> Definizione di matrice <

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "> Definizione di matrice <"

Transcript

1 > Defiizioe di mtrice < Dti due umeri turli m e si defiisce mtrice di tipo (m,) l isieme di m umeri reli disposti orditmete su m righe orizzotli e coloe verticli Se m si h u mtrice qudrt di ordie m m > Elemeti di u mtrice < utti i umeri dell mtrice soo detti elemeti e soo crtterizzti d u coppi di idici: il primo idic l rig e il secodo idic l colo. L umerzioe degli idici iizi i lto siistr m2 2 3 m Per u geeric mtrice si scrive [ ik ] < i < m < k < > Mtrici prticolri < MRICE RIG (,) MRICE COLONN (m,) MRICE NULL Z [z ik ], z ik > Elemeti corrispodeti < b B xy xy wz corrispod ete b wz x w y z MRICI UGULI MRICI SIMILI MRICE OPPOS RSPOS Scmbio ordito di righe e coloe > Relzioe tr mtrici < ( m, ) B( m, ) ik b ik ( m, ) B( r, s) m r [ ik ] [ ik ] ' [ ] [ ki ] ik s

2 > Mtrici qudrte < DIGONLI Priciple: Isieme di tutti gli elemeti che ho i due idici uguli Secodri: Isieme di tutti gli elemeti i cui idici ho somm MRICE DIGONLE utti gli elemeti che o fo prte dell digole priciple soo ulli. i MRICE UNI O IDENIC (I ) Mtrice digole i cui gli elemeti dell digole priciple soo uguli. Il umero di Kroecker rissume i possibili vlori di quest mtrice: δ ik i i k MRICE RINGOLRE Mtrice i cui gli elemeti che si trovo l di sopr o l di sotto dell digole priciple soo ulli. Nel primo cso l mtrice è trigolre iferiore, el secodo trigolre superiore. i k ik > k i < k k ik ik rigolre superiore rigolre iferiore MRICE SIMMERIC Mtrice i cui gli elemeti simmetrici rispetto ll digole priciple soo uguli. ik ki MRICE EMISIMMERIC Mtrice i cui gli elemeti simmetrici rispetto ll digole priciple soo uguli e opposti. ik ki 2

3 > lgebr delle mtrici < Il clcolo mtricile defiisce lcue operzioi eseguibili sulle mtrici e le loro proprietà. Le pricipli operzioi tr mtrici soo somm, differez, prodotto e potez. CONFORMBILI I due operdi soo mtrici simili. > Somm di mtrici < DEFINIZIONE Dte due mtrici e B di tipo (m,), si defiisce somm di e B (+B) l mtrice di tipo (m,) i cui elemeti soo l somm lgebric degli elemeti corrispodeti di e B. S + B [ ik b ik PROPRIE Commuttiv + B B + ssocitiv ( + B) + C + (B + C) Elemeto e utro Mtrice ull (Z) Somm co l oppo sto + (-) (-) + Z > Differez di mtrici < DEFINIZIONE L differez tr due mtrici e B è ugule ll somm di u co l oppost dell ltr. D B + ( B) [ ik + ( bik )] [ ik bik ] CONFORMBILI Il prodotto di u mtrice per uo sclre è sempre possibile. DEFINIZIONE Il prodotto di u mtrice per uo sclre β è l mtrice dello stesso tipo di, i cui ogi elemeto è moltiplicto per l costte β. PROPRIE Distributiv + ] > Prodotto mtrice - sclre < P β β [ β ik ] β ( + B) β + βb α( + B) α([ ij ] + [ bij ]) α([ ij + bij ]) [ α( ij + bij )] [ αij + αbij ] [ αij ] + [ αbij ] αα + αβ ssocitiv (γβ) γ(β) Elemeto eutro Iversioe (-) - 3

4 > Prodotto rig-colo < CONFORMBILI Righe mtrice colo Coloe mtrice rig (,s) B (s,) DEFINIZIONE Il prodotto di u mtrice rig per u mtrice colo dà come risultto u umero rele, quidi uo sclre o u mtrice di tipo (,). P B [ b + 2b + + sbs ] j > Prodotto tr mtrici < CONFORMBILI è di tipo (m,s) e B è di tipo (s,), ossi se il umero di coloe di equivle l umero di righe di B. DEFINIZIONE Dte le mtrici (m,s) e B(s,), si defiisce prodotto tr e B l mtrice del tipo (m,) il cui geerico puto p ik si ottiee moltiplicdo l i-esim rig di per l k-esim colo di B. s PROPRIE Distributiv d estr (B + C) B + C Distributiv siistr ( + B) C C + BC ssocitiv (B)C (BC) rspost (B) + B j b j PROPRIE NON VLIDE Commuttiv ullmeto del prodotto B B No solo o do come risultto Z ELEMENO NEURO L elemeto eutro del prodotto di mtrici è l mtrice uità del tipo opportuo. (m,)i I (,m) Dimostrzioe Si pred cso u geerico elemeto c ik del prodotto, esso srà ugule c δ + δ + + δ + + ik i k i2 2k ik kk i k Ricorddo l defiizioe di δ, risulto ulli tutti gli elemeti tre quello coteete δ kk che risult essere ugule d ik, ossi l elemeto origile di. δ > Potez di u mtrice < L potez di u mtrice si svilupp come prodotto ripetuto. Codizioe ecessri e sufficiete per l eseguibilità dell operzioe l espoete mggiore o ugule 2. è 4

5 > Determiti < DEFINIZIONE Il determite è u vlore umerico ssegto d ogi mtrice qudrt. Esso viee idicto i questi modi det ORDINE L ordie del determite idic l ordie dell mtrice qudrt l qule si riferisce. > Determiti di ordie < Il determite di ordie è, per defiizioe, equivlete ll uico dell mtrice. [ ] det elemeto > Miore complemetre < Vlore umerico ssegto d ogi elemeto di u mtrice. Il miore com plemetre è defiito come il determite che ssume l mtrice sopprimedo l rig e l colo ell qule si trov l elemeto. > Complemeto lgebrico < Il complemeto lgebrico di u elemeto di u mtrice è defiito come il miore complemetre dell elemeto preceduto d u sego più se l somm degli idici dell elemeto è pri, o d u sego meo se quest somm è dispri. d esempio l elemeto x h complemeto lgebrico positivo perché + 2 che è pri, metre l elemeto x 2 h complemeto lgebrico egtivo perché che è dispri. Per ricordre il sego dei complemeti lgebrici si utilizz l cosiddett regol dell sccchier: i complemeti lgebrici seguoo iftti questo schem:

6 > Determiti di -esimo ordie < Il determite geerico di ordie N si ottiee come somm dei prodotti degli elemeti di u lie (rig o colo) qulsisi per i rispettivi complemeti lgebrici. Si può verificre sperimetlmete che l scelt dell lie o ifluez il risultto del determite. i I det (, ) det (, ) i i i xi ix xi ix 2 x > Csi prticolri < determiti di 2 e 3 ordie soo csi prticolri dell regol geerle. SECONDO ORDINE Ecco lo sviluppo del determite di u geeric mtrice di ordie 2 rispetto ll prim rig 2 Si ot che u determite di ordie 2 è ugule ll differez tr il prodotto degli elemeti dell digole priciple e il prodotto di quelli dell digole secodri. ERZO ORDINE Il clcolo del determite di terzo ordie è semplificto dll regol di Srrus: destr dell mtrice si ricopio le prim e secod colo. Il determite si ottiee come somm del prodotto degli elemeti dell digole priciple e delle sue due prllele, cui si sottre l somm del prodotto degli elemeti dell digole secodri e delle sue prllele x Si può verificre che quest formul è corrett clcoldo il determite el modo geerico. 6

7 > Proprietà dei determiti < Le proprietà dei determiti cosetoo di semplificre otevolmete i clcoli. DEERMINNE DELL RSPOS Il determite di u mtrice equivle quello dell propri trspost. det det. LINE NULL Se tutti gli elemeti di u lie soo ulli, il determite è ullo. 2. MRICE UNI Il determite dell mtrice uità, di qulsisi ordie, è. 3. PRODOO CON SCLRE Moltiplicdo u lie di per uo sclre α, che il determite è moltiplicto per α. α α2 α 2 α ( α + α ) α 4. SOMM DI MRICI RIG O COLONN Se i u mtrice qudrt u rig (o u colo) è l somm di due mtrici rig (o colo), il suo determite è l somm dei due determiti che si ottegoo sostituedo quell rig (o colo), rispettivmete le mtrici rig (o colo) di cui è somm. det[,, i + B,, ] det[,, i,, ] + det[,, B,, ] 5. LINEE CONIGUE UGULI Se u mtrice h due liee cotigue uguli, il suo determite è ullo. 6. SCMBIO DI LINE S e si scmbio tr loro due righe (o due coloe), il determite cmbi di sego. 7. LINEE PROPORZIONLI Se due liee prllele soo uguli o proporzioli, il determite è ullo. Quest è u coseguez delle proprietà 3,5, α 2 2 7

8 8. SOMM DI UN LINE D UN LR Se gli elemeti di u rig (o colo) si sommo quelli corrispodeti di u ltr rig (o colo), tutti moltiplicti per u stess costte, il determite o cmbi. det[,,,,] det[, i k i + α,,,] k Per dimostrre quest proprietà si prte dll tesi e si utilizz l proprietà 4, quidi l proprietà 7 che ull uo degli ddedi e port come risultto l ipotesi dell dimostrzioe. 9. COMBINZIONE LINERE S e u lie è i combizioe liere di due o più ltre liee prllele, il determite è ullo. Co combizioe liere si itede u relzioe che itercorre tr gli elemeti. k π 2 π 5 2 Relzioe EOREM DI BINE Il determite del prodotto di due mtrici qudrte dello stesso ordie è ug ule l prodotto dei determiti delle mtrici. B B. MRICI QUDRE E RINGOLRI Il determite di u mtrice trigolre è ugule l prodotto degli elemeti dell digole priciple. Stesso discorso vle per le mtrici digoli, che soo mtrici trigolri prticolri. 8

9 > Mtrice ivers < Si defiisce mtrice ivers di u mtrice qudrt di ordie, u mtrice che, se esiste, è qudrt, dello stesso ordie di, si idic co - e soddisf l codizioe I UNICI L mtrice ivers, se esiste, è uic per u mtrice. Dimostrzioe per ssurdo Su ppoimo che e sio mtrici diverse ed etrmbe iverse di. '' ' ' ' I I '' '' che è i cotrddizioe co l ipotesi. MRICI INVERIBILI Codizioe ecessri e sufficiete ffiché u mtrice si ivertibile è che il suo determite si diverso d zero. Dimostrzioe dell codizioe ecessri Spedo che l mtrici - e I soo equivleti, che i loro determiti lo sro. Ricorddo che il determite dell mtrice uità è e utilizzdo il teorem di Biet, si ottiee che I Il risultto dell espressioe perde di sigificto se il determite di è ugule zero. Pertto si può dire che u codizioe ecessri perché esist l ivers di u mtrice è che il suo determite si diverso d zero. 9

10 DEERMINZIONE DELL INVERS Dt u mtrice, si idic co * l mtrice formt di complemeti lgebrici degli elemeti di. L trspost di quest mtrice gode di quest proprietà: * Possimo esprimere questo risultto come u mtrice uità di ordie moltiplict per uo sclre. Possimo pertto scrivere che Defiimo or u uov mtrice, otteut dividedo ogi elemeto dell trspost di * per il determite di. 2 2 * * * I I 2 Suppoimo che quest mtrice si esttmete l ivers di. Provimo quidi cofermre l tesi moltiplicdol per : se il risultto è quello tteso, otterremo u mtrice uità. * * ( ) I Ricorddo che il prodotto tr mtrici o gode dell proprietà commuttiv, provimo verificre che che il secodo fttore per il primo ci forisce l mtrice ivers. * * I ( ) Si ot quidi che l ostr ipotesi è corrett, possimo ffermre che l ivers di u mtrice è, se è diverso d, l mtrice * I I

11 CLCOLO DELL MRICE INVERS Schem rissutivo per il clcolo dell ivers di u geeric mtrice qudrt di ordie. CLCOLO DELL INVERS INIZIO CLCOLO DI No Sì - o esiste CLCOLO DI * CLCOLO DELL RSPOS di * DIVISIONE DI OGNI ELEMENO DI * PER FINE

12 > Sottomtrici < Dt u mtrice di tipo (m,), possimo crere u sottomtrice di scegliedo rbitrrimete p righe e q coloe. Se l mtrice estrtt è qudrt (formt quidi d p righe e p coloe), il suo determite è detto miore di ordie p di. Se è di tipo (m,) è ovvio che il rggiugere è il miimo tr m ed. mssimo ordie che u miore potrà Esempio: d u mtrice di tipo (5,8) si possoo estrrre miori fio ll ordie 5, visto che o è possibile crere u sottomtrice co più righe. > Rgo di u mtrice < Dt u mtrice, il suo rgo o crtteristic miori o ulli che si possoo estrrre d. è il mssimo ordie dei ORLRE UN MRICE Orlre u mtrice sigific ggiugergli u rig e u colo i u posizioe qulsisi. Se è di tipo (m,) e p u suo miore di ordie p possimo orlre l sottomtrice co le righe o ereditte dll mtrice bse. vremo quidi m p righe d ggiugere p coloe d ggiugere Ci soo quidi (m-p)(-p) modi di orlre co liee di. EOREM DI KRONECKER Il rgo di u mtrice è r se e solo se:. Esiste u miore di di ordie r o ullo 2. utti i miori di ordie r+, otteute orldo i tutti i modi possibili il miore di ordie r co liee di, soo ulli. PSSGGI D ESEGUIRE. Se o esistoo miori di ordie, il rgo è 2. Si orl il miore di ordie i tutti i modi possibili, otteedo sempre miori di ordie 2, fio qudo se e icotr uo o ullo 3. Si procede logmete fio qudo si icotr u ordie y i cui tutti i miori possibili soo ulli. 4. Il rgo dell mtrice è y. 2

13 3

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MTRICI: defiizioi Cosiderimo delle tbelle di umeri, i cui ci si imbtte spesso i molti problemi di mtemtic o di scieze pplicte. Tle tbelle ho u doppio ordimeto, per righe e per coloe, utilizzeremo i segueti

Dettagli

13. Determinante di una matrice quadrata

13. Determinante di una matrice quadrata Determite di u mtrice qudrt Defiizioe Dti umeri reli,,,,, (-), (-), col simbolo i idiceremo l loro somm ( + + + + + (-) + (-) + ) Quidi, i i := + + + + + (-) + (-) + i Esempio y i = y + y + y + y + + y

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lgebr Liere: Mtrici e Determiti 1^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. MTRICI E DETERMINNTI Si defiisce mtrice

Dettagli

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti. Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi MTRICI E DETERMINNTI Si

Dettagli

Unità Didattica N 35 I sistemi lineari

Unità Didattica N 35 I sistemi lineari Uità Didttic N 5 Uità Didttic N 5 ) Sistem liere di equioi i icogite: teorem di Crmer ) Sistem liere di m equioi i icogite ) Teorem di ouchè-cpelli 4) Sistem di m equioi lieri omogeee i icogite 5) isoluioe

Dettagli

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

Fig.7. 1: Nel grafico è rappresentato il vettore di. Fig. 7. 2: Nel grafico è rappresentato un vettore di. = si dice che essi sono uguali se

Fig.7. 1: Nel grafico è rappresentato il vettore di. Fig. 7. 2: Nel grafico è rappresentato un vettore di. = si dice che essi sono uguali se 7 Vettori di R Lo spzio R si ottiee come prodotto crtesio di R moltiplicto per sé stesso volte Gli elemeti di R soo -uple ordite di umeri reli che predoo il ome di vettori R,, co i R i,, se ( ) I R o,

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MRICI: defiizioi Cosiderimo delle tbelle di umeri, i cui ci si imbtte spesso i molti problemi di mtemtic o di scieze pplicte. le tbelle ho u doppio ordimeto, per righe e per coloe, utilizzeremo i segueti

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b)

NUMERI COMPLESSI. Definizione. Si dice numero complesso z la coppia ordinata di numeri reali (a, b), ossia: z = (a, b) NUMERI COMPLESSI Dto u poliomio P(x) di grdo ell vribile (rele) x, o sempre esso mmette rdici, e, qudo le mmette, esse possoo essere i umero iferiore rispetto l grdo del poliomio. (Ricordimo che si dice

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari

Esercitazioni di Algebra e Geometria. Anno accademico Dott.ssa Sara Ferrari Eseritzioi di lgebr e Geometri o demio 9- Dott.ss Sr Ferrri e-mil sr.ferrri@ig.uibs.it Eseritzioi: mrtedì 8.-. veerdì 9.-. ttezioe: le lezioi del veerdì iizio esttmete lle 9.. Rievimeto studeti: veerdì

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x

DERIVATE.. Si chiama rapporto incrementale della f (x) relativo al punto x DERIVATE Si f ( ; Se e soo due puti del suo domiio, si cim icremeto dell fuzioe il vlore f = f( f( Si cim rpporto icremetle dell f ( reltivo l puto e ll'icremeto il rpporto: y = u fuzioe rele defiit ell'itervllo

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

Corso di Laurea in Matematica Analisi Numerica Lezione 5

Corso di Laurea in Matematica Analisi Numerica Lezione 5 Docete: Diel Ler Corso di Lure i Mtemtic Alisi Numeric Lezioe 5 Risoluzioe di sistemi lieri Problem. Dto il sistem di m equzioi i icogite (,,, ) co i,j e b i umeri reli, voglimo determire i vlori di (,,,

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

Unità Didattica N 22B : Serie

Unità Didattica N 22B : Serie 0) L defiizioe di serie umeric 02) I primi teoremi sulle serie umeriche 03) Serie umeric combizioe liere di ltre serie umeriche 04) Serie umeriche termii positivi 05) Criteri di covergez e di divergez

Dettagli

ESERCIZI SULLA MECCANICA DEI SOLIDI

ESERCIZI SULLA MECCANICA DEI SOLIDI ESERZ SULLA MEANA DE SOLD ESERZO Assegto el puto P di u corpo cotiuo il seguete tesore dell tesioe, si determii il vettore dell tesioe sull gicitur vete per ormle ; i j k 6 6 6 4 i, j, k versori degli

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Sistemi di equazioni algebriche lineari ...

Sistemi di equazioni algebriche lineari ... Sistemi di equzioi lgebriche lieri U equzioe lgebric liere i icogite si preset ell form: 1 1+ 2 2 +... + b dove ( 1, 2,... ) rppreseto le icogite, 1, 2,... soo i coefficieti delle icogite e b è il termie

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Unità Didattica N 09 I RADICALI

Unità Didattica N 09 I RADICALI 1 Uità Didttic N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 06) Divisioe di due rdicli 07)

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06 DISEQUAZIONI IRRAZIONALI ispri: DISPENSE DI MATEMATICA GENERALE Versioe 0/0/06 > [ [ 0, > b { 0 b < 0 { > b b 0, CLASSIFICAZIONE DELLE FUNZIONI Fuzioi lgebriche Fuzioe potez,

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Approssimazione di funzioni mediante Interpolazione polinomiale

Approssimazione di funzioni mediante Interpolazione polinomiale Docete: Cludio Esttico esttico@uisubri.it Approssimzioe di fuzioi medite Lezioe bst su pputi del prof. Mrco Gvio Approssimzioe di fuzioi L pprossimzioe di fuzioi. Iterpolzioe e migliore pprossimzioe..

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

U.D. N 09 I RADICALI

U.D. N 09 I RADICALI Uità Didttic N 09 I Rdicli 71 U.D. N 09 I RADICALI 01) I ueri reli 0) I rdicli ritetici 0) Seplificzioe di u rdicle 0) Riduzioe di due o più rdicli llo stesso idice 0) Moltipliczioe di rdicli 0) Divisioe

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali

Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali Mtemtic www.mimmocorrdo.it Liceo Clssico di Treiscce Clsse IV B - MATEMATICA Esercizi per le vcze estive 0 Prof. Mimmo Corrdo Numeri turli Clcol il vlore delle segueti espressioi. 0 ( ) [ ] ( ) [ ] 0 [

Dettagli

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio.

EQUAZIONI RAZIONALI. Principio di moltiplicazione: 0 è un polinomio. EQUAZIONI RAZIONALI A Dti due poliomi e B, l relzioe: A B scritt llo scopo di determire, se esistoo, vlori reli per i quli A e B ssumoo lo stesso vlore, si chim equzioe lebric ell icoit. U umero è soluzioe

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, ]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x =, ed il grfico di f è dett trpezoide reltivo d f

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( )

SUCCESSIONI E SERIE DI FUNZIONI { } n( ) f x converge puntualmente su S D ad una =, cioè se. ( n ) ( ) Successioi di fuzioi { } Si SUCCESSIONI E SERIE DI FUNZIONI f u successioe di fuzioi defiite tutte i u sottoisieme D { } Defiizioe : Si dice che l successioe fuzioe f ( ) se, S, risult f f lim f coverge

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Appunti di Matematica 2 - I radicali - I radicali 2 = 4

Appunti di Matematica 2 - I radicali - I radicali 2 = 4 I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto x x Per esempio: 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero, idividure u umero di cui è il qudrto??

Dettagli

Complessi. 1 Definizioni Forma trigonometrica: argomento e funzione arcotangente Potenze e radici Polinomi e radici.

Complessi. 1 Definizioni Forma trigonometrica: argomento e funzione arcotangente Potenze e radici Polinomi e radici. Complessi. Idice 1 Defiizioi. 1 Form trigoometric: rgometo e fuzioe rcotgete. 3 Poteze e rdici. 4 4 Poliomi e rdici. 5 5 Estesioe di fuzioi elemetri l cmpo complesso. 6 6 Appedice per i lettori più iteressti.

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Capitolo 1. Richiami di teoria elementare

Capitolo 1. Richiami di teoria elementare 7 Cpitolo Richimi di teori elemetre Cei di teori degli isiemi Il cocetto di isieme è u cocetto primitivo, cioè uo di quei presupposti o ssiomi che i mtemtic costituiscoo i fodmeti e dei quli o è dt lcu

Dettagli

ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE

ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE ALCUNI TEOREMI SUI POLINOMI E LORO APPLICAZIONE U poliomio coefficieti reli ell idetermit x è u espressioe formle del tipo x + x + + x+ 0 Al poliomio è ssocit i modo turle u fuzioe poliomile, più precismete

Dettagli

Progetto Matematica in Rete - I radicali - I radicali 2 = 4

Progetto Matematica in Rete - I radicali - I radicali 2 = 4 Progetto Mtemtic i Rete - I rdicli - I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto x x Per esempio: 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero,

Dettagli

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche ) Proprietà geerli U isieme ordito di umeri,,,...,,...dicesi progressioe geometric se N si h : co q qutità costte divers d dett rgioe o quoziete. U progressioe geometric di rgioe

Dettagli

DISUGUAGLIANZE E DISEQUAZIONI

DISUGUAGLIANZE E DISEQUAZIONI DISUGUAGLIANZE E DISEQUAZIONI Idice Premess... Regole geerli.... Sigificto dei termii mggiore e miore.... Proprietà trsitiv delle disuguglize.... Regol del trsporto.... Regol del prodotto... 5. Regole

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

equazioni e disequazioni

equazioni e disequazioni Cpitolo equzioi e disequzioi Disequzioi e pricìpi di equivlez Le disuguglize soo euciti fr espressioi che cofrotimo medite le segueti relzioi d ordie (miore), (mggiore), # (miore o ugule), $ (mggiore o

Dettagli

APPENDICE 1 Richiami di algebra lineare

APPENDICE 1 Richiami di algebra lineare APPENDICE Richiami di algebra lieare vettore: isieme ordiato di elemeti (umeri reali, umeri complessi, variabili, fuzioi,...) B = b b M b 2 { } = b, co i =, L, i il vettore sopra defiito è detto ache vettore

Dettagli

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0

Il problema è ricavare le radici (gli zeri) di una funzione f(x), cioè i valori z: f(z)=0 Ricerc di zeri Equzioi o lieri Il prolem è ricvre le rdici (gli zeri di u fuzioe f(, cioè i vlori z: f(z0 qudo o si poss otteere l soluzioe i form chius (u formul Seprzioe delle rdici Per semplificre il

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

Capitolo 1. Richiami di teoria elementare

Capitolo 1. Richiami di teoria elementare 7 Cpitolo Richimi di teori elemetre Cei di teori degli isiemi Il cocetto di isieme è u cocetto primitivo, cioè uo di quei presupposti o ssiomi che i mtemtic costituiscoo i fodmeti e dei quli o è dt lcu

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3

SEFA Sapienza, Università di Roma Esercizi di Matematica 3 (C.Mascia) Alcune soluzioni di 1-2-3 Esercizio 11 SEFA Spiez, Uiversità di Rom Esercizi di Mtemtic 3 (CMsci) Alcue soluzioi di 1-2-3 11 ovembre 215 1 Foglio 1 i Descrivere i segueti isiemi di R 2 : {1} {2}, {} [1, 2], [, 1] {2}, [, 1] [,

Dettagli

Verifica di Matematica n. 2

Verifica di Matematica n. 2 A.S. 0- Clsse I Verific di Mtemtic. ) Dto il trigolo equiltero ABC, si prolughi il lto AB di u segmeto BD cogruete l lto del trigolo. Si cogiug C co D e si dimostri che il trigolo ACD è rettgolo. ) Si

Dettagli

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n

{ } { } Successioni numeriche. Scheda n 2 pag1. n 2. Pag. 3. Rappresentazione di una successione sul piano cartesiano. Esempio n 1 a) a n Successioi umeriche Sched pg Rppresetzioe di u successioe sul pio crtesio Esempio ) { } { } Esempio ) ( ) b) ( ) Esempio ) 5 b) Esercizio L successioi degli esempi,,, soo covergeti, divergeti o idetermite?

Dettagli

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico Note di Algebr liere Prof. Domeico Old Ao ccdemico 008-09 Prefzioe Questo volume rccoglie gli pputi di lcue lezioi di lgebr liere e geometri d me svolte presso l Fcoltà di Scieze dell'uiversità "Federico

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è LEZIONE 14 14.1. Numeri complessi. Sppimo già come sommre le coppie di umeri reli. Se, b,, b R 2 llor l coppi somm è, b +, b = +, b + b R 2. Voglimo or defiire che u operzioe di prodotto i R 2. Defiizioe

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne.

Somma E possibile sommare due matrici A e B ottenendo una matrice C se e solo se le due matrici hanno lo stesso numero di righe e di colonne. Matrici Geeralità sulle matrici I matematica, ua matrice è uo schierameto rettagolare di oggetti; le matrici di maggiore iteresse soo costituite da umeri come, per esempio, la seguete: 1 s 6 4 4 2 v t

Dettagli

Unità Didattica N 12. I logaritmi e le equazioni esponenziali

Unità Didattica N 12. I logaritmi e le equazioni esponenziali Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

1 NUMERI REALI E RADICALI

1 NUMERI REALI E RADICALI www.mtemticmete.it Mtemtic C Algebr. Numeri reli MATEMATICA C -ALGEBRA NUMERI REALI E RADICALI Joycuh, Poto de covergeci http://www.flickr.com/photos/joycuh/0908/ RADICALI www.mtemticmete.it Mtemtic C

Dettagli