1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1^ Lezione. Matrici e determinanti. Operazioni tra matrici. Proprietà delle matrici. Determinante. Proprietà dei determinanti."

Transcript

1 Corso di Geometri e lger Liere: Mtrici e Determiti ^ Lezioe Mtrici e determiti. Operzioi tr mtrici. Proprietà delle mtrici. Determite. Proprietà dei determiti. - llegto Esercizi

2 MTRICI E DETERMINNTI Si defiisce mtrice co otzioe m u isieme ordito di elemeti (umeri reli) disposti per righe (idice m) disposti per coloe (idice ). Per idicre correttmete u mtrice di m-righe ed -coloe scriveremo : { i j} m m righe coloe co i j che idico gli elemeti dell mtrice (umeri reli). llo stesso modo gli idici (ij) idico l posizioe dell elemeto rispettivmete ll i-esim rig ed ll j-esim colo. U mtrice m l oteremo per esteso come segue : m m m... m oppure i form comptt m [ i j ] ricorddo che potremo usre l pretesi qudr e llo stesso modo l tod. Ricordimo ioltre che gli idici m idico quelle che oi chimeremo le dimesioi dell mtrice. qudrte m Le mtrici si possoo clssificre i : rettgolri m U mtrice qudrt duque l si potrà rppresetre : ( i j )

3 idicdoe per esteso l su rppresetzioe : Gli elemeti... costituiscoo quell che si chim digole priciple e quidi li chimeremo elemeti digoli ( o pricipli ). llo stesso modo gli elemeti... formo l digole secodri. Dte due mtrici ( ) ( ) m i j m i j si dicoo uguli se e solo se : i j R i j i j Dt u mtrice m ( i j ) ed u mtrice m ( i j ) trspost di se : i j i j quest ultim si dice e si idic co t e vrà come righe le coloe di e come coloe le righe di. Dt u mtrice ( )... ess viee defiit come vettore rig. llo stesso modo... viee defiit come vettore colo.

4 Per MTRICE TRINGOLRE si itede quell mtrice tle che : i j i j > i < j i cui tutti gli elemeti soprstti o sottostti l digole priciple soo ulli. Nel cso specifico se i j co i > j l mtrice si dice trigolre lt ; se ivece i j co i < j l mtrice è dett trigolre ss. Per MTRICE DIGONLE ( i j ) itederemo quell mtrice tle che : i j i j co i i j j Per MTRICE UNITÀ (o idetic) I ( i j ) itederemo u mtrice tle che : i j i j co i i j j... I

5 Per MTRICE SIMMETRIC ( i j ) si itede quell mtrice tle che : co i j e per l qule. i j j i t Es. OPERZIONI TR MTRICI Per somm e differez tr due mtrici m ( i j ) m ( i j ) l mtrice Cm ( i j ± i j ) così otteut : itederemo m m ± m m C m ± ±... ± ± ±... ± m m co ovvi cosiderzioe : l somm e l differez di mtrici è possiile se e solo se le mtrici soo dell stess dimesioe ( stesso di righe stesso di coloe ).

6 Per prodotto di uo sclre ( K R ) per u mtrice m ( i j ) mtrice i cui elemeti vegoo tutti moltiplicti per K. si itede quell k ( ki j ) m m k k... k k k... k km km... km Es. k k Se k il prodotto di k per u mtrice m ( i j ) ci dà u mtrice m ( i j ) dett oppost di m ( i j ) cioè tle che ( ) (mtr. Null). Prodotto di mtrici Dte due mtrici m ( i j ) p ( i j ) u mtrice Cm p ( ci j ) di. oi itederemo come prodotto delle due mtrici che vrà lo stesso di righe e lo stesso di coloe Il prodotto deomito righe coloe srà possiile se e solo se il di coloe di è ugule l di righe di. vremo quidi : C ( c i j ) m p m p co c... i j i j i j i j

7 che si può sitetizzre trmite il simolo di sommtori : c i j ir rj r. Es. Dte le mtrici clcolre il prodotto : Si vrà che C c c c c c c co : c ( ) ( ) ( ) ( ) ( ) ( ) c ( ) ( ) ( ) ( ) ( ) ( ) c ( ) ( ) ( ) ( ) ( ) ( ) c ( ) ( ) ( ) ( ) ( ) ( ) c ( ) ( ) ( ) ( ) ( ) ( ) c ( ) ( ) ( ) ( ) ( ) ( ) quidi srà : C. PROPRIET DELLE MTRICI Nell isieme delle mtrici M soo vlide le segueti proprietà: ) ()C (C) ( prop. ssocitiv ) ) ( esistez elemeto eutro ) ) (-) (-) O ( esistez elemeto opposto ) ) ( proprietà commuttiv ) ) ( opertore uità ) ) h ( k ) ( hk) ( propr. ssocitiv mist )

8 ) ( h k) h k ( prop. distriut. rispetto ll somm di sclri ) 8) h () h h ( prop. distriut. rispetto ll somm di mtrici ) quluque sio le mtrici C e gli sclri h k. DETERMINNTE di u mtrice Per determite di u mtrice itederemo quel vlore umerico (e quidi u umero rele) espresso d u isieme di operzioi poliomili dettte d tutti gli elemeti dell mtrice. Nel cso più specifico esmiimo i determiti di lcui ordii di mtrici. Determite di u mtrice di ordie. [ ] det quidi il determite di u mtrice del ordie è dto direttmete dl vlore espresso dll uico suo elemeto. Determite di u mtrice di ordie. det

9 il determite di u mtrice del ordie è dto dll differez dei prodotti degli elemeti che costituiscoo rispettivmete l digole priciple ( ) e l digole secodri ( ). Determite di u mtrice di ordie. Ci si può vvlere di due metodi di clcolo. ) METODO DI SRRUS ( vlido esclusivmete per mtrici co ) ) METODO GENERLE ( secodo lo sviluppo di u lie dell mtrice ) Clcolimo quidi il det medite il metodo di Srrus. det ( ) ( ) det. Tle metodo cosiste quidi el riportre prllelmete ll ^ colo le prime due ed eseguire l somm delle tre digoli pricipli lle quli viee sottrtt l somm delle tre digoli secodrie. Es. Clcolre il determite :

10 Det ( ) ( 8) Il METODO GENERLE ( Lplce - secodo lo sviluppo di u su lie ) per il clcolo di u determite è u metodo di vlidità geerle ossi per mtrici di quluque ordie. Esso si fod sull scelt ritrri di u lie ( di solito è coveiete quell co il mggior umerodi zeri ) che viee sviluppt elemeto per elemeto cosiderdo il cmio di sego oppure o secod dell posizioe dispri o pri dell elemeto cosiderto. Lo sviluppo si s sull somm dei prodotti di ciscu elemeto dell lie per il corrispodete complemeto lgerico ossi u sottomtrice ( dett che miore ) che si ottiee dll soppressioe dell i-esim rig e j-esim colo cui pprtiee l elemeto stesso. Visulizzdo tle metodo vremo: ( scegliedo per es. l prim rig ) det complemeto lgerico Il sego di ogi elemeto è stilito dll posizioe ( ) i j.

11 Clcolre il determite di : det det ( 8 8 ) ( ) ( ) ( 8 ) det ( 8 8 ) 8 Notimo che se riuscimo d otteere il mggior di zeri i u lie dell mtrice iizile il clcolo del determite è sicurmete più semplice. L zzermeto di elemeti di u lie i u mtrice si ottiee trmite quelle che vegoo defiite come operzioi elemetri di liee. Tli operzioi vegoo defiite d: ) somm e differez di liee (rig o colo) ) moltipliczioe di uo sclre ( R k ) c) scmio di liee. k per u lie

12 ) Per somm o differez di due liee itederemo cor u lie che vrà come elemeti l somm o l differez dei rispettivi elemeti. ) Per moltipliczioe di uo sclre k per u lie itederemo cor u lie che vrà come elemeti il prodotto di k per ogi elemeto dell lie. Fccimo quidi vedere trmite quest serie di operzioi come il clcolo del determite dell esempio precedete si più semplice e più veloce. Clcolre il determite: Dl mometo che l scelt dell lie è ritrri oi possimo predere u rig o u colo qulsisi. Per esempio cosiderimo l ^ rig (vi è già u elemeto ullo uo zero) Per ullre d esempio il primo elemeto () possimo moltiplicre per (-) l prim rig e quidi i sostituzioe dell ^ rig l somm dell stess co l ^. 9 9 ^ ri ^ ri ^ ri ^ ri ^ ri

13 I questo modo si può otre come vedo ullto il primo elemeto dell terz rig o imo vuto u effettivo vtggio i quto ci ritrovimo co u solo zero su u lie come ll iizio. Quidi importte srà lvorre d esempio sempre co l ^ rig m i modo tle che si ottego ltri zeri oltre quello iizile. 9 ^ ^ ^ ^ ^ ^ ( ) ^ ( ) col col col col col col col e di qui clcoldo il reltivo determite co il metodo geerle scegliedo evidetemete come lie ritrri l ^ rig vremo che: det e di qui ricorddo che ei vri pssggi imo complessivmete moltiplicto per ( ) ( ) ( ) 8 e che quidi per l ssolut equivlez divideremo per 8 otteimo ifie ( ) ( 8 ) 8 come dovev essere.

14 PROPRIET DEI DETERMINNTI ) l mtrice trspost di u dt h lo stesso determite dell dt. ) se u mtrice h u lie tutt ull il suo determite è ullo. c) scmido due liee prllele (rig co rig colo co colo) di u mtrice il suo determite cmi solo di sego. d) se i u mtrice due liee prllele soo uguli (stessi elemeti) il suo det. è ullo. e) se i u mtrice due liee prllele soo proporzioli il suo determite è zero. f) se i u mtrice si sposto prllelmete se stesse di -posti due liee il determite rime ivrito o cmi di sego secod che si pri o dispri. g) se i u mtrice gli elemeti di u su lie vegoo moltiplicti per uo sclre k che il determite rime moltiplicto per k. Miore complemetre e complemeto lgerico di u mtrice Dt u mtrice chimeremo miore complemetre di u suo elemeto h k il determite di ordie - che si ottiee sopprimedo dll mtrice dt l rig h-esim e l colo k-esim. Es miore complemetre di Chimeremo ltresì complemeto lgerico dell elemeto h k il determite di ordie - come sopr idicto co il rispettivo sego.

15 ... Es. ( ) complemeto lgerico di Possimo duque rissumere dicedo che il determite di u mtrice è dto dll somm dei prodotti degli elemeti di u lie per i corrispodeti complemeti lgerici.

16 Esercizi dell lezioe sulle Mtrici e i Determiti ESERCIZI SULL SOMM SOTTRZIONE E PRODOTTO TR MTRICI ESERCIZI SUL CLCOLO DEL DETERMINNTE E DELL MTRICE INVERS

17 USO DEI PULSNTI Visulizz solo l soluzioe dell'esercizio Visulizz le soluzioi di tutti gli eserciz i Nscode le soluzioi T or ll'idice degli esercizi

18 Eseguire qudo possiile le segueti operzioi di somm sottrzioe e moltipliczioe tr mtrici :. * *. * * 8

19 . * *. * *

20 . 8 8 * *. 8

21 . [ ] [ ] [ ] [ ] 8 * * 8. * * 9 9.

22 Clcolre il determite e qudo possiile l mtrice ivers delle segueti mtrici :. ( ) ( ) iftti come d verific :

23 . ( ) ( ) iftti come d verific :. ( ) ( ) iftti come d verific :

24 . ( ) ( ) ( ) 8 8 iftti come d verific : 8 o esiste quidi l'ivers.

25 iftti come d verific : 8

26 iftti come d verific :.. ^. ^. ^ col col col

27 e quidi :

28 e di qui : iftti come d verific : o esiste quidi l'ivers.

29 . ( ) iftti come d verific : o esiste il determite. o esiste l'ivers.

30 iftti come d verific :

31 8. co opportue operzioi elemetri tr liee : det procededo come ei precedeti esercizi otteimo ifie :

VINCENZO AIETA Matrici,determinanti, sistemi lineari

VINCENZO AIETA Matrici,determinanti, sistemi lineari VINCENZO AIETA Mtrici,determiti, sistemi lieri 1 Mtrici 1.1 Defiizioe di cmpo. Dto u isieme A, dotto di due operzioi itere (, ), A Φ, si dice che l struttur lgebric A(, ), di sostego A, è u cmpo se: (1)

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Unità Didattica N 35 I sistemi lineari

Unità Didattica N 35 I sistemi lineari Uità Didttic N 5 Uità Didttic N 5 ) Sistem liere di equioi i icogite: teorem di Crmer ) Sistem liere di m equioi i icogite ) Teorem di ouchè-cpelli 4) Sistem di m equioi lieri omogeee i icogite 5) isoluioe

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni.

A=B se e solo se 1) m=p 2) n=q 3) a i,j =b i,j K per ogni i=1,,m e j=1,,n. Studiamo ora alcune delle proprietà che regolano queste operazioni. Osservzioe: due trii soo idetihe se e solo se ho lo stesso uero di righe lo stesso uero di oloe e ho le stesse etrte i K: dte A i j i B i j i p j...... j...... q AB se e solo se p q ij ij K per ogi i e

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO

RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO RELAZIONE FRA LA STABILITA DEL SISTEMA E LA FUNZIONE DI TRASFERIMENTO L stbilità di u sistem liere, ivrite ed prmetri cocetrti può vlutrsi co due criteri diversi che fo rispettivmete riferimeto ll rispost

Dettagli

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06 DISEQUAZIONI IRRAZIONALI ispri: DISPENSE DI MATEMATICA GENERALE Versioe 0/0/06 > [ [ 0, > b { 0 b < 0 { > b b 0, CLASSIFICAZIONE DELLE FUNZIONI Fuzioi lgebriche Fuzioe potez,

Dettagli

ESERCIZI SULLA MECCANICA DEI SOLIDI

ESERCIZI SULLA MECCANICA DEI SOLIDI ESERZ SULLA MEANA DE SOLD ESERZO Assegto el puto P di u corpo cotiuo il seguete tesore dell tesioe, si determii il vettore dell tesioe sull gicitur vete per ormle ; i j k 6 6 6 4 i, j, k versori degli

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

Elementi di Calcolo Matriciale

Elementi di Calcolo Matriciale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 7 Ottobre Elementi di Clcolo Mtricile F. Cliò Mtrici: Definizioni e Simbologi Lezione 7 Ottobre Elementi di Clcolo Mtricile

Dettagli

Progetto Matematica in Rete - I radicali - I radicali 2 = 4

Progetto Matematica in Rete - I radicali - I radicali 2 = 4 Progetto Mtemtic i Rete - I rdicli - I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto x x Per esempio: 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero,

Dettagli

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico

Note di Algebra lineare. Prof. Domenico Olanda. Anno accademico Note di Algebr liere Prof. Domeico Old Ao ccdemico 008-09 Prefzioe Questo volume rccoglie gli pputi di lcue lezioi di lgebr liere e geometri d me svolte presso l Fcoltà di Scieze dell'uiversità "Federico

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

INDICE. Scaricabile su: Algebra e Equazioni TEORIA

INDICE. Scaricabile su:  Algebra e Equazioni TEORIA P r o f. Gu i d of r c h i i Atepri Atepri Atepri www. l e z i o i. j i d o. c o Scricile su: http://lezioi.jido.co/ Alger e Equzioi TEORIA INDICE Nozioi geerli, isiei, uioe ed itersezioe, ueri reli Mooi

Dettagli

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è

LEZIONE Numeri complessi. Sappiamo già come sommare le coppie di numeri reali. Se (a, b ), (a, b ) R 2 allora la coppia somma è LEZIONE 14 14.1. Numeri complessi. Sppimo già come sommre le coppie di umeri reli. Se, b,, b R 2 llor l coppi somm è, b +, b = +, b + b R 2. Voglimo or defiire che u operzioe di prodotto i R 2. Defiizioe

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Progressioni aritmetiche e geometriche

Progressioni aritmetiche e geometriche Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe

Dettagli

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica LE RADICI

PRECORSO DI MATEMATICA III Lezione RADICALI E. Modica  LE RADICI PRECORSO DI MATEMATICA III Lezioe RADICALI E. Modic tetic@blogscuol.it www.tetic.blogscuol.it LE RADICI Abbio visto che l isiee dei ueri reli è costituito d tutti e soli i ueri che possoo essere rppresetti

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

DAI RAZIONALI AI REALI

DAI RAZIONALI AI REALI DAI RAZIONALI AI REALI. L isieme dei umeri rzioli. Le operzioi fr umeri rzioli: ddizioe, moltipliczioe, sottrzioe e divisioe.. L elevmeto potez. L ordimeto.. Proprietà delle disuguglize (?disuguglize e

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati.

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati. M.C.D. E il più grde tr tutti i ueri iteri positivi che dividoo i ueri dti. 4 = 144 = 4 M.C.D.= = 1 60 = 5 Si predoo cioè tutti i fttori coui co l espoete iore. Il M.C.D. tr due o più ooi è u ooio co coefficiete

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

x... n M n Esempio. Dati i seguenti cinque numeri (n = 5): x 1 = 10; x 2 = 13; x 3 = 9; x 4 = 7; x 5 = 12 la loro media aritmetica sarà uguale a: 1 5

x... n M n Esempio. Dati i seguenti cinque numeri (n = 5): x 1 = 10; x 2 = 13; x 3 = 9; x 4 = 7; x 5 = 12 la loro media aritmetica sarà uguale a: 1 5 Idici STATISTICI Nell ricerc scietific e tecologic, così come elle scieze ecoomiche, socili e politiche, è importte misurre l rele efficci di iterveti sul sistem oggetto di studio. Ciò sigific vlutre gli

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitzioi di Sttistic 16 Dicembre 009 Riepilogo Prof. Giluc Cubdd gcubdd@luiss.it Dott.ss Emmuel Berrdii emmuel.berrdii@uirom.it Esercizio 1 I dti segueti costituiscoo le ore di studio d u cmpioe di

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

ARITMETICA E ALGEBRA

ARITMETICA E ALGEBRA ARITMETICA E ALGEBRA SEZIONE A INIZIAMO CON UN PROBLEMA Fttorizzzioe e zeri di poliomi CAPITOLO CAPITOLO Il prolem del cotre Elemeti di se del clcolo comitorio Il cmpo ordito dei umeri reli MATEMATICA

Dettagli

Matrici: Definizioni e Proprietà

Matrici: Definizioni e Proprietà Mtrici: Definizioni e Proprietà Alcune figure di questi ppunti riportno nei commenti esempi in linguggio MATLAB In tli esempi i crtteri di peso normle sono prodotti dl computer mentre i crtteri in grssetto

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

Compendio di Calcolo Combinatorio in preparazione all esame di stato

Compendio di Calcolo Combinatorio in preparazione all esame di stato Compedio di Clcolo Combitorio i preprzioe ll esme di stto Simoe Zuccher prile Idice Permutzioi semplici Permutzioi co ripetizioe Disposizioi semplici Disposizioi co ripetizioe 5 Combizioi semplici 6 Combizioi

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

AUTOVALORI E AUTOVETTORI

AUTOVALORI E AUTOVETTORI pputi di Mtemtic Computziole Lezioe 4 UOVLORI E UOVEORI. Defiizioi Si C, il umero C, rele o complesso, è detto utovlore di se esiste u vettore C,, tle che vlg l relzioe () llor il vettore è detto utovettore

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Frattali ed altro. 1 quello alla fine, possiamo esprimere. Di Loris Mannucci INSIEMI FRATTALI. 1) Modelli d accrescimento 1/12

Frattali ed altro. 1 quello alla fine, possiamo esprimere. Di Loris Mannucci INSIEMI FRATTALI. 1) Modelli d accrescimento 1/12 Frttli ed ltro Di Loris Mucci Co quest rticolo mi propogo di fre u itroduzioe i frttli e di dre u rppresetzioe di come essi rppresetio u vlido strumeto per l descrizioe dell tur. Il percorso segue le tppe

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro.

Un numero relativo è, quindi, l associazione di un valore assoluto e di un segno e le due parti sono inscindibili tra loro. Nueri reltivi e operzioi - 1 Nueri reltivi I ueri preceduti d u sego si dicoo ueri reltivi. +9 e -5 soo ueri reltivi Il odulo o vlore ssoluto di u uero reltivo è il uero stesso sez il sego. Per idicre

Dettagli

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n =

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n = Poteze volte FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) proprietà: ) 2) 3) 4) 5) m m m m m m b 0 per qulsisi Numeri iteri: umero co sego e vlore Somm lgebric: Segi cocordi + +b - - b ddizioe Prodotto

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4 Gli itegrli Gli itegrli. Itroduzioe Gli itegrli Le ppliczioi del clcolo itegrle soo svrite: esistoo, iftti, molti cmpi, dll fisic ll igegeri, dll iologi ll ecoomi, i cui tli ozioi trovo o poche ppliczioi.

Dettagli

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche M A T E M A T I C A I Lezioi ed Esercizi.. 7-8 Corso di lure i Scieze Strtegiche Uiversità di Mode e Reggio Emili. Diprtimeto di Fisic, Iformtic, Mtemtic. Prefzioe Quest dispes rccoglie le lezioi del corso

Dettagli

O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1

O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1 O. C A L I G A R I S - P. O L I VA A N A L I S I M AT E M AT I C A 1 1. U po di Logic Dicimo proposizioe u ffermzioe di cui simo i grdo di stbilire se è ver o è fls. Assegt u proposizioe P si può costruire

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Teoria delle distribuzioni Parte prima Concetti di base

Teoria delle distribuzioni Parte prima Concetti di base Lezioi di Mtemtic Le distribuzioi prte Teori delle distribuzioi Prte prim Cocetti di bse L ecessità di u uov teori L teori delle distribuzioi trov l su origie dlle scieze fisiche. Iftti, già dgli lbori

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

Integrali indefiniti

Integrali indefiniti Primitiv di u fuzioe Itegrli idefiiti U fuzioe F() si die primitiv di u fuzioe i u itervllo I se, per ogi I: F = U fuzioe mmette ifiite primitive, he differisoo u dll ltr per u ostte dditiv. L fmigli delle

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto Alisi Mtemtic I Uiversità di Pdov, Corsi di Lure i Igegeri Polo Guiotto ii Premess Questo mterile copre u primo corso di Alisi Mtemtic per corsi di Lure di idirizzo scietifico. L cceto è posto sullo sviluppo

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli