Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio delle oscillazioni di un sistema massa-molla. Oscillatore armonico semplice"

Transcript

1 Sudio delle ocillzioi di u ie -oll Ocillore roico eplice L equzioe del oo II legge dell diic è: d k [] d L oluzioe di que equzioe differezile del II ordie coefficiei coi è: e φ [] Derido ifi l [] e oiuedo [], i h u ideià e Le coi e φ o deerie i be lle codizioi iizili: eφ [3] coφ Diidedo ebro ebro, d qui egue che: gφ [] Deeriio i prio luogo φ. Dll [], derio due oluzioi, che iereero il ed il 3 qudre oppure b il ed il qudre. Co riferieo l co, i ceglierà il qudre 3 qudre e > <, e ciò per oddifre i ego l [3]. Sbilio φ, il lore di i può clcolre d [3]. k Ocillore roico orzo L equzioe del oo è i queo co: d k [5] d d il co più eplice i h qudo β, cioè l forz di rio riul proporziole ll d elocià dell ocille. Diidedo per, l equzioe i crie: d d [6] d d I queo co, l oluzioe è del ipo i cerc r le fuzioi del ipo e. Derido e oiuedo, i ro l equzioe creriic: ± [7] Si diiguoo quidi re ci:. >. I queo co l [7] h due oluzioi reli e di ego egio. L oluzioe dell [6] è: e e [8] Si dice i queo co che il ie è ororzo. Le coi e i deerio di lori iizili di poizioe e elocià. D [8], egue: P. Roo Ocillore roico

2 . 3.. L [7] h due oluzioi coicidei e di ego egio. L oluzioe dell [6] è: il ie i dice i orzeo criico. Per le coi, i h: e e [8] <. Le oluzioi dell [7] oo coplee coiuge. Poo oluzioi i crioo: j j j [ e e ] e e, le due j. L oluzioe dell [6] è llor: o, iroducedo le due coi reli e φ : e e φ Il ie i dice i codizioi di ooorzeo. Le coi e φ dipedoo dlle codizioi iizili: eφ [9] eφ coφ D qui, co brei pggi, i oiee: g φ [] logee quo fo per l ocillore roico eplice, deeriio i prio luogo φ. Dll [], derio due oluzioi, che iereero il ed il 3 qudre oppure b il ed il qudre. Co riferieo l co, i ceglierà il qudre 3 qudre e > <, e ciò per oddifre i ego l [9]. Sbilio φ, il lore di i può clcolre d [9]. [8] 3 Ocillore roico orzo forzo L equzioe del oo è i queo co: d k e [] d d Trio il co pricolre i cui β l forz di rio è proporziole ll elocià e d e e l ollecizioe eer è iuoidle. L [], poedo f i crie: d d f e [] d d L oluzioe di que equzioe i copoe di due pri: P. Roo Ocillore roico

3 . L iegrle geerle dell equzioe [6], ell for [8] oppure [8] oppere [8] 3 ;. U oluzioe pricolre dell [], che cerchereo ell for e φ. L oluzioe dell [] rà, per oguo dei re ci:. e e e φ... e e e φ [3].. 3. e e φ e φ.. doe i ric epre d [8]. L pre. dell oluzioe è u riorio, che i eigue dopo u cero epo. L pre. è iece ziori. Deeriio, i prio luogo, le coi e φ. Dopo u cero epo, riorio eurio, e φ o, uilizzdo l più cood ozioe cople: le [3] i riducoo j φ e [] Derido e oiuedo i [], i oiee: jφ f e j [5] Vludo il odulo di bo i ebri oliplicdo per i coplei coiugi, i deeri : f f [6] Ψ D [5] e d [6], egue iolre: eφ Ψ gφ [7] coφ Ψ Dei due lori di φ, biog cegliere quello che oddif l [7] e ciò iplic che oddiferà che l [7]. Deo i lre prole, riul epre π φ. Reo, queo puo, d deerire le coi e co. e. e le coi e φ co 3.. Procededo coe el co dell ocillore roico orzo, i ro:. eφ coφ. eφ coφ [8] 3. eφ eφ eφ coφ coφ Poedo eφ coφ, le [8] dieo: e P. Roo Ocillore roico 3

4 P. Roo Ocillore roico φ φ φ co 3... e e [9] che i rioloo i odo del uo logo quo già io ei re coripodei ci relii ll ocillore roico orzo. Modello uerico Coicio co il coiderre il co dell ocillore roico eplice. Il odo più eplice di iegrre l equzioe del oo [] i b ulle forule: [] ii i lori, ed il, l uilizzo ierio delle [] coee l deerizioe del oo del ie. Queo eodo, oo coe eodo di Eulero, che clcol le quià e l epo u ol oe le quià,, l epo cioè ll iizio dell ierllo, è ooriee poco precio. Ifi, l piezz delle ocillzioi ede d uere el epo, rferedo queo effeo ideidero u ue le grdezze college, qule d eepio l eergi ole del ie. fig.,,.5,.6, / kg N k., /. -,5 - -,5,5,5 6 epo clcolo uerico Eulero eori epo E T igur U riulo deciee igliore i oiee uilizzdo, ziché le [], le relzioi: []

5 L differez ozile r il eodo di Eulero e queo che di clcolo oo coe lgorio di Verle el fo che il clcolo di e di iee effeuo prededo i lori edi di elocià ed ccelerzioe ell ierllo, piuoo che i lori che quee grdezze ho ll iizio di queo ierllo. Ripeo llo che [], il uero dei pggi di clcolo è lo eo i quo:. Il pggio [] iee i relà ierio direee i [] 3 e ere olo fr copredere che il clcolo di, coe già deo, iee effeuo prededo il lore edio di i, ;. Il pggio [] è olee icipo ripeo llo che []. I fig., i ede ciò che i deeri co lo che di clcolo bo ulle [] l ierllo eporle è o ridoo per gli ei di di fig.. poeo,6,, -, 5 5 -, -,6 Eergi ole J 5, 5,,99999,99998,99997, epo epo elocià / 3 - -,5 -, ccelerzioe / ,5-5, poeo poeo igur Se i uole iulre u ocillore roico orzo forzo, lo che [] dee eere odifico coe egue []: f e f e [] I queo co, ripeo [], i h u pggio i più. Il clcolo di, ifi, dee eere olo pre e o iglobo i [] 3, i quo riul poi ecerio per []. P. Roo Ocillore roico 5

6 I fig. 3, k N /, kg,., f 3.5 N / kg, rd /. poeo epo Eergi ole J epo elocià / poeo ccelerzioe / poeo igur 3 P. Roo Ocillore roico 6

Realizzazioni e rappresentazioni ingresso-uscita

Realizzazioni e rappresentazioni ingresso-uscita Teori dei sisei - Cpiolo Relizzzioi e rppresezioi igresso-usci Il proble dell relizzzioe... Iroduzioe... Le relizzzioi iie... Deerizioe dell relizzzioe ii per u sise SISO... Esepio...7 Esercizio (Appello

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

MOTI. Per descrivere un moto è necessario specificare la posizione del corpo in ogni istante. E quindi necessario definire un sistema di coordinate:

MOTI. Per descrivere un moto è necessario specificare la posizione del corpo in ogni istante. E quindi necessario definire un sistema di coordinate: MOTI Meccnic: Cinemic: Dinmic: brnc dell fiic che udi il moo dei corpi e le fore che lo fnno rire decrie il moo dei corpi en fre riferimeno eplicio lle fore che gicono u di ei è lo udio dell relione eplici

Dettagli

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s Eercizione n 3 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gbriele F)A.A. 1/11 Cinemic (b) 1. Un rzzo eore, lncio in ericle, le per 1 min con ccelerzione cone = m/, dopodiché, conumo uo il combuibile,

Dettagli

Interpolazione e Approssimazione ai minimi quadrati

Interpolazione e Approssimazione ai minimi quadrati Cludio Ettico (cludio.ettico@uiubri.it) Iterpolzioe e Approizioe i iii qudrti Iterpolzioe e iii qudrti Iterpolzioe e pproizioe i iii qudrti ) L pproizioe di fuzioi: iterpolzioe e igliore pproizioe. ) Eitez

Dettagli

Esercitazione n Nel caso di pressione variabile da 0 a 12 Mpa, verificare la resistenza dei bulloni.

Esercitazione n Nel caso di pressione variabile da 0 a 12 Mpa, verificare la resistenza dei bulloni. Mori Nicol Recipiee i preioe Eercizioe 5 9 Il recipiee co le dieioi ee i fiur coiee liquido o corroivo ll eperur di 0 C e ll preioe di fuzioeo di 1 Mp; l urizioe r le due fle è ezioe reolre co diero edio

Dettagli

Cinematica. Il confronto e la classificazione dei moti, chiamata cinematica, si presenta come un compito arduo.

Cinematica. Il confronto e la classificazione dei moti, chiamata cinematica, si presenta come un compito arduo. Cineic Il ondo, con uo quello che coniene, i uoe ripeo l reo dell Uniero. Anche ciò che in pprenz è iobile, coe un rd, i uoe con l rozione dell Terr, con l orbi dell Terr inorno l Sole, con l orbi del

Dettagli

Esame di allineamento di Fisica - 24 novembre Facoltà di Ingegneria - Università di Bologna, sede di Cesena -a-

Esame di allineamento di Fisica - 24 novembre Facoltà di Ingegneria - Università di Bologna, sede di Cesena -a- --. lcole l e del pllelo indiiduo di eueni eoi: i j k ( ) ( ) ( ) i j 9 k 6 i j k i j k ( ) ( ) ( ) 9 lcole il odulo del podoo eoile:. Un copo pendo d feo ccele pe un fino d un elocià di / ucceiene i uoe

Dettagli

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali Creep ei melli Compormeo cldo di sruure moo e bi-dimesioli Curve di creep - diverse emperure Curve di creep emperur cose T T m T B T T r Sforzo-empo di rour Di rour Relzioi empirice ell curv - T

Dettagli

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006 13ALPGC-Cosruioe di Mcchie 1 Ao ccdeico 005-006 IL CALCOLO DELLE RUOTE DENTATE CILINDRICE 1 Iroduioe Il diesioeo di u igrggio, essedo o l cieic (rpporo di rsissioe, ueri di dei, golo di pressioe α (oα

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

Determinazione sperimentale delle frequenze di taglio

Determinazione sperimentale delle frequenze di taglio Aui di Eleroic Ciolo 6 re III Alisi i frequez Deerizioe seriele delle frequeze di glio... Eseio uerico... 5 Eseio uerico... 8 Sisei co due oli ell fuzioe di rsferieo... Alisi i frequez degli lificori iù

Dettagli

Esercizi ed esempi. Esercizio 6. M. Bianco

Esercizi ed esempi. Esercizio 6. M. Bianco recursie suroutie ergesort(dti,, workspce) iteger, itet(i) :: iteger, itet(iout),diesio() :: dti iteger, itet(iout),diesio() :: workspce iteger :: iddle Esercizi ed esepi M. Bico! l sequez lug e` gi` ordit

Dettagli

FISICA GENERALE T-A scritto 17/9/2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A scritto 17/9/2013 prof. Spighi (CdL ingegneria Energetica) ISIC GENELE - co 79 pof. Sph CdL ee Eeec L pooe d u puo ee è Ccoe: eocà eoe ed f pu e ; b eocà ce ed f e d epo; c o d cuu epo. co e e ecod. U e é foo d u dco ooeeo d o e e d u pufoe d oe f e puo e e de

Dettagli

Analisi Parametrica della Stabilità

Analisi Parametrica della Stabilità Prof. Crlo Coetio Fodmeti di Automtic A.A. 6/7 Coro di Fodmeti di Automtic A.A. 6/7 Alii Prmetric dell Stbilità Prof. Crlo Coetio Diprtimeto di Medici Sperimetle e Cliic Uiverità degli Studi Mg Greci di

Dettagli

τ = 0.6 efficacia dell equilibratore

τ = 0.6 efficacia dell equilibratore TABILITA LONGITUDINALE DIMENIONAMENTO PIANO DI CODA ORIZZONTALE Il dienioneno del pino di cod orizzonle conie nel ricercre l coppi di vlori b perur geoerici che oddif le due condizioni criiche : uperficie

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fodmei di elecomuiczioi - SEGNALI E SPERI Prof. Mrio Brber [pre ] 1 Fodmei di LC - Prof. M. Brber - Segli e speri [pre ] Covoluzioe Defiizioe: w 3( = ( w1 * w ( w1 ( w ( d L covoluzioe è oeu:

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

Controlli Automatici A

Controlli Automatici A Corolli Auomici A Cori di lure rieli i Igegeri Eleroic, Iformic, Telecomuiczioi.. / Docee: Prof. Aurelio Pizzi Emil: urelio@ce.uir.i h://www.ce.uir.i/eole/izzi/ 3. L fuzioe di rio rmoic 3. I digrmmi di

Dettagli

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+

Un segnale periodico è manifestamente un segnale a potenza finita. Infatti è: s t dt. kt0 kt0. T0 s t dt+ Cpiolo II RAPPRESENAZIONE DEI SEGNALI NEL DOMINIO DELLA REQUENZA. II. - Segli periodici. U segle, rppreseo d u fuzioe rele o compless s( di vribile rele, si dice periodico se esisoo vlori di li che, per

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

ALCUNE TECNICHE di INTEGRAZIONE

ALCUNE TECNICHE di INTEGRAZIONE LCUNE TECNCHE di NTEGRZONE D riordre: f( ) d F( ) F ( ) f( ) F ()d F() fi: ()d f()d F() D f()d f() fi: D f()d DF() F() f() f ()d g() d f() d f () f()d g() d d e d e d e log l d ( g ) d g os d ( o g ) d

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b].

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b]. INTEGRALI INDEINITI L deermizioe di u uzioe primiiv è u prolem iverso quello dello sudio dell deriv di u uzioe. Il osro prolem diviee or. D u uzioe y deii i u iervllo [,] voglimo rovre se esise u uzioe

Dettagli

&2562',/$85($,16&,(1=(%,2/2*,&+( Prova di Fisica del 20 giugno 2003 (Corso J-Z) T x p x Si calcoli:

&2562',/$85($,16&,(1=(%,2/2*,&+( Prova di Fisica del 20 giugno 2003 (Corso J-Z) T x p x Si calcoli: &',/$8($,&,((%,/*,&+( Proa di Fiica del giugo (oro Z) *LXWLILFDUHLOSUFHGLPHQWHXLWWLWXLUHDOODILQHLYDOULQXPHULFLQQGLPHQWLFDUHOHXQLWjGLPLXUD FULYHUHLQPGFKLDU. Ua iccola ferea carica elericaee (q +., kg) i

Dettagli

Cinematica I. 1) Definizione di moto

Cinematica I. 1) Definizione di moto Cineic I L cineic i occup dell decrizione del oo. Affronereo queo rgoeno nell coidde pproizione di puno erile: i corpi rnno conideri enz dienione oero equileni dei puni eici. Ciò equile dire che le dienioni

Dettagli

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Santiago del Cile) 2010 Quesiti QUESITO 1 www.mtefili.it Scuole itlie ll estero (Stigo del Cile) 21 Quesiti QUESITO 1 Si f(x) = { x2 5, se x 3 x + 2, se x > 3 Si trovi: lim f(x) ; x 3 lim f(x) ; x 3 + lim f(x). x 3 lim f(x) = lim x 3 x 3 (x2 5)

Dettagli

Capitolo 2 - Parte I Caratterizzazione di uno strumento

Capitolo 2 - Parte I Caratterizzazione di uno strumento Appui i Miure leriche Cpiolo - Pre I Crerizzzioe i uo rueo Irouzioe: creriiche i uo rueo i iur... quzioi ifferezili lieri... 3 Uo ell rforzioe i Lplce... 4 Fuzioe i ripo ll ipulo... 7 Fuzioeo i regie iico...

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi Chiorri, C. (04. Fodmei di psicomeri - Rispose e soluzioi Cpiolo 5 Domde di eori. Vedi p. 399. Vedi pp. 399-400 3. Vedi pp. 40-404 4. Vedi p. 405 5. Vedi pp. 408-4 6. Vedi pp. 4-4 7. Vedi pp. 44-46 8.

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

CAPITOLO 8 ESERCIZI: Soluzioni. Soluzione E 8.1

CAPITOLO 8 ESERCIZI: Soluzioni. Soluzione E 8.1 CAITOO 8 ESERCIZI: Soluzioi 1) Clcolo dell poez Soluzioe E 8.1 Il clcolo dell poez pre dl clcolo dell forz di glio; si usero le formule [8.12] e [8.15]: h si( ) 0 7, si(75 ) 0,68 (mm) b 0 0 e cosegue che:

Dettagli

( ) ( ) ( ) ( ) ( ) (x ) ( ) Medie. Valori intermedi. Numeri indici. Appunti di statistica. Media ponderata M Media quadratica Mq

( ) ( ) ( ) ( ) ( ) (x ) ( ) Medie. Valori intermedi. Numeri indici. Appunti di statistica. Media ponderata M Media quadratica Mq ed oder ed udrc ed eoerc ed roc A rulo lo( ed roc oeo cerle ed e Pro urle Secodo urle e od o dove e o dove Quà d Fcer Pre d Fcer Idc de vlor Pre d Pce Quà d Pce ede Vlor ered uer dc Quà d Lere Pre d Lere

Dettagli

2 C. Prati. Risposta all impulso di sistemi LTI e convoluzione

2 C. Prati. Risposta all impulso di sistemi LTI e convoluzione Segli e sisemi per le elecomiczioi /ed Cldio Pri Coprigh 00 he McGrw-Hill Compies srl C Pri Rispos ll implso di sisemi LI e covolzioe Esercizi di verific degli rgomei svoli el secodo cpiolo del eso Segli

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue,

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

Prova Scritta di Fondamenti di Automatica del 15 Marzo 2006

Prova Scritta di Fondamenti di Automatica del 15 Marzo 2006 Proa Scria di Fodamei di Aomaica del 5 Marzo 6 Sdee: Maricola: ω ) Si coideri l aomobile chemaizzaa i figra. L igreo del iema è la coppia alle roe morici, l cia è la elocià del eicolo. Si ama di poer ridrre

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

Lezione 1. Complementi di teoria dei sistemi

Lezione 1. Complementi di teoria dei sistemi ezioe omplemei di eori dei iemi ichimi ui iemi dimici ome è oo l criur dei modelli memici i ermii di iemi dimici coee di udire le proprieà co rumei di lii molo geerli che precidoo dll ur pecific del iem

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B

Facoltà di Ingegneria 1 a prova intracorso di Fisica I Compito B Eercizio n. Un punto terile i Fcoltà i Ingegneri pro intrcoro i Fiic I 5--00-Copito = 5kg i uoe lungo l e x con legge orri x( t) α t 8 =, oe x è epreo in etri, t in econi e α =. Deterinre: l poizione el

Dettagli

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0 Ricerc di zeri Equzioi o lieri Il prolem è ricvre le rdici (gli zeri di u fuzioe f(, cioè i vlori z: f(z0 qudo o si poss otteere l soluzioe i form chius (u formul Seprzioe delle rdici Per semplificre il

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

SUL PROBLEMA DEL CERCHIO DI GAUSS

SUL PROBLEMA DEL CERCHIO DI GAUSS SUL PROBLEMA DEL CERCHIO DI GAUSS A Bris e Prof Fio Bred Astrct Lo scopo di questo rticolo è l ricerc del uero di soluzioi itere delle disequzioi del tipo x 2 + y 2, oto coe il prole del cerchio di Guss,

Dettagli

Unità Didattica N 09 I RADICALI

Unità Didattica N 09 I RADICALI 1 Uità Didttic N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 06) Divisioe di due rdicli 07)

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

Lezione 4. Indice di un sottogruppo. Teorema di Lagrange per i gruppi finiti.

Lezione 4. Indice di un sottogruppo. Teorema di Lagrange per i gruppi finiti. Lezioe 4 Prerequisiti: Lezioi 23. Riferieto al testo: [H] Sezioe 2.4; [PC] Sezioe 5.5 Idice di u sottogruppo. Teorea di Lagrage per i gruppi fiiti. I questa lezioe deoterà sepre u gruppo fiito ed H u suo

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1 Prof. Roberto Milizi presso Liceo cietifico E. Ferio Mesge BR UNITA. PROGREIONI ARITMETICHE E GEOMETRICHE.. Le successioi ueriche.. Le progressioi ritetiche.. Il terie geerico e l rgioe i u progressioe

Dettagli

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1 Mtetic Liceo \ Unità Didttic N 7 Le proprietà dell rett Unità Didttic N 7 Le proprietà dell rett ) Rette prllele ) Rett pssnte per un punto dto e prllel d un rett dt 3) Rette perpendicolri 4) Rett pssnte

Dettagli

U.D. N 09 I RADICALI

U.D. N 09 I RADICALI Uità Didttic N 09 I Rdicli 71 U.D. N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 0) Divisioe

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

STIMA PUNTUALE DEI PARAMETRI

STIMA PUNTUALE DEI PARAMETRI STIMA DEI ARAMETRI STIMA UTUALE DEI ARAMETRI er STIMA UTUALE DEI ARAMETRI iede l iieme dei meodi ifereiali che permeoo di aribuire u valore ad u paramero della popolaioe, uiliado i dai di u campioe cauale

Dettagli

MOTO del PROIETTILE. Velocità: cambia continuamente in direzione e modulo secondo le equazioni:

MOTO del PROIETTILE. Velocità: cambia continuamente in direzione e modulo secondo le equazioni: Eerizioni mrzo, inemi el puno merile MOO el PROIEILE rieorie i proieili, ui pri on eloià pri (in moulo) m/ m on irezioni ripeo l uolo iere o Veloià: mbi oninumene in irezione e moulo eono le equzioni:

Dettagli

Indice delle correzioni

Indice delle correzioni Errata orrige Indice delle correzioni Pagina 19, forula 2.1 Pagina 74, esercizio 1 Pagina 74, esercizio 1 Pagina 74, esercizio 2 Pagina 75, esercizio 4 Pagina 97, Figura Pagina 110, esepio, pria forula

Dettagli

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE

INSTABILITA PANNELLO PIANO SOGGETTO A COMPRESSIONE Politecico di Milo Diptieto di Igegei Aeospzile INSTABILITA PANNLLO PIANO SOGGTTO A COMPRSSION DISPNS DL CORSO DI STRUTTUR MATRIALI AROSPAZIALI II VITTORIO GIAVOTTO CHIARA BISAGNI ANNO ACCADMICO 1/ Mteile

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1

Prof. Roberto Milizia, presso Liceo Scientifico E. Ferdinando Mesagne (BR) 1 Prof. Roberto Milizi presso Liceo cietifico E. Ferio Mesge BR UNITA. UCCEIONI E PROGREIONI. Le successioi ueriche.. Le rppresetzioi i u successioe.. Le successioi ootoe.. Il pricipio i iuzioe co ppliczioi..

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Dove L(S) è una funzione razionale fratta, data da un numeratore e un denominatore ()

Dove L(S) è una funzione razionale fratta, data da un numeratore e un denominatore () Apputi uogo Radici Ig. E. Garoe www.gprix.it uogo delle radici - Itroduzioe Abbiao vito fiora due trueti di aalii utili quali il diagraa di Bode e il diagraa di Nyquit, che vao a caratterizzare la ripota

Dettagli

Sistemi Intelligenti Reinforcement Learning: Iterative policy evaluation. Sommario

Sistemi Intelligenti Reinforcement Learning: Iterative policy evaluation. Sommario Siemi Inelligeni Reinforcemen Lerning: Ierive policy evluion Albero Borghee Univerià degli Sudi di Milno Lbororio di Siemi Inelligeni Applici (AIS-Lb) Diprimeno di Scienze dell Informzione borghee@di.unimi.i

Dettagli

MODELLO MATEMATICO DI UN MOTORE CC

MODELLO MATEMATICO DI UN MOTORE CC POITECNICO DI TOINO III Fcolà Ingegne ell Infozone Coo ue n Ingegne Mecconc MODEO MATEMATICO DI UN MOTOE CC AESSANDO FASSIO UGIO 26 Ince. Inouzone...3 2. Equzon Coue...3 2.. Mooe CC...3 2.2. Mooe, Moouoe,

Dettagli

ELABORAZIONE NUMERICA DEI SEGNALI. Note sulla trasformata Z

ELABORAZIONE NUMERICA DEI SEGNALI. Note sulla trasformata Z ELBORZIOE UERIC DEI SEGLI Lure secilistic ote sull trsfort Z P. ucchelli. Bieti SEGLI DISCRETI π.9 si L idice ssue vlori iteri; o è defiito er vlori di o iteri..7.6.5.4.3.. -. -. -.3 % sse tei :5; 5 5

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Grandezze Finanziarie e Regimi Finanziari

Grandezze Finanziarie e Regimi Finanziari MAEMAICA FINANZIAIA (SCIENZE AZIENALI - E-M IUNO) ESECIAZIONE POF. PAOLO E ANGELIS Grdezze Fzre e egm Fzr ESECIZO u omm d. d ere per u cero perodo d empo d u o effeo d eree ull ero perodo del % deermre

Dettagli

TESINA DI TRASMISSIONE DEL CALORE

TESINA DI TRASMISSIONE DEL CALORE UNIVERSIÀ DEGLI SUDI DI SALERNO Fcoltà di Igegeri Corso di Lure i Igegeri Meccic ESINA DI RASMISSIONE DEL CALORE Reltore Prof. Cuccurullo Gero Cdidti Colucci Luigi Lepore Lorezo Pisi Oreste ANNO ACCADEMICO

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

Trasformate. Fondamenti di Automatica Prof. Silvia Strada

Trasformate. Fondamenti di Automatica Prof. Silvia Strada Traormae Fodamei di Auomaica Pro. Silvia Srada Traormaa di alace Si coideri ua uzioe ella variabile reale, deiia er Aociamo alla uzioe la uzioe F comlea della variabile comlea F e d I geere, ale iegrale

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio.

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio. EQUAZIONI RAZIONALI A Dti due poliomi e B, l relzioe: A B scritt llo scopo di determire, se esistoo, vlori reli per i quli A e B ssumoo lo stesso vlore, si chim equzioe lebric ell icoit. U umero è soluzioe

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

16. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA = (16.1,2) 2 2

16. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA = (16.1,2) 2 2 G. etucci Lezioi di Cotuzioe di Mcchie 6. LA RESISTENZA A FATICA: EFFETTO DELLA SOLLECITAZIONE MEDIA I copoeti di cchi oo oggetti toie di cico vibile el tepo co dieeti odlità; i ig. oo otti lcui tipici

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Per ogni domanda ci può essere più di una risposta esatta. Puoi confrontarti con i tuoi compagni. Domanda Risposta A Risposta B Risposta C Risposta D

Per ogni domanda ci può essere più di una risposta esatta. Puoi confrontarti con i tuoi compagni. Domanda Risposta A Risposta B Risposta C Risposta D CON UN MICO CON UN MICO Pe ogni domnd ci può eee più di un ipo e. Puoi confoni con i uoi compgni. SRCIZI Domnd Ripo Ripo Ripo C Ripo D 1 Le due ee ono pependicoli pllele incideni pni enmbe pe Z z 2 Le

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

Diagrammi di Bode. (versione del ) Funzioni di trasferimento

Diagrammi di Bode.  (versione del ) Funzioni di trasferimento Dgr d Bode www.de.g.uo.t/er/tr/ddtt.ht veroe del 5-- Fuo d trfereto Le fuo d trfereto f.d.t de rut ler teo vrt oo fuo rol oè rort tr due olo oeffet rel dell vrle Per evtre d trttre eltete quttà gre, trodue

Dettagli

., ff., FF.,sTF. "FF J clj. rd= ,E.E F,$"# F,$" '$ E. ref. s"te E. eits. Ei' qg \ ? (Dt. gc.i c\ o(o. JGr. -c- -? ){F X. 9K; Nto - \- )) dcc.

., ff., FF.,sTF. FF J clj. rd= ,E.E F,$# F,$ '$ E. ref. ste E. eits. Ei' qg \ ? (Dt. gc.i c\ o(o. JGr. -c- -? ){F X. 9K; Nto - \- )) dcc. : AE "E E E.E $"# $" '$ E. f..t ( E Ei' L il!q n(" 7. ) )o ( '+ ) ) ;K ).l " q7 " l e A (l! E '( ll. + ( e

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2)

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2) 1 Cp. 3 Sudo de modell ler e zor el domo d 3.1 Iroduzoe Lo udo d u modello memco el domo d è d gr lug pù emplce d quello el domo del empo quo, co opporue operzo, rece rformre l modello couo, geerle, d

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

d r da informazione r r y x Cinematica seconda parte

d r da informazione r r y x Cinematica seconda parte Cinemic econd pe Moo nello pzio e nel pino L elocià nel pino L ccelezione nel pino Moo cicole Moo cicole nifome Moo cicole nifomemene cceleo ozione eoile del moo cicole Moo pbolico Moo pbolico Moo pbolico

Dettagli

Elementi Costruttivi delle Macchine Esercizi E.1 E.2 E.3 E.4 Politecnico di Torino

Elementi Costruttivi delle Macchine Esercizi E.1 E.2 E.3 E.4 Politecnico di Torino Esercizi E. E. E.3 E.4 Un lbero di diero D 5 e odulo di resisenz orsione W 35 3 è soggeo orsione lern sieric con oeno orcene M 5 N; è presene un inglio crerizzo d K.5 e q.9; il erile è cciio 5CrMo4 (R

Dettagli

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica rgoento 1 Leione 1 Leione 2 Franceca pollonio Dipartiento Ingegneria lettronica -ail: Capo elettrotatico Generato da cariche che non variano nel tepo Legge di Coulob r 1 F 2 4πε Qq [N] r q Q La fora di

Dettagli

Capitolo 6 - Analisi armonica

Capitolo 6 - Analisi armonica Apputi di Cotrolli Autotici Cpitolo 6 - Alii roic Itroduzioe... L fuzioe di ripot roic... Digri di Bode... 4 Itroduzioe: digri dell ripot roic... 4 Cotruzioe dei digri di Bode... 4 Digri di Bode delle

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

Lezione 17. Elementi periodici. Teoremi di Lagrange, Eulero e Fermat. Gruppi ciclici.

Lezione 17. Elementi periodici. Teoremi di Lagrange, Eulero e Fermat. Gruppi ciclici. Lezioe 17 Prerequiiti: Lezioi -4, 8. Eleeti eriodici. Teorei di Larae, Eulero e Ferat. rui ciclici. Defiizioe 17.1 Sia (, + ) u ruo additivo. Sia. Per oi Z i oe 0 e = 0; = + + e > 0; volte (( ) ) e < 0.

Dettagli

FORMULE DI MATEMATICA FINANZIARIA. Montante semplice r = saggio o tasso di interesse C 0 = Capitale iniziale t = tempo. Sconto semplice razionale

FORMULE DI MATEMATICA FINANZIARIA. Montante semplice r = saggio o tasso di interesse C 0 = Capitale iniziale t = tempo. Sconto semplice razionale FORMULE DI MTEMTI FINNIRI Ieee elie I I I I Moe elie ggio o o di ieee ile iizile eo ( ) oo elie ziole oo elie oeile o io Ieee ooo ( ) I Moe ooo ueo di i oo ooo loi oi Foul geele R e vloi iii - e vloi oiii

Dettagli

A cura del dipartimento di Matematica dell Istituto Superiore N. BIXIO FORMULARIO DI MATEMATICA E COMPLEMENTI PER LE CLASSI III-IV-V

A cura del dipartimento di Matematica dell Istituto Superiore N. BIXIO FORMULARIO DI MATEMATICA E COMPLEMENTI PER LE CLASSI III-IV-V cur del diprtimeto di Mtemtic dell Istituto uperiore N. IXIO FORMULRIO DI MTEMTIC E COMPLEMENTI PER LE CLI III-IV-V.. 5/6 INDICE EQUZIONI DI GRDO...3 EQUZIONI E DIEQUZIONI DI GRDO CON... EQUZIONI E DIEQUZIONI

Dettagli