Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1"

Transcript

1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn

2 Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog potenz, l tensone (ntenstà d corrente) d tle polo è l mssm tr tutte le tenson (ntenstà d corrente) d lto. Osservzone: In un rete d sol pol dnmc, se esste un unco polo genertore, l tensone (corrente) d tle polo genertore è l mssm tr tutte le tenson (corrent) d lto Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 2

3 Dmostrzone del teorem d non mplfczone delle tenson Consdermo un rete n cu l generco stnte t l solo polo collegto morsett A,B st erogndo potenz. Mettmo n evdenz tle polo e consdermo po un generco morsetto nell restnte rete. A j B Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 3

4 Possmo dmostrre che l potenzle v d tle morsetto non è né l mssmo né l mnmo tr potenzl d tutt nod dcent. Consdermo nftt le ntenstà d corrente nel nodo e sceglmo d vlutrle tutte con lo stesso verso (es. uscente dl nodo ): Scrveremo j j = 0. Poché l rsultto dell sommtor è zero, cò sgnfc che, scrtndo l cso d corrent tutte nulle, lmeno un d queste corrent srà postve (es. >0) e lmeno un srà negtv (es. 2 <0). Consdermo po le tenson v j su pol che s ppoggno l nodo sceglendole con l convenzone dell utlzztore. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 4

5 Poché pol, per potes stnno tutt ssorendo potenz, llor le potenze ssorte P j =v j * j srnno tutte postve. Cò sgnfc che srà postv l tensone v (v >0) sul polo ove l corrente è postv ( >0), mentre srà negtv l tensone v 2 (v 2 <0) sul polo dove l corrente è negtv ( 2 <0). Come conseguenz s rcv che: v > 0 e v 2 < 0, coè φ > φ e φ < φ 2 e φ < φ < φ 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 5

6 Il potenzle φ è compreso tr potenzl de nod dcent; esso pertnto non ne è né l mssmo né l mnmo tr tutt potenzl d nodo dell rete. Il rgonmento s può rpetere per tutt nod ntern, m non per morsett estern, che sono collegt ll unco polo ttvo, che è l unco che st ssorendo potenz elettrc negtv. Poché potenzl devono vere un mx e un mn, quest sono necessrmente ssunt n A e n B e, d conseguenz, l tensone elettrc v AB è mssm. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 6

7 Dmostrzone del teorem d non mplfczone delle corrent Consdermo un rete n cu l generco stnte t l solo polo collegto morsett A,B st erogndo potenz. Mettmo n evdenz tle polo. Poché sppmo che è vldo l teorem d non mplfczone delle tenson, ordnmo morsett, dsponendol dll lto verso l sso prtendo d quello con potenzle mssmo (A) quello con potenzle mnmo (B). Orentmo po lt n modo d vlutre tutte le ntenstà d corrente con verso d rfermento che v dl morsetto potenzle mggore l morsetto con potenzle mnore. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 7

8 A questo punto, scrvmo l LKC l nodo A. C ccorgmo che l unc corrente entrnte è l A e: A = A + A4 + A3 + A5 Poché tutt pol ntern ssorono potenz e poché le tenson v A, v A2, v A5 sono postve, nche le corrent A, A2, A5 srnno mggor d zero e, qund, l A srà l mggore tr le corrent n A. A > A ; A > A3.. A > A5 Pssndo l nodo, rpetendo l rgonmento, potremo scrvere che: A > B ; A > 4 coè l corrente A è l mggore tr le corrent n Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 8

9 Allor potremo nche dre che l corrente A > A ; A > B ; A > 4. Contnundo l rgonmento s concluderà che l ntenstà d corrente A è l mggore tr le corrent ne rm ntern dell rete. A B Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 9

10 Teorem d recproctà S dto un crcuto d resstor lner e s evdenzno due coppe d morsett (- ) e (2-2 ). D questo crcuto s consderno due verson dstnte: ) morsett (- ) è pplcto un genertore d tensone E e morsett (2-2 ) sono post n cortocrcuto (rete R); 2) morsett (2-2 ) è pplcto un genertore d tensone E mentre morsett (- ) sono post n cortocrcuto (rete R ). Usmo convenzon omologhe morsett (- ) e (2-2 ) Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 0

11 (t) (t) 2 + e (t) (t) R v (t) rete R v (t) 2 (t) (t) 2 v (t) (t) R + e (t) rete R v (t) 2 Allor vle: e e Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn

12 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 2 Dmostrzone S dott l convenzone dell utlzztore su tutt pol. I crcut R e R hnno lo stesso grfo. Possmo pplcre Tellegen: 0 0 L L v v e v v e Poché (v =0; v =0) e sfruttndo le crtterstche de resstor:

13 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn L L R e R e Sottrendo memro memro le due equzon s ottene l tes: 0 e e e e

14 In prtcolre se due genertor erogno lo stesso vlore dell tensone, le due ntenstà d corrente sono ugul. S può qund clcolre l corrente n un rmo d un rete lmentt d un solo genertore spostndo l genertore propro n quel rmo e clcolndo l ntenstà d corrente nel rmo dove s trovv orgnrmente l genertore. Osservmo che, per l teorem d recproctà, l rpporto tr cus (e ) n ed effetto ( ) n è ugule l rpporto tr cus (e ) n ed effetto ( ) n. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 4

15 Qule pplczone del teorem d recproctà s può consderre un confgurzone ponte, n cu non s rscontrno confgurzon sere o prllelo d resstor. E I 5 I E E Per l clcolo dell ntenstà d corrente I 5, st consderre l secondo schem n cu l genertore è stto poszonto nel rmo 5 e clcolre n questo nuovo crcuto l ntenstà d corrente I E. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 5

16 Esstono ltre due forme del teorem d recproctà. Second form del teorem d recproctà rete R (t) 2 (t) rete R 2 v (t) j (t) (t) R v (t) v (t) 2 v (t) (t) R v (t) v (t) 2 j (t) j v j v Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 6

17 Terz form del teorem d recproctà (t) rete R (t) 2 (t) rete R 2 + e (t) (t) R v (t) v (t) (t) R v (t) v (t) 2 v (t) 2 j (t) e v j Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 7

18 Teorem del mssmo trsfermento d potenz S consder un genertore d tensone rele delzzto, costtuto d un genertore d tensone dele E posto n sere con un resstore R. Colleghmo morsett AB un utlzztore (crco) d resstenz R u. R AB (t) u A + E v (t) u R U B Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 8

19 Al vrre dell resstenz R u vr l ntenstà d corrente nel crco e l potenz d esso ssort. Potenz ssort dl crco Potenz [W] Ru/R L potenz ssort dl crco è null per RU 0 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 9

20 L potenz ssort dl crco è null per RU Voglmo determnre l vlore d R u n corrspondenz del qule l potenz P u ssort dl crco è mssm. P u = v u u = R ue R + R u E = R ue 2 R + R u (R + R u ) 2 dp u = E 2 (R + R u ) 2 2(R + R u )R u dr u (R + R u ) 4 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 20

21 dp u = E 2 (R + R u )[(R + R u ) 2R u ] dr u (R + R u ) 4 dp u = E 2 [(R R u )] dr u (R + R u ) 3 = 0 Uguglndo zero l dervt, s ottene che l potenz trsfert l crco è mssm qundo l resstenz del crco è ugule ll resstenz ntern R. R = R u In tl cso, l crco s dce dttto. S defnsce rendmento η del genertore l rpporto tr potenz ssort dl crco e potenz d esso erogt: Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 2

22 P R E R R R P E R R 2 u u u u 2 2 E R Ru u Rendmento Ru/R Qundo l potenz trsfert l crco è mssm, l rendmento è 0.5 Il rendmento è mssmo ( ) qundo R u R Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 22

23 Il teorem del mssmo trsfermento d potenz è vldo nche qundo pplchmo l crco due morsett AB d un generc rete lnere. Bst pplcre l teorem d Thevenn: l dttmento del crco s h qundo R u = R TH. Attenzone! In tl cso non è possle ffermre che l rendmento è ncor 0.5 perché non s conoscono le potenze ssorte nell rete lnere. Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A , Elettrotecnc. Lezone 9 Pgn 23

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.uno.t/pers/mstr/ddttc.tm (ersone del 9-3-0) Teorem d Tellegen Ipotes: Crcuto con n nod e l lt ers d rfermento scelt per tutt lt secondo l conenzone dell utlzztore {,..., l } =

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff A. hoon esercz Fsc II QUINTA LEZIONE: corrente elettrc, legge ohm, crc e scrc un conenstore, legg Krchoff Eserczo Un conuttore clnrco n rme vente sezone re S mm è percorso un corrente ntenstà 8A. lcolre

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

Alcune proprietà dei circuiti lineari

Alcune proprietà dei circuiti lineari Unerstà degl Stud d Cssno lcune propretà de crcut lner ntono Mffucc, Fo Vllone 00/00 er 09/00 IL PINCIPIO DI SOVPPOSIZION DGLI FFTTI Il prncpo d sorpposzone degl effett è forse l pù mportnte conseguenz

Dettagli

Circuiti Elettrici Lineari Leggi Fondamentali

Circuiti Elettrici Lineari Leggi Fondamentali Fcoltà d Ingegner Unerstà degl stud d P Corso d Lure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc Lner Legg Fondmentl Crcut Elettrc Lner.. 07/8 Prof. Luc Perregrn Legg fondmentl, pg. Sommro esstenz

Dettagli

Resistenza elettrica

Resistenza elettrica esstenz elettrc esstenz: cpctà d un elemento d oppors l flusso delle crche elettrche. S msur n ohm (Ω). Sezone A l ρ A l ( 0) Mterle con ressttà ρ Teor de Crcut Prof. Luc Perregrn Legg fondmentl, pg. Legge

Dettagli

Campi Elettromagnetici e Circuiti I Leggi Fondamentali

Campi Elettromagnetici e Circuiti I Leggi Fondamentali Fcoltà d Ingegner Unerstà degl stud d P Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Legg Fondmentl Cmp Elettromgnetc e Crcut I.. 06/7 Prof. Luc Perregrn Legg fondmentl,

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2017/18 - Prova n. 4 7 settembre gv 2. L 1 = 5 mh R 2 = 4 R 1 = 10 C 2 = 125 F R 3 = 10 Cognome Nome Mtrcol Frm Prt svolte: E E D Eserczo V G A B C 4 I G4 5 6 gv D Supponendo not prmetr de component, llustrre l procedmento d rsoluzone del crcuto rppresentto n fgur con l metodo delle tenson

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Equazioni esplicite. Doppi-bipoli di ordine zero. Equazioni esplicite. Doppi-bipoli ideali di ordine zero. Governati da due equazioni

Equazioni esplicite. Doppi-bipoli di ordine zero. Equazioni esplicite. Doppi-bipoli ideali di ordine zero. Governati da due equazioni Dopp-pol d ordne zero Equzon esplte Goernt d due equzon ƒ ƒ (t) (,,, ) (t) (,,, ) pre d derte ed ntegrl (t) (t) Trsformzone n ltre due equzon equlent, espltte n delle 4 e (grndezze dpendent). Esempo per

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione Lnertà Elemento lnere: preent un relzone mtemtc lnere fr cu ed effetto. Eempo: v/ relzone lnere 0 e αv relzone non lnere lnertà omogenetà ddtvtà Se l ngreo vene moltplcndo per un fttore cotnte, l uct rult

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

LKC LKT. Grafo della rete PRESCINDE DAI SUOI COMPONENTI. V e I scelte arbitrariamente, purché soddisfino le LK

LKC LKT. Grafo della rete PRESCINDE DAI SUOI COMPONENTI. V e I scelte arbitrariamente, purché soddisfino le LK Teorem Teorema d Tellegen Dato un nseme d tenson e d corrent comatbl col grafo (che soddsfano rsettvamente le LKT e le LKC), la sommatora, della tensone d lato er le corrent d lato è semre nulla. nodo

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. ( Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d (n+ punt <

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

Noi investiamo in qualità della vita e Tu?

Noi investiamo in qualità della vita e Tu? No nvestmo n qultà dell vt e Tu? sosttuzone de serrment SI NO - RISPARMIO IN BOLLETTA - COMFORT - QUALITÀ DELLA VITA + - lvor d rqulfczone lvor d rqulfczone + eff cen 10 nn relzzzone del cppotto z e nerg

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Lezione 27. La legge di reciprocità quadratica.

Lezione 27. La legge di reciprocità quadratica. Lezone 7 Prereust: Congruenze modulo un ntero L legge d recroctà udrtc Dedchmo uest ultmo ctolo llo studo dell rsolubltà delle congruenze udrtche del to x (mod ), (*) dove è un ulss ntero e è un numero

Dettagli

GARA DI MATEMATICA ON-LINE (14/1/2019)

GARA DI MATEMATICA ON-LINE (14/1/2019) IN GIRO PER PRIGI [6] GR DI MTEMTI ON-LINE (4//09) Se n è un numero d due cfre, scrvendo un 4 dopo n s ottene l numero 0n 4, mentre scrverlo prm sgnfc vere l numero 400 n Il problem è rsolto dll equzone

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da A) meccnc Un srr omogene d lunghezz l, lrghezz trscurle e mss M è ppes vertclmente d un estremtà mednte un perno ttorno cu puo` ruotre. Contro l estremt` ler dell srr vene scglto un corpo che nell urto

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Insiemi. Tecniche di rappresentazione, MFSet e analisi ammortizzata. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez. 13

Insiemi. Tecniche di rappresentazione, MFSet e analisi ammortizzata. Ugo de' Liguoro - Algoritmi e Sperimentazioni 03/04 - Lez. 13 Insem Tecnche d rppresentzone, MFSet e nls mmortzzt Collezon 2 7 π 2 3 Dunque numer non sono nml! Collezon n Jv L specfc degl nsem Tp: Element, Set Opertor: NewSet: vod Set IsEmptySet: Set bool In: Element,

Dettagli

Quadratura S = S = F (b) F (a).

Quadratura S = S = F (b) F (a). Qudrtur Formule d qudrtur nterpoltore S f un funzone rele defnt su un ntervllo [, b]. studre è quello dell pprossmzone dell ntegrle Il problem che s vuole S = f(x) dx. () Nel cso n cu l f s un funzone

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt =<

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2016/ Appello del 4/7/2017

Fisica II - Ingegneria Biomedica - A.A. 2016/ Appello del 4/7/2017 sc II - Ingegne omedc -.. 6/ - ppello del // ---------------------------------------------------------------------------------------------------------------------- Nome ognome N o Mtcol -----------------------------------------------------------------------------------------------------------------------

Dettagli

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a,

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a, Relzon bnre Un relzone bnr d un nseme A d un nseme B è un sottonseme R del prodotto crtesno A B Dremo che un elemento A è n relzone con un elemento b B, e scrveremo b se, e solo se, (, b) R Rppresentzone

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Integrazione numerica

Integrazione numerica Itegrzoe uerc (/5 Prole: Clcolre l seguete tegrle Itegrzoe uerc ( d co e costt rel e ( uzoe cotu. (cotu Itegrzoe uerc (/5 Itegrzoe uerc (/5 No sepre è possle trovre or esplct l prtv. Ache el cso cu l s

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

II.3 Equazioni indipendenti ai nodi ( I principio di Kirchhoff)

II.3 Equazioni indipendenti ai nodi ( I principio di Kirchhoff) Cptolo CAP. T LTTCH. Topolog elle ret - r Per rete elettrc s ntene un connessone sgnct pol elettrc. l element crttetc (topologc) un rete sono: Lto: costtuto un polo o, oleno, l polo equlente un connessone

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

con B diretto lungo l asse x e v nel piano (x,y). La forza è:

con B diretto lungo l asse x e v nel piano (x,y). La forza è: Proble 8. Un protone ( =.67-7 Kg) entr n un cpo gnetco d ntenstà =.6 T con veloctà v orentt con ngolo d 3 rspetto l cpo gnetco; l protone subsce un forz F = 6.5-7 N. ) Indcre drezone e verso dell forz

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Unverstà degl Stud d Napol Federco II CdL Ing. lettrca Corso d Laboratoro d Crcut lettrc Introduzone a MATLAB Lezone n.5 Dr. Carlo Petrarca Dpartmento d Ingegnera lettrca e Tecnologe dell Informazone Unverstà

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Capitolo 4 : Problema 45

Capitolo 4 : Problema 45 Cptolo 4 : Proble 45 Scelgo per convenenz l sse X lungo superfce dell tvol lsc col verso postvo concorde con l forz pplct F=+ ˆ N. S ssue che durnte l oto le tre sse sno sepre ccostte e = = = qund 3 Y

Dettagli

Risultati esame scritto Fisica 2-08/03/2013 orali: alle ore presso aula M

Risultati esame scritto Fisica 2-08/03/2013 orali: alle ore presso aula M Rsultt esme scrtto Fsc - 8/3/3 orl: 3-3-3 lle ore 4. presso ul M gl stuent nteresst vsonre lo scrtto sono pregt presentrs l gorno ell'orle; Nuovo ornmento eccho ornmento voto ARER ONE 6 mmesso ASSANO 3

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Campi Elettromagnetici e Circuiti I Parametri di diffusione

Campi Elettromagnetici e Circuiti I Parametri di diffusione Fcoltà d Ingegner Unverstà degl stud d Pv Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Prmetr d dffusone Cmp Elettromgnetc e Crcut I.. 05/6 Prof. Luc Perregrn Prmetr

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Riassunto. l A. 1 Ampere (A) = 1 C/s. P = L / t = i V = V 2 /R= R i 2. Q t dq dt. Q t. lim

Riassunto. l A. 1 Ampere (A) = 1 C/s. P = L / t = i V = V 2 /R= R i 2. Q t dq dt. Q t. lim assunto Q t lm t0 Q t dq dt Ampere (A) = C/s V l A l A P = L / t = V = V 2 /= 2 La potenza elettrca Mentre passa la corrente, l energa potenzale elettrca s trasforma n energa nterna, dsspata sotto forma

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Lure di I Livello in Ingegneri Informtic Sede di Mntov 5.02.2004 Prolem I Nel circuito in figur, in cui i genertori funzionno in regime stzionrio, l interruttore viene chiuso nell istnte t = 0. Si determini

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli