Scomposizione di polinomi 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scomposizione di polinomi 1"

Transcript

1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME NOME Clsse Dt Roglimento fttor omune 1. Stilire se le seguenti uguglinze sono vere o flse: Punti Prootti notevoli Trinomio i seono gro 1. Il polinomio 2x 3 2x 2 y x 2 3xy 2 3y 3 9y 2 si sompone in: 1. Somporre in fttori i seguenti polinomi: 1. 15x x15x 12 5x 1 12x 3y21x 2 y x 2 3y 2 21x y 32 12x 2 3y 2 21x 2y 32 12x 2 3y21x y L ifferenz tr ue qurti può essere sompost ome prootto ell... elle loro si per l... tr le loro si. Completre i seguenti trinomi in moo ottenere qurti i inomi: 1. x 2 8xyz Completre i seguenti qurinomi in moo ottenere ui i inomi: x 12x Somporre in fttori il seguente polinomio: 9 x2 y 2 1 z2 t xyz 8 xyt 2zt 3 3. Somporre in fttori i seguenti trinomi i seono gro: 1. x 2 12x 35 x 2 7xy 12y RCS Liri S.p.A. 79

2 Polinomi in un vriile 3. Determinre i possiili vlori i k per i quli il trinomio x 2 kx 1 può essere somposto in fttori oeffiienti interi. 3. Determinre i possiili vlori i k per i quli il trinomio x 2 7x k può essere somposto in fttori oeffiienti interi e positivi.. Inire quli ei seguenti vlori i x sono zeri per l funzione polinomile x x 3 11x 2 9x Dti ue polinomi p1x2 2x 1 e g1x2 x 2, eterminre p(0) e g(0). erifire inoltre he p112 g112.. Determinre per quli vlori el prmetro k il polinomio p1x2 x 3 x 2 2x k 8 verifi l onizione p Punti RCS Liri S.p.A.

3 Somposizione i un polinomio Cpitolo Somposizione i polinomi 2 erifi per l lsse prim COGNOME NOME Clsse Dt Teorem el resto Regol i Ruffini Binomi el tipo x n n M.C.D. m..m. 1. Un polinomio P 1x2 è ivisiile per il inomio 1x k2 se: P 1k2 0 k è il resto ell ivisione 1. Il resto ell ivisione 1x 2 x 82 : 1x 22 è: polinomio fttori M.C.D. m..m. x 2 2x 8 x 1 x 3 7x 2 10x 1x k2 : P 1x P 1k2 0 P 1x2 k 1. Il polinomio x x 3 x 2 x è ivisiile per: x 1 x 2 x 2 Seono l regol i Ruffini, stilire quli sono i numeri rzionli k he possono essere sostituiti in 1x k2 per rierre i ivisori i primo gro el seguente polinomio: ttorizzre il polinomio ell eserizio pplino l regol i Ruffini. 3. Somporre in fttori i seguenti inomi: 1. y x 3 y 3 1. Completre l seguente tell: 10x 9x 2 3 x 3 Punti Equzioni 2007 RCS Liri S.p.A. 5. Dopo ver somposto in fttori i primo gro il polinomio primo memro, risolvere le seguenti equzioni: 1. x x 3 x 2 20x 0 5. Determinre per quli vlori i k l equzione x kx 3 13x 2 38x 12k 0 h soluzione x 1. 81

4 Cpitolo Somposizione i un polinomio Somposizione i polinomi Test rispost multipl per l lsse prim COGNOME NOME Clsse Dt Riportre in tell le lettere orrisponenti lle risposte estte Il polinomio x 2 7x 10 si sompone in fttori in: 1x 521x 22 1x 1021x 12 1x 521x 22 non si sompone in fttori. Gli zeri el polinomio x 2 7x 10 sono: 5; 2 10; 1 5; 2 non mmette zeri. 3. Il inomio x n n ( H 0, n H 0 ) si può somporre in fttori solo se: 0 0 on n pri. Il inomio x n n ( H 0, n H 0 ) si può somporre in fttori solo se: n ispri n pri 8 5. Il polinomio si sompone in: 3 xy2 2 9 x2 7 0 oppure n ispri n ispri on n x2 3 xy2 2 3 x2 y n x1x 12y2 2 2x 3 y2 9x. Qule ei seguenti polinomi è irriuiile? 7. Qule vlore eve ssumere k ffinhé il polinomio x 2 kx 1 si il qurto i un inomio? 9 x 2 k 1 9 x 2 k 1 8 x 3 k x 3 k 2 8. Il vlore si him zero ell funzione f 1x2 se risult: x 0 x 0 0 f 1x f 1x2 x 0 f 102 x 0 9. L funzione f 1x2 3kx 7k è tle he f per k 0 k 5 k 1 2 k RCS Liri S.p.A.

5 10. Qule elle seguenti ffermzioni è fls? Un trinomio può essere lo sviluppo el qurto i un inomio. L somm i ue potenze esponente ispri è sempre somponiile. Un polinomio i qurto gro può essere lo sviluppo el qurto i un inomio. Un inomio (i gro n 7 1) si può somporre solo se i suoi termini hnno segno opposto. 11. Il resto ell ivisione el polinomio A1x2 x 3 2x 3 per il polinomio B1x2 x 1 è Il polinomio x 3 x x è multiplo i x 3 x 3 x x 13. Il m..m. tr i ue polinomi x 2 1 e x 2 1 è: 2x 2 1 1x 12 nessun elle preeenti 1. Il M.C.D. tr i ue polinomi x 3 x e x 3 x è: x 15. L equzione x 9x 3 0 h le soluzioni: x 0; x 9 x 0; x 9 1x 12x x x 0; x 3 x 0; x 3 nessun elle preeenti 1. L equzione x 2 k 2 h le soluzioni x 2; x 2 se k è: 17. Qule vlore ovree ssumere k ffinhé il polinomio kx 2 1 non si somponiile in fttori? k 2 1 k 1 k 1 1 nessun elle preeenti 18. Il polinomio P1x2 è ivisiile per x se P12 0 P1 2 0 P1x 2 0 P1x Qule ei seguenti polinomi è lo sviluppo el qurto i un inomio? 20. Qule ei seguenti polinomi non è ivisiile per x A? x 2x 3 1 x 2x 1 Ax 2 A 2 x x 2 1A 12x A x 1 x 2x 3 1 x 2 Ax A 1 x 2 Ax 21. Il polinomio 2y 2 2xz yz xy somposto in fttori è: 12x y212y z2 12x y21z x RCS Liri S.p.A. 1y 2x212y z2 1x y212y z2 83

6 2 Qule ei seguenti polinomi è somposto in fttori? 3x x 2 2 3x 2 nessuno ei preeenti 23. Se il polinomio A1x2 è ivisiile per il polinomio B1x2 2x 2, qul è il resto ell ivisione i A1x2 per B1x2? Il quoziente ell ivisione el polinomio A1x2 i gro n 1 per il polinomio B1x2 i gro n 1 1n 7 12 è un polinomio i gro: 2 2n 25. Due polinomi P1x2 e Q1x2 hnno m..m. 1x 321x 12 e M.C.D. 1. Quli potreero essere tr i seguenti? 3x 2 3x 3x x P1x2 x 2 9 x Q1x2 x 2 1 2x 2 2n 1 2n 1 P1x2 x 3 Q1x2 1x 321x 12 P1x2 1 Q1x2 1x 321x 12 P1x2 x 1 Q1x2 x 2 2x 3 Il prootto 12x 121x 2 1 2x2 è equivlente : 12x x x 12 8x 3 1 1x x RCS Liri S.p.A.

7 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1: verifi e prov strutturt rispost multipl Oiettivi erifi Test Teori l prgrfo Somporre un polinomio meinte roglimenti fttor omune Somporre un polinomio meinte prootti notevoli Somporre un trinomio meinte l regol el trinomio Clolre il vlore ell funzione polinomile 1.; 1.; 1. ; ; ; 3.; 3.; 3..;.;. 5, 21 7, 10, 19, 2 1, 20 8, 9, Soluzioni egli eserizi tempo previsto: 0 min ; 1. 7x(5x 1) somm; 1. (2x 2yz) ifferenz ( xy 1. (x 5)(x 7) 8; ; ; 1; 0 5 (x 3y)(x y) 10; 10; ) (3 1) (x 2 ) 3 2 z 2t Somposizione i polinomi 2: verifi e prov strutturt rispost multipl Oiettivi erifi Test Teori l prgrfo Utilizzre il teorem el resto Somporre un polinomio meinte l regol i Ruffini Somporre un inomio el tipo x n n Determinre M.C.D. e m..m. i polinomi Risolvere un equzione i gro superiore l primo (pplino l legge i nnullmento el prootto) Clolre il vlore i un prmetro i un equzione letterle, to il vlore i un rie 1.; 1.; 1. ; , 23 12, 18, 2 3,, 5, 13, 1, 25 2, 15 1, Soluzioni egli eserizi tempo previsto: 0 min ; ; 3. (1 x) (x 1 ) (x 3) 1. (y 2) (y 2) (y 2 ) ( 3) ( 2 3 9) 3. (xy 1) (x 2 xy 1) M.C.D. x 2 m..m. x(x 2) (x 2) (x ) (x 5) (x 2 ) 5 1. x x 0; x ; x 5 k 2 Soluzioni quesiti prov strutturt rispost multipl tempo previsto: 0 min RCS Liri S.p.A. 85

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

COGNOME... NOME... Classe... Data...

COGNOME... NOME... Classe... Data... Cpitolo I tringoli Criteri i ongruenz - Tringoli isoseli erifi per l lsse prim Clsse.................................... Dt............................... Congruenz Tringolo isosele Teorem Quesiti 186

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Risoluzione dei sistemi di equazioni col metodo delle matrici

Risoluzione dei sistemi di equazioni col metodo delle matrici Risoluzione ei sistemi i equzioni ol metoo elle mtrii Un sistem i n equzioni e n inonite può essere rppresentto ome mtrie formt i soli oeffiienti. Dto il sistem: x+ y+ z= x+ y+ z= x+ y+ z= L su mtrie srà:

Dettagli

Il piano cartesiano e la retta

Il piano cartesiano e la retta Cpitolo Eserizi Il pino rtesino e l rett Teori p. Coorinte rtesine nel pino Stilisi ove si trov isuno ei punti ti. (I I qurnte, II II qurnte, III III qurnte, IV IV qurnte, x sse x, y sse y) A(0, 8) B(,

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 1.6 esercizi 17 Esercizio 25. Determina MCD e mcm fra i seguenti polinomi: 8a 2 + 16ab + 8b 2 4a 4 4a 2 b 2 12a 2 + 12ab Soluzione. Scomponiamo in fattori i tre polinomi: 8a 2 + 16ab + 8b 2 = 8(a 2 + 2ab

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

B2. Polinomi - Esercizi

B2. Polinomi - Esercizi B. Polinomi Esercizi Grado dei polinomi Ordinare i polinomi rispetto alla lettera di grado più alto e poi dire il grado rispetto a ciascuna lettera ed il grado complessivo: ) a + a ) xy axy + axx ) a +

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione.

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione. CAPITOLO 6 LE EQUAZIONI DI SECONDO GRADO 6. Equzioni di secondo grdo e loro clssificzione Luc e Mrt sono l r dell città di Mttown per l solit colzione. Osservndo il listino prezzi, si ccorgono che i prezzi

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

4 - TRASFORMAZIONI DI VARIABILI CASUALI

4 - TRASFORMAZIONI DI VARIABILI CASUALI 4 - RASFORMAZIONI DI VARIABILI CASUALI 4 rsformzioni i vriili suli Cominimo un esempio Si l vriile sule lnio i un o non truto : / / / 4 / 5 / / e g() si l orrisponenz: pri test ispri roe Poihé g()g(4)g()test

Dettagli

Verifica 10 ESPONENZIALI E LOGARITMI

Verifica 10 ESPONENZIALI E LOGARITMI Verific 0 SPONNZIALI LOGARITMI TST I FIN APITOLO Qule delle seguenti figure non rppresent un funzione? A È dt l funzione f : R R, descritt dll legge 4. Qunto vle l immgine di 0? A 0... 4. 4. L funzione

Dettagli

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.

Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.! Divisione tra polinomi ( 2.2 del testo)! La regola di Ruffini ( 2.3 del testo)! I prodotti notevoli ( 2.3

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

MD3 Disequazioni di primo grado ad una sola incognita

MD3 Disequazioni di primo grado ad una sola incognita MD3 Disequzioni di primo grdo d un sol incognit Introduzione Gli intervlli [; ] [; [ ]; ] ]; [ [; + [ ]; + [ x x < < x < x < x x > [ ] [ [ ] ] ] [ [. ]. ] ; ] x ] ; [ x < - ] - [ Qulche esempio [ 2; 4]

Dettagli

5) 1 2 essendo x1 e x2 due

5) 1 2 essendo x1 e x2 due SCOMPOSIZIONE IN FATTORI 1) Raccoglimento a fattore comune ( Applicabile ad un polinomio di un numero qualunque di termini purchè i termini presentino almeno una lettera o un numero che si ripete in tutti)

Dettagli

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0 www.esmths.ltervist.org EQUZIONI DI GRDO SUPERIORE L SECONDO PREMESS Finor simo cpci di risolvere solo equzioni di primo e di secondo grdo. imo imprto che isogn prim condurle form cnonic e poi procede

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

PON Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire.

PON Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. PON 2007 2013 Liceo Scientifico Leonardo da Vinci Vallo della Lucania Nuovi percorsi matematici: Osservare, descrivere, costruire. Derive - 2 ESPRESSIONI E POLINOMI Vallo della Lucania 26 settembre 2008

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE ALGEBRA LINEARE Operzioni tr mtrici Sino A = { ij } e B = {b ij } venti l stess imensione. L loro somm è l mtrice C i cui elementi sono {c ij

Dettagli

Prodotti notevoli Quadrato di un binomio

Prodotti notevoli Quadrato di un binomio Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Equazioni di secondo grado parametriche

Equazioni di secondo grado parametriche Equazioni di secondo grado parametriche Data un equazione parametrica di secondo grado, determinare per quali valori di k:. l equazione ha due soluzioni reali; Porre 0. da ora in poi, nei punti seguenti,

Dettagli

1 Prodotti e potenze notevoli 1. 2 Divisione tra polinomi 2 2.1 Regola di Ruffini... 4. 3 Fattorizzazione di un polinomio 5. 4 Teorema di Ruffini 8

1 Prodotti e potenze notevoli 1. 2 Divisione tra polinomi 2 2.1 Regola di Ruffini... 4. 3 Fattorizzazione di un polinomio 5. 4 Teorema di Ruffini 8 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Polinomi Indice 1 Prodotti e potenze notevoli 1 2 Divisione tra polinomi 2 2.1 Regola di Ruffini................................................

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Cpitolo Eserizi Le equzioni di primo grdo Teori p. Dl prolem ll equzione Determin l equzione on ui puoi risolvere i prolemi dihirndo, inoltre, qul è l inognit, quli sono i dti noti e qul è il dominio del

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Divisione fra polinomi. e scomposizione in fattori

Divisione fra polinomi. e scomposizione in fattori T Capitolo Divisione fra polinomi e scomposizione in fattori Listen to it A polynomial A is divisile y a polynomial B, that is different from zero, if there exists a polynomial Q such that A equals B times

Dettagli

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori L fisic come scienz sperimentle Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi:

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi: SISTEMA MISTO Chimimo sistem misto un sistem ormto d un'equzione generlmente prmetric e d un o più disequzioni. Le soluzioni del sistem sono dte dlle rdici dell'equzione che veriicno le disequzioni. Tli

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli.

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli. Polinomi Docente: Francesca Benanti 2 febbraio 2008 Page 1 of 25 1. L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007 Polinomi Docente: Francesca Benanti 16 Febbraio 2007 1 L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli interi poichè

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

18.5 Esercizi. Sezione Esercizi Scomponi in fattori i seguenti trinomi particolari. e ) x 2 3x+2; a ) x 2 5x 36; f ) x 2 2x 3.

18.5 Esercizi. Sezione Esercizi Scomponi in fattori i seguenti trinomi particolari. e ) x 2 3x+2; a ) x 2 5x 36; f ) x 2 2x 3. Sezione 18.5. Esercizi 313 18.5 Esercizi 18.5.1 Esercizi dei singoli paragrafi 18.1 - Trinomi particolari 18.1. Scomponi in fattori i seguenti trinomi particolari. a ) x 2 5x 36; b ) x 2 17x+16; c ) x

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Le frazioni algebriche

Le frazioni algebriche Progetto Mtemtic in Rete - Frzioni lgeriche - Le frzioni lgeriche Definizione se A e B sono due polinomi e B è diverso dl polinomio nullo, B A viene dett frzione lgeric. Esempio sono esempi di frzioni

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Calcolo Letterale. 1. Monomi

Calcolo Letterale. 1. Monomi Clcolo etterle Monomi E corretto dire: un monomio è un espressione letterle compost d un coefficiente e d un prte letterle; il coefficiente di solito è un numero, m può nche essere un letter, se è così

Dettagli

SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007

SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007 SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007 1. IL NUMERO MISTERIOSO Riassumiamo: il numero è minore i32, i 22 e i 24, quini è minore i 22; il numero è maggiore i 18, i16 e i 20, quini

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli