comuque sceglimo u itervllo I l cetrto i l, piccolo quto voglimo, è possiile trovre u

Dettagli

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma

ESERCITAZIONE PER LA QUARTA PROVA DELL' ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE CIVILE E AMBIENTALE Autore: Marina Roma hp://svolgmeorcceesme.lervs.org/ ESECITAZIONE PE LA UATA POVA ELL' ESAME I STATO PE L'ABILITAZIONE ALLA POFESSIONE I INGEGNEE CIVILE E AMBIENTALE Auore: Mr om Il presee documeo rpor lo svolgmeo, pssggo

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

INSIEMI, LOGICA, FUNZIONI, ALGEBRA

INSIEMI, LOGICA, FUNZIONI, ALGEBRA INSIEMI, LOGICA, FUNZIONI, ALGEBRA INSIEMI Isieme ozioe primitiv o si defiise. Idiheremo: - gli isiemi : A, B, C... - gli elemeti:,,,..., x, y,... A sigifi he è u elemeto he pprtiee ll isieme A A sigifi

Dettagli

Algebra di Boole Forme normali P ed S

Algebra di Boole Forme normali P ed S Corso d Cloltor Elettro I A.A. 0-03 Alger d Boole Forme orml ed rof. Roerto Coo Uverstà degl tud d Npol Federo II Dprtmeto d Igeger Elettr e delle Teologe dell Iformzoe Corso d Lure Igeger Iformt (llev

Dettagli

PRIMITIVA DI UNA FUNZIONE O INTEGRALE INDEFINITO 3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI

PRIMITIVA DI UNA FUNZIONE O INTEGRALE INDEFINITO 3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI PRIMITIV I UN FUNZIONE O INTEGRLE INEFINITO. EFINIZIONE I PRIMITIV I UN FUNZIONE. LINSIEME INFINITO ELLE PRIMITIVE. INTEGRLI INEFINITI IMMEITI E FONMENTLI. PROPRIET I LINERIT ELLINTEGRLE INEFINITO. LCUNI

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e roilità L roilità e' un numero che indic con qule frequenz si resentno eventi ssociti d un insieme di ossiili risultti di un eserimento. Esemio: Eserimento: Lncio csule di un ddo Risultto:

Dettagli

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane

Algebra di Boole Forme normali P ed S. Variabili e funzioni booleane 3/03/0 Corso d Cloltor Elettro I A.A. 0-0 Alger d Boole Forme orml ed Lezoe 6 rof. Roerto Coo Uverstà degl tud d Npol Federo II Foltà d Igeger Corso d Lure Igeger Iformt (llev A-DA) Corso d Lure Igeger

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli