Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario"

Transcript

1 Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue, llor: d sin [ cos cos d] [ cos cos d] c [ cos sin ] c [ cos( ) ( )] c sin sin Clcol i segueni inegrli.

2 6 6. ln e e Pongo e ln d cui si oiene: ln d d d d e e [ ] rcn rcn rcn π π π d. 9, ± ± ± e llor pplichimo il principio di idenià dei polinomi: Quindi uguglindo i coeicieni delle poenze omologhe 6 Quindi l inegrle inizile diven:

3 [ ln ln ] ( ln ln( ) ln ln ) ln ln( ) ln Prolemi sui solidi di rozione. Clcol l re e il volume del solido di rozione genero d un rozione comple orno ll sse dll unzione Dll ormul per il volume di rozione si oiene: V π π y e delimio dlle ree vericli e. ( ) pplichimo il principio di idenià dei polinomi: ( ) ( ) ( )( ) Quindi uguglindo i coeicieni delle poenze omologhe π, quindi 6 6 ( ) π ln9 ln ln 9 π L re vle: π [ ln ( ) ] π [ ln 9 ( 9) ln ( ) ] ln, π π d π d π 6 rcn 6, 6 6 π 6 rcn 6 rcn d π. Si S il grico dell unzione delimio dlle ree vericli,. Clcolre l're dell supericie del solido genero cendo ruore S orno ll'sse y. Poiché l rozione vviene orno l sse y devo ricvre l unzione rispeo l vriile y: y y Inolre per le limizioni: y ( ) y y

4 Dll ormul per l supericie di rozione: π ydy Pongo y d cui si oiene y y Per le limizioni si h: y ( ), y ( ) ( ) dy π ( ) dy π dy π dy π π π π Quesionrio. Clcol un primiiv dell unzione ( ln ) ( ln ) ( ln ) ln ( ln ) ln ( ln ) ln ( ln ) ln ln [ ln ] ln [ ln ] c ln ln c ln. Illusr il conceo di inegrle deinio. Il signiico di inegrle deinio rppresen l misur dell re delimi d un unzione, dell sse e d due esremi (sempre per l unzione). Considerimo il seguene grico: L inegrle deinio quindi rppresen l esensione dell zon color in gillo. Per clcolre il suo vlore procedimo uilizzndo delle pprossimzioni per oenere vere un sim dell re conrssegn.

5 pprossimzioni per dieo L ulim igur rppresen un sim migliore dell re soes dl grico dell unzione, ini si vede chirmene che i rengoli gilli riescono ricoprire un supericie mggiore rispeo quno ccde nell igur precedene. Per vere un sim ncor migliore dell re è possiile scegliere di uilizzre rengoli di se decrescene. Queso procedimeno, in ogni cso, resiuisce un sim per dieo dell re in quesione. Ripeimo il rgionmeno eeuo, scegliendo di uilizzre rengoli che conengno il grico dell unzione. pprossimzioni per eccesso

6 Le ulime due igure rppresenno un sim mggiore dell re soes dl grico dell unzione, il vlore dell pprossimzione che si oiene in pricolre nell ulim igur resiuisce un sim più vicin l vlore rele dell supericie. Per vere un sim ncor migliore dell re è possiile scegliere di uilizzre rengoli di se decrescene. Queso procedimeno, in ogni cso, resiuisce un sim per eccesso dell re in quesione. Possimo chimre S in l pprossimzione per dieo dell re deermin dll unzione e S sup l pprossimzione per eccesso dell medesim re. Si h quindi S in S sup Fcendo endere zero l misur dell se dei rengoli si h che le due ree S, S endono in sup llo sesso vlore che rppresen quindi l misur dell re, cioè il vlore dell inegrle deinio. Se per un le unzione è possiile re queso ipo di operzione diremo che è inegrile nell inervllo ssegno. Per deerminre precismene il vlore di le re si uilizz l Formul ondmenle del clcolo inegrle: Si un unzione inegrile su un inervllo [ ] R primiiv di in [, ], si h, e do di primiiv. llor, se F è un F ( ) F( ) Inolre do un inervllo [, ] R e un unzione :[, ] R, un unzione F [, ] R dice primiiv di se F è derivile su [, ] e risul [, ] F :, si

7 Teorem (ormul ondmenle del clcolo inegrle) Si un unzione inegrile su un inervllo [ ] R primiiv di in [, ], si h F, e do di primiiv. llor, se F è un ( ) F( ). Illusr il eorem dell medi inegrle e ppliclo per clcolre il vlor medio per l unzione Teorem dell medi Si R( [ ; ] ) e nell inervllo ;. llor esise (per l limiezz di ) un vlore µ le che per cui risul µ in ;sup [ ; ] [ ; ] µ ( ) Se è coninu su [ ; ] llor esise c [ ; ] le che ( c) Esso ci dice che esise un puno c [ ; ] ( c)( ) µ e l inegrle si può esprimere le che l re del rengolo vene se e lezz ( c) h l sess re soes dll inegrle. e. ( c) e e e e [ e ] e. Spieg il conceo di inegrle generlizzo Un inervllo compo è un inervllo chiuso e limio, un inervllo non compo è un inervllo pero o non limio, oppure si pero che non limio. Deinizione: si un unzione inegrile secondo Riemnn su ogni inervllo [ ; ] [ α; β ] esise inio il vlore di.se

8 lim α β L llor è inegrile in senso generlizzo su ] ; [ e il vlore L è deo inegrle generlizzo di su ] ; [. Possimo vere inegrli generlizzi del ipo con lmeno uno degli esremi non ppreneni l dominio di oppure oppure ininio con lmeno uno degli esremi vene vlore nel cso un puno di disconinuià c osse inerno ll inervllo di inegrzione [ ; ] per sudire l convergenz risulne si deve sudire l singol convergenz degli inegrli generlizzi secondo memro c In quesi csi si procede llor sosiuendo l esremo di inegrzione che non è compreso nell inervllo compo con un leer generic, Nel cso in cui l inegrle ssegno vesse vlore ininio si conclude ermndo che l inegrle è divergene. Per il clcolo di inegrli generlizzi si possono uilizzre si il eorem di inegrzione per sosiuzione si il eorem di inegrzione per pri ed in seguio ll ppliczione di li regole è possiile pssre d un inegrle ordinrio (cioè deinio su un inervllo chiuso e limio) d un inegrle generlizzo e vicevers. c. pplicndo il meodo dei rengoli clcol un pprossimzione dell inegrle Scomponimo l inervllo in pri: I ; I ; M I M I 6 6 6

9 I ; I ; M I M I L inegrle pprossimo llor diven: (,9,,,),,,, 9 6. Clcol l re dell supericie compres r le unzioni y 6 e y Poiché l second prol h coeiciene negivo per sso, perno è l unzione superiore, ini: h concvià rivol verso il Clcolimo gli esremi di inegrzione: y 6 y d cui si oiene llor: S ( 6) ( ). Uilizzndo l ormul l [ ] per il clcolo dell lunghezz di un curv, deermin l lunghezz dell rco dell unzione esremi e. compres r gli l [ 6 6] 6 6

10 Dimo un sim del vlore l uilizzndo un meodo di pprossimzione: scomponimo l inervllo [ ;] in [ ; ] [ ;] [ ;] ( (, ) (,) ) (,6,), l. Enunci e dimosr l regol di inegrzione per pri e uilizzl per clcolre cos. Teorem di inegrzione per pri Sino e g due unzioni derivili su [ ; ] e sino e g inegrili su [ ] ormul ;. llor vl l g ( ) g( ) ( ) g( ) g Dimosrzione Le ipoesi ssicurno che su [ ] g (nch ess inegrile su [ ; ] ), llor: ; risul inegrile si g si g, considerimo llor [ g] g g D llor per il eorem ondmenle del clcolo inegrle e dl o che g g g è un primiiv di Per le proprieà dell inegrle ( g g ) ( ) g( ) ( ) g( ) ( ) g( ) ( ) g( ) g g d cui si oiene l ormul che dimosr il eorem Clcolimo g ( ) g( ) ( ) g( ) cos sin sin sin cos c g

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

DERIVATA DI UNA FUNZIONE

DERIVATA DI UNA FUNZIONE DERIVATA DI UNA FUNZIONE. DEFINIZIONI E CONSIDERAZIONI PROPEDEUTICHE. DEFINIZIONE DI DERIVATA DI UNA FUNZIONE IN UN PUNTO 3. SIGNIFICATO GEOMETRICO DELLA DERIVATA 4. DERIVATA DESTRA E SINISTRA 5. OSSERVAZIONI

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

Esercitazioni Capitolo 3 Irraggiamento

Esercitazioni Capitolo 3 Irraggiamento Esercizioni Cpiolo 3 Irrggimeno Il filmeno di un lmpd d incndescenz si rov ll emperur di 500 K. Ipoizzndo che il filmeno si compori come un corpo nero, vlure rdinz inegrle M (poenz specific emess per irrggimeno

Dettagli

GRANDEZZE PERIODICHE

GRANDEZZE PERIODICHE GRNDEZZE PERIODICHE Un grndezz empodipendene (), che supponimo rele, si definisce periodic qundo d u- guli inervlli ssume vlori uguli, cioè qundo vle l relzione (con n inero qulsisi): ( ) ( n) + () - Il

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Definizione: un equazione si dice razionale o fratta se l incognita compare a denominatore.

Definizione: un equazione si dice razionale o fratta se l incognita compare a denominatore. Il clcolo integrle Integrzione delle unzioni rzionli. Deinizione: un equzione si dice rzionle o rtt se l incognit compre denomintore. Il prolem di clcolre un primitiv per quest clsse di unzioni rigurd

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

[ ] cotangente, cosecante arccos, arcsin -1 x 1. SEGNO DELLE FUNZIONI Valore assoluto potenze pari arccos radici di indice pari esponenziali

[ ] cotangente, cosecante arccos, arcsin -1 x 1. SEGNO DELLE FUNZIONI Valore assoluto potenze pari arccos radici di indice pari esponenziali GUIDA AL RIPASSO ESSENZIALE Prof.ss Frizi De Bernrdi Premess: Rivedere equzioni e disequzioni in modulo, irrzionli, goniomerihe, esponenzili e logrimihe (e proprieà logrimi). Rivedere prinipli formule

Dettagli

Compitino di algebra lineare e geometria del 30 Novembre 2007 VERSIONE A

Compitino di algebra lineare e geometria del 30 Novembre 2007 VERSIONE A Compiino di lgebr linere e geomeri del Novembre 7 VERSIONE A Nome e cognome: Oo Perseien Numero di Mricol: 48 Aenzione: riporre i di personli su ogni foglio consegno Esercizio. Si A = Sudire il sisem linere

Dettagli

Capitolo 3 - Trasformata di Fourier (I)

Capitolo 3 - Trasformata di Fourier (I) Appuni di Teori dei Segnli Cpiolo 3 - Trsform di Fourier (I Definizione... Proprieà generli...3 Osservzione: nlogie con lo sviluppo in serie di Fourier...4 Esempio: rsform del rengolo...5 Esempio: rsform

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Comportamento Meccanico dei Materiali. 5 Soluzione degli esercizi proposti. Esercizio 5-1

Comportamento Meccanico dei Materiali. 5 Soluzione degli esercizi proposti. Esercizio 5-1 Esercizio 5- lcolre lo sposmeno dell esremo e le sollecizioni preseni nell sruur in figur, compos d due se in serie con sezione circolre di dimero D 0 e D 8, lunghe enrme 00 e soggee d un crico di 0 k.

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

22.1. Analisi asintotica: il metodo della fase stazionaria.

22.1. Analisi asintotica: il metodo della fase stazionaria. .. Anlisi sinoic: il meodo dell fse szionri.... Nozioni sndrd dell nlisi sinoic. I simboli O, o e sono definii nel modo seguene. Supponimo che f(z) e g(z) sino funzioni complesse definie in qulche regione

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b].

Se k è una funzione costante qualunque, allora la funzione G(x)=F(x)+k è ancora una funzione primitiva di f(x) nell intervallo [a,b]. INTEGRALI INDEINITI L deermizioe di u uzioe primiiv è u prolem iverso quello dello sudio dell deriv di u uzioe. Il osro prolem diviee or. D u uzioe y deii i u iervllo [,] voglimo rovre se esise u uzioe

Dettagli

Il metodo di esaustione

Il metodo di esaustione Clcolo integrle Il metodo di esustione Il metodo di esustione y= 2 =0 Il metodo di esustione y= 2 k =0= 0 k n n 1 2 = n Il metodo di esustione y= 2 k 0 k n n 1 2 f( ) k n k n 2 Il metodo di esustione y=

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI. Proprieta della TDF (3) Proprieta della TDF (1) Proprieta della TDF (2) Fase. Modulo.

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI. Proprieta della TDF (3) Proprieta della TDF (1) Proprieta della TDF (2) Fase. Modulo. - 32- - * ( ' 1 w œ žÿ œ œ š Š CBA l k g < ; 7 - roprie dell TDF (1 LINEARITA : l TDF dell combinzione linere (somm pes di due segnli e ugule ll combinzione linere delle TDF dei due segnli DUALITA : -

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema Anlisi rnsiori L'nlisi dinmic rnsiori (de nche nlisi emporle) è un ecnic che consene di deerminre l rispos dinmic di un sruur sogge d un generic eccizione emporle Gli eei emporli sono li d rendere imporni

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici 8 Sollecizioni semplici TORSIONE SEMPLICE 1 1 Anlisi dell orsione semplice Si verific l sollecizione di orsione semplice qundo l risulne delle forze eserne reliv qulunque sezione è null e le forze eserne

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Esercizio : ESERCIZI DI CALCOLO UMERICO Formule di qudrtur Costruire l ormul di qudrtur interpoltori del tipo d ( ) ( ) ( ) clssiicndol e determinndone l ordine di ccurtezz polinomile Mell Per costruzione

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Integrale: Somma totale di parti infinitesimali

Integrale: Somma totale di parti infinitesimali I problemi del Clcolo Ininitesimle (Newton, Method o Fluxions, 67) o Problem. (Derivt) Dt l lunghezz dello spzio percorso in ogni istnte di tempo, determinre l velocità in ogni istnte. 2 o Problem. (Integrle)

Dettagli

T 1 T 2 Z +1. s 2 (t) dt < 1

T 1 T 2 Z +1. s 2 (t) dt < 1 .. SEGNALI ELEMENTARI 5.. Segnli elemenri Alcuni segnli sono uilizzi molo sovene nello sudio di sisemi dinmici. Gli esempi dell sezione precedene ne hnno già evidenzii due: lo sclino e l sinusoide. Prim

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte.0 Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

LA SPINTA DELLE TERRE. Per spinta della terra si intende la pressione che un determinato masso di terra esercita contro un opera di sostegno.

LA SPINTA DELLE TERRE. Per spinta della terra si intende la pressione che un determinato masso di terra esercita contro un opera di sostegno. L INT DELLE TERRE er spin dell err si inende l pressione ce un deero msso di err eserci conro un oper di sosegno. e con un rmoggi si vers su un pino dell err incoerene (vedi figur, form un cumulo conico,

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fodmei di elecomuiczioi - SEGNALI E SPERI Prof. Mrio Brber [pre ] 1 Fodmei di LC - Prof. M. Brber - Segli e speri [pre ] Covoluzioe Defiizioe: w 3( = ( w1 * w ( w1 ( w ( d L covoluzioe è oeu:

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Sistemi Intelligenti Reinforcement Learning: Policy iteration

Sistemi Intelligenti Reinforcement Learning: Policy iteration Sisemi Inelligeni Reinforcemen Lerning: Policy ierion Albero Borghese Universià degli Sudi di Milno Lbororio di Sisemi Inelligeni Applici (AIS-Lb) Diprimeno di Scienze dell Informzione borghese@dsi.unimi.i

Dettagli

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come Interli Punti principli dell lezione precedente - Problem dell misurzione delle ree. - Per un unzione continu su un intervllo [, b], deinizione di Interle () d (medinte somme ineriori e somme superiori).

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Zona Frattura critica. Tenacità del materiale

Zona Frattura critica. Tenacità del materiale 1 Perché l frur frgile si verifichi è necessrio il conemporneo verificrsi delle re segueni condizioni: livello di sollecizione elevo (nche se inferiore ll ensione di rour); presenz di un difeo (cricc)

Dettagli

VERIFICA DI MATEMATICA Simulazione Studio di funzione - Soluzioni., quindi la funzione è derivabile in R - {1}. In x = 1 si ha:

VERIFICA DI MATEMATICA Simulazione Studio di funzione - Soluzioni., quindi la funzione è derivabile in R - {1}. In x = 1 si ha: VERIFICA DI MATEMATICA Simulzione Studio di funzione - Soluzioni Risolvi uno dei seguenti problemi e cinque dei seguenti quesiti. Problem : f () = { se < ln( ) se ) D = R, quindi f è continu in R - {}.

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Lezione n. 3. Metodo delle differenze finite (classificazione delle equazioni e consistenza, stabilità e convergenza nel caso parabolico)

Lezione n. 3. Metodo delle differenze finite (classificazione delle equazioni e consistenza, stabilità e convergenza nel caso parabolico) Lezione n. 3 Meodo delle differenze finie (clssificzione delle equzioni e consisenz, silià e convergenz nel cso prolico) Pg. 1 Principli meodi numerici per l nlisi eleromgneic differenze finie elemeni

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile Clcolo dierenzile per unzioni di un vribile Derivt di un unzione Siniicto eometrico dell derivt in un punto e equzione dell rett tnente Si, b: +, b rpporto incrementle tβ coe. nolre di r y + B. r A. β

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Elementi Costruttivi delle Macchine Esercizi E.1 E.2 E.3 E.4 Politecnico di Torino

Elementi Costruttivi delle Macchine Esercizi E.1 E.2 E.3 E.4 Politecnico di Torino Esercizi E. E. E.3 E.4 Un lbero di diero D 5 e odulo di resisenz orsione W 35 3 è soggeo orsione lern sieric con oeno orcene M 5 N; è presene un inglio crerizzo d K.5 e q.9; il erile è cciio 5CrMo4 (R

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli