I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21"

Transcript

1 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee N è u isiee ifiito (preso u quluque uero turle è sepre possibile trovre il suo successivo) ordito ( presi due ueri turli quluque è sepre possibile stbilire se soo uguli o qule dei due è il ggiore e qule il iore) discreto (tr due ueri turli quluque o cosecutivi esistoo u uero fiito di ueri turli) Le operzioi i N ddizioe ddedi so oltipliczioe 7 1 Fttori prodotto L ddizioe e l oltipliczioe soo operzioi che do sepre coe risultto u uero turle, soo cioè operzioi itere N. 1

2 Legge d ulleto del prodotto Il prodotto di due fttori è zero se e solo se leo uo dei fttori è zero. I siboli cioè: 0 se e solo se 0 oppure 0 se 0 oppure 0 llor 0 se 0 llor 0 oppure 0 sottrzioe iuedo sottredo differez Qudo il iuedo è iore del sottredo l sottrzioe o si può eseguire i N divisioe 48 : 8 6 dividedo divisore quoziete Ricord: dividere due ueri sigific trovre u terzo uero (quoziete) che oltiplicto per il divisore di coe risultto il dividedo. Ad esepio : 6 : 9 4 perché I u divisioe il divisore deve essere sepre diverso d zero. l divisioe : 0 co 0 è ipossibile perché o esiste lcu uero che oltiplicto per 0 di coe risultto u uero diverso d 0; l divisioe 0 : 0 è ideterit perché quluque uero oltiplicto per 0 dà coe risultto 0. Ci soo dei csi i cui, pur essedo il divisore diverso d 0, l divisioe o è possibile i N. Ad esepio 17 : o dà coe risultto u uero itero. L sottrzioe e l divisioe o soo operzioi itere N perché o do sepre coe risultto u uero turle,

3 espressioi ritetiche Per clcolre il vlore di u espressioe ritetic cioè trovre il risultto che si ottiee eseguedo tutte le operzioi, si procede seguedo lcue regole di precedez : - se o ci soo pretesi si eseguoo pri le oltipliczioi e le divisioi e poi le ddizioi e le sottrzioi (ell ordie i cui soo scritte) - se ci soo delle pretesi, si eseguoo pri i clcoli che si trovo elle pretesi iizido dlle pretesi più itere ed eseguedo i clcoli secodo l ordie idicto el puto precedete; dopo ver eliito tutte le pretesi si procede coe idicto el puto precedete. Esepi :5 6 4 Nell espressioe o ci soo pretesi perciò 1 eseguio i clcoli prtedo dlle oltipliczioi e divisioi, eseguedole ell ordie i cui si preseto quidi pri l divisioe eseguio l oltipliczioe le uiche operzioi riste soo ddizioi e sottrzioi: eseguiole ell ordie i cui si preseto : { { { 4: Eseguio le operzioi elle pretesi tode prtedo d oltipliczioi e divisioi + { + 1 4{ eseguio le operzioi riste elle pretesi tode

4 + 7{ 6 1 eseguio le operzioi ell pretesi + 1 qudr eseguio le oltipliczioi + 9 eseguio le operzioi riste ell ordie i cui si preseto 1 10 ESERCIZIO.1 Clcol il vlore delle segueti espressioi ( 9 5) ( + 6 ) ( 8 + 4) + ( 8 5) ( ) { 9 + [ ( 7 ) ( 11 6) ]} : [ 7 ( 6 4) ] 4. [ 7 + ( 9 5) 6] + ( 9 6) [ 8 ( + ) + ( 5 4) ] ( + 10 : 6 1) : { 6 [ 5 : 7 + ( 40 5) : 5 + 6] : 4 + 1} : ( 9 5) 1 6. { 18 : [ + ( 1 + 1) : ( 49 : 7) + 1] + ( 0 : 6 ) } 7. ( 0 + 4) : [( 1) + ( 1: + 5) : 40 : ] {[ ( ) : ( 5) ] 9 6} : ( 5 ) 8. ( ) : { 1 : [( 6 8) ( ) :11] } ( 40 :10 : ) {[ ( 7 11 ) ( 8 9 :18 : + 10 ) ]: } 0 : [ 1] [ ( 1 9) ] 10. {[ 54 : 6 : ( ) ]: } : ( 6 7 : 9) eleveto potez Il prodotto di fttori tutti uguli fr di loro si chi potez: volte 4

5 si chi bse si chi espoete 1 0 Rie o defiito i N e quidi privo di sigificto il sibolo 0. proprietà delle poteze Attezioe: le bsi o devoo essere oltiplicte fr loro : 4 :4 4 4 b b ( ) Attezioe: volte è ecessrio pplicre l proprietà el verso opposto cioè : b : b ( ) 6 :1 6:1 ESERCIZIO. Clcol il vlore delle segueti espressioi pplicdo, dove possibile le proprietà delle poteze ( : + ) :. 15 : 5 4 : 6 5

6 : : : ( ) 5. {[ ( 1 : 6 4 ): + 5 ] + 6} : 4 : : ( ) ( ) ( ) 11 [ ] : ( 11 11) 6 5 [ 7 ] : ( 7 ) ( ) : ( 7 ) : ( 7 ) [ 4 : 4 : 4 ]: [( 5 5 ) : 5 ] 4 9. ( 4 ) ( 1 1 ) : ( 10 :10 ) 0 : [ 1 ] : ( 1 ) ( 8 : 4 ) : [ : 5 1] ( 5 ) [ ] : ( 4 ) ( 1 + ) 4 : ( 4 ) M.C.D. e.c.. U uero prio è u uero turle ggiore di 1 che ette coe divisori solo 1 e il uero stesso. Si chi M.C.D. di due o più ueri turli, diversi d zero, il più grde divisore coue. Per deterire il M.C.D. di due o più ueri si scopogoo i ueri i fttori prii si clcol il prodotto dei fttori coui presi u sol volt co il più piccolo espoete Due ueri turli si dicoo prii fr loro qudo il loro M.C.D. è ugule 1. Si chi.c.. di due o più ueri turli, diversi d zero, il iore ultiplo coue, diverso d zero. Per deterire il.c.. di due o più ueri si scopogoo i ueri i fttori prii si clcol il prodotto dei fttori coui e o coui presi u sol volt co il più grde espoete 6

7 ESERCIZIO. Deteri il M.C.D. e il.c.. fr i segueti ueri

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006

13ALPGC-Costruzione di Macchine 1 Anno accademico 2005-2006 13ALPGC-Cosruioe di Mcchie 1 Ao ccdeico 005-006 IL CALCOLO DELLE RUOTE DENTATE CILINDRICE 1 Iroduioe Il diesioeo di u igrggio, essedo o l cieic (rpporo di rsissioe, ueri di dei, golo di pressioe α (oα

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

I segnali nelle telecomunicazioni

I segnali nelle telecomunicazioni I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

L operazione di Convoluzione,

L operazione di Convoluzione, Revisioe mg 015 L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe Cludio Mgo wwwcm-physmthet CM_Portble MATH Notebook Series L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che:

( ) n > n. Ora osserviamo che 2 1. ( ) è vera. ( ) una proposizione riguardante il numero intero n. Se avviene che: ARITMETICA 1 U importate ramo della matematica è l aritmetica, o teoria dei umeri, qui itesi come umeri iteri. Ci si poe il problema di stabilire se certe relazioi possao essere soddisfatte da umeri iteri,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

Movimento nominale e perturbato

Movimento nominale e perturbato Fodameti di Automatica. Stabilità itera o alla Lyauov Fodameti di Automatica AYSb FTPb AYSct Igegeria delle Telecomuicazioi e Igegeria Fisica. Stabilità itera o alla Lyauov Stefao Mala Fodameti di Automatica

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Tavole dei fattori per il calcolo degli interessi in regime di capitalizzazione discontinua

Tavole dei fattori per il calcolo degli interessi in regime di capitalizzazione discontinua APPENDICE C Tvole dei fttori per il clcolo degli interessi in regime di cpitlizzzione discontinu Per lcuni vlori di i compresi tr ¼% e 25% i = tsso d interesse effettivo per periodo (tipicmente un nno)

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Studio delle Slot di Accoppiamento in Guida d Onda ed in Microstriscia

Studio delle Slot di Accoppiamento in Guida d Onda ed in Microstriscia UNIVERSIT DEGLI STUDI DI CGLIRI COLT DI INGEGNERI DIPRTIENTO DI INGEGNERI ELETTRIC ED ELETTRONIC Studio delle Slot di ccoppieto i Guid d Od ed i icrostrisci DOTT. G. dre CSUL TESI DI DOTTORTO DI RICERC

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI ) COSA SIGNIFICANO GLI ESPONENTI IRRAZIONALI pg. ) LA FUNZIONE ESPONENZIALE 5 ) LOGARITMI 8 ) LA FUNZIONE LOGARITMICA 9 5) I LOGARITMI: QUESTIONI DI STORIA E DI SIMBOLOGIA 6) PROPRIETA

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

MATEMATICA FINANZIARIA CAP. 14 20

MATEMATICA FINANZIARIA CAP. 14 20 MTEMTIC FINNZIRI CP. 42 pputi di estimo INTERESSE SEMPLICE Iteesse semplice I C M C ( ) = fzioe di o [] C M G F M M G L S O N D Motte semplice di te costti 2 3 M R R R... R [2] 2 2 2 2 Poiché l fomul è

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7 Allegato La deteriazioe dei costi stadardizzati per i lavori pubblici: ua proposta etodologica basata sulle icideze percetuali delle copoeti di lavorazioi prevaleti La deteriazioe dei costi stadardizzati

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale:

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale: Co u rppresetzoe prmetrc, u curv c è dt come u fuzoe vlor vettorl d u sgolo prmetro rele: c : D R E t.c. c( u o ( x ( u... x ( u I cu o è l orge del rfermeto, D geere cocde co l tervllo [,] e x soo le

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Dispense di Analisi Matematica II

Dispense di Analisi Matematica II Dispese di Aalisi Matematica II Domeico Cadeloro (Prima Parte) Itroduzioe Queste dispese trattao la prima parte del corso di Aalisi Matematica II. Nel primo capitolo si discutoo gli itegrali geeralizzati

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA METODO DELLE PIOGGE PER IL CALCOLO DEI OLUMI DI INASO PER L INARIANZA IDRAULICA 1. Premessa I queste brevi ote si preseta il metodo semplificato delle piogge illustradoe l implemetazioe i u foglio di calcolo

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

Medici Specialisti e Odontoiatri

Medici Specialisti e Odontoiatri ALLEGATO B BOLLO 16,00 P A R T E P R I M A DOMANDA DI INCLUSIONE NELLA GRADUATORIA art. 21 dell Accordo Collettivo Nazioale per la disciplia dei rapporti co i Medici specialisti ambulatoriali, Medici Veteriari

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

P ROGRAMMA DEL CORSO DI MAT EMAT ICA Calcolo di erenziale in una variabile. Funzioni: dominio, immagine, funzioni composte ed inverse.

P ROGRAMMA DEL CORSO DI MAT EMAT ICA Calcolo di erenziale in una variabile. Funzioni: dominio, immagine, funzioni composte ed inverse. P ROGRAMMA DEL CORSO DI MAT EMAT ICA Clcolo i erezile i u vribile. Fuzioi: omiio, immgie, fuzioi composte e iverse. Esempi: Curve e super ci. Simmetrie, perioicità, gr ci. Fuzioi elemetri: Poteze, espoezile

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

cerchiamo di convincerci che ha senso sommare infiniti numeri! INSIEME INFINITO non INSIEME ILLIMITATO maggiorante limitato B 1/4 + 1/16 + 1/64

cerchiamo di convincerci che ha senso sommare infiniti numeri! INSIEME INFINITO non INSIEME ILLIMITATO maggiorante limitato B 1/4 + 1/16 + 1/64 By Luca Torchio Prima di defiire i modo rigoroso ua somma di ifiiti umeri, che tra l altro i matematici chiamao Serie, cerchiamo di covicerci che ha seso sommare ifiiti umeri! La cosa, i effetti, fa u

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012 Po dopo po ero l iiito L moc ocillte Pdero Del Grpp, 9 Agoto 0 Boetur Polillo Liceo Scietiico Frceco Seeri, Slero Uo gurdo d iieme Mtemtic Ricreti Didttic Ricerc Liee guid Il Queito come ote Alii e trtegi

Dettagli