I segmenti orientati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I segmenti orientati"

Transcript

1 I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero potvo. P Q Il egmento orentto PQ è quel egmento che h come vero potvo quello che v dl punto P (detto prmo etremo o orgne) l punto Q (detto econdo etremo o emplcemente etremo). Eo è ndcto col molo PQ gn egmento orentto PQ è crtterzzto dll lunghezz l cu mur è dett modulo (del egmento orentto), dll drezone (rett PQ o un u qul prllel), dl vero che è quello celto rtrrmente n uno de due mod pol. L rett che contene l egmento orentto PQ dce l otegno del egmento orentto o l rett d zone del egmento orentto. I vettor Un vettore è l ente mtemtco completmente ndvduto d un drezone, d un lunghezz e d un vero. Un vettore può eere rppreentto con uno de eguent mol: (un letter ormontt d un frecc) orentto) PQ (un egmento Tutte le grndezze che tudmo n fc ono d due tp: grndezze clr e grndezze vettorl. Defnmo clre un grndezz completmente ndvdut d un numero (potvo o negtvo) che ne eprme l mur rpetto d un'ltr grndezz dell te pece celt come untà d mur (cl). Sono eemp d grndezze clr le temperture, le me de corp, l're d un uperfce, l lvoro eeguto d un forz, etc... Defnmo vettorle un grndezz completmente ndvdut d un numero potvo (modulo), d un drezone e d un vero. Sono grndezze vettorl gl potment, le veloctà, le ccelerzon, le forze, etc. Pgn 1

2 I vettor Untà Pgn d 5 Il vettore potmento è rppreentto d un egmento orentto vente come orgne l pozone nzle del punto mole e come etremo l pozone fnle. Somm d due vettor Per ommre due o pù vettor procede come egue. I vettor d ommre ono rppreentt d due egment orentt conecutv Supponmo d volere eegure l omm d due vettor egment orentt conecutv. e qundo quet ono rppreentt d due = + Il vettore omm = è tto rcvto pplcndo l metodo punt-cod, coè congungendo l cod del prmo vettore con l punt del econdo vettore. Potremo dre nche che l vettore omm è l vettore corcto che come orgne l orgne del prmo vettore e come etremo l etremo del econdo vettore. I due vettor ono pplct llo teo punto Il vettore omm è l dgonle del prllelogrmm vente come lt conecutv due vettor e. S eprme quet crcotnz ffermndo che due vettor ommno pplcndo l regol del prllelogrmm. Il vettore è detto nche vettore rultnte. Pgn

3 I vettor Untà Pgn 3 d 5 Vettor prllel ed equver 1 = + = 1 Il vettore h: 1) l te drezone d 1 ed ) lo teo vero d 1 ed 3) come modulo l omm de modul de vettor 1 ed Vettor vent l te drezone m ver oppot 1 = + = 1 Il vettore h: 1) l te drezone d 1 ed ) modulo ugule ll dfferenz tr l modulo mggore ed l modulo mnore 3) vero del vettore che h modulo mggore Vettor oppot L omm d due vettor oppot (vettor vent l te drezone, lo teo modulo e ver oppot) è l vettore nullo, coè: 1+ = o L'oppoto del vettore ndc col molo. Dfferenz d due vettor S chm dfferenz fr due vettor e, e ndc col molo ottene ddzonndo d l'oppoto d d d d d d d, coè: d = + ( ) = + d d è un vettore che h come orgne l'etremo d e come etremo l'etremo d. l vettore d che Pgn 3

4 I vettor Untà Pgn 4 d 5 d d D Prodotto d un numero per un vettore Se k è un numero rele qul ed un vettore, defnce prodotto d k per e degn col molo k l vettore p che h: 1) l te drezone d ) lo teo vero d e k è potvo e vero oppoto d e k è negtvo 3) come modulo l prodotto del modulo d per l vlore oluto d k, coè: p = k p= k L compozone d un vettore lungo due rette Sno r ed due rette non orentte complnr. S l loro punto d nterezone. S un vettore non nullo nel punto. un egmento orentto rppreenttvo del vettore. Dl punto trccmo le rette prllele d r ed. ttenmo punt 1, e l eguente relzone vettorle: = + ottenut pplcndo l regol del prllelogrmm r I vettor r ed dcono component del vettore econdo le due drezon non orentte r ed. 1 r r Pgn 4

5 I vettor Untà Pgn 5 d 5 S conder l vettore Rppreentzone crten d un vettore rppreentto dl egmento orentto. Se rfermo l vettore d un tem d crten ottenmo: j = + con (, ) e = co = n I numer rel reltv, dcono le component crtene del vettore econdo le drezon orentte d veror e j (del rfermento crteno ). Ee concdono con le coordnte crtene del punto. Verore è un vettore vente modulo untro. j = + j = + j ( ) ( ) j = j H 1 1 = perzon vettorl con le component crtene Le component crtene del vettore omm d due vettor ono ugul ll omm delle component crtene de due vettor. c = + c= +, c= + j = + j = + = m m =, = = m = = = =, = Pgn 5

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A

Facoltà di Ingegneria Prova scritta di Fisica I NO & VO Compito A Eerczo n.1 Un pll vene lnct con veloctà nzle d odulo Fcoltà d nener Prov crtt d Fc NO & VO 1-07-03 - opto rovre: L pozone (coè le coordnte x e y) dell pll dopo 3 econd l odulo dell veloctà dell pll dopo

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli eercizi CPITOLO 2 LUNGHEZZE 0. Qundo l monet f un giro, i pot di un percoro che è ugule ll miur dell u circonferenz, circ 8, cm. 3 UNITÀ DI MISUR DELL RE 6 RE DEL PRLLELOGRMM E DEL TRINGOLO

Dettagli

Controllo dei Robot. Corso di Controllo dei Robot Cinematica Parte 2. Paolo Lino. Dipartimento di Ing. Elettrica e dell Informazione (DEI)

Controllo dei Robot. Corso di Controllo dei Robot Cinematica Parte 2. Paolo Lino. Dipartimento di Ing. Elettrica e dell Informazione (DEI) Coro d Cnemt Prte Polo Lno Dprtmento d Ing. Elettr e dell Informzone (DEI) Cnemt drett Un mnpoltore è ottuto d un neme d orp rgd (br) onne n t trmte oppe nemthe (gunt). S ume he d ogn gunto orrpond un

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

Controllo dei Robot 1

Controllo dei Robot 1 Tble of ontent Introduton Cnemt Prte Dprtmento d Ing. Elettr e dell Informzone (DEI) Polteno d Br e-ml: polo.lno [t] polb.t Coro d Cnemt drett S onder un mnpoltore ottuto d n + br onne n t (ten pert) trmte

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

terna base, dalla matrice di trasformazione omogenea Terna utensile

terna base, dalla matrice di trasformazione omogenea Terna utensile Cnemt drett Un mnpoltore è ottuto d un neme d orp rgd (br) onne n t trmte oppe nemthe (gunt). S ume he d ogn gunto orrponde un grdo d mobltà dell truttur. d ogn gunto noltre vene ot un vrble dett vrble

Dettagli

Legge dei grandi numeri e significato probabilistico della distribuzione normale

Legge dei grandi numeri e significato probabilistico della distribuzione normale Legge dei grndi numeri e ignificto probbilitico dell ditribuione normle Sppimo che l quntità f()d rppreent un indictore dell frione di miure che cdono tr e + d in un dto eperimento qundo l vribile X egue

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIRETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Manpolatore: atena nemata (aperta) d orp rgd (bra) e gunt (rotodal e prmat) Per poter manpolare un oggetto nello

Dettagli

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico.

Sia data una macchina rotante isotropa, dotata di un solo avvolgimento rotorico. ommrio. FAORI PAZIALI... 1.1 I FAORI PAZIALI ED IL GIUTO ELETTROMAGETICO... 1. Fori pzili.1 I fori pzili ed il giunto elettromgnetico i dt un mcchin rotnte iotrop, dott di un olo vvolgimento rotorico.

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

Capitolo 4 : Problema 45

Capitolo 4 : Problema 45 Cptolo 4 : Proble 45 Scelgo per convenenz l sse X lungo superfce dell tvol lsc col verso postvo concorde con l forz pplct F=+ ˆ N. S ssue che durnte l oto le tre sse sno sepre ccostte e = = = qund 3 Y

Dettagli

Moto circolare uniformemente accelerato

Moto circolare uniformemente accelerato Moto circolre uniforeente ccelerto el M.C.U.A. il vettore velocità non h più il odulo cotnte, è preente invece un ccelerzione dett ccelerzione tngenzile che i ntiene cotnte. Ripenndo ll circonferenz tglit

Dettagli

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona ALTAI -- Computer Sene Department Unverty of Verona Faoltá d Senze Motore, Coro d Bongegnera, Parte http://metropol..unvr.t

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

7. Cinematica del corpo rigido

7. Cinematica del corpo rigido 7. Cnetc del corpo rgdo r r Coe poo decrvere l ovento rottoro d un corpo rgdo? Condero un qulunque punto pprtenete l corpo rgdo n rotzone, e co l punto n cu l e buc l pno n cu ruot, decvendo qund un crconferenz

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE UNIVERSITÀ DEGLI STUDI DI BERGAMO MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE Sistem Internzionle di unità di misur (S.I.) Il Sistem Internzionle di unità

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

INTEGRAZIONE NUMERICA DI UNA FUNZIONE

INTEGRAZIONE NUMERICA DI UNA FUNZIONE INTEGRAZIONE NUMERICA DI UNA FUNZIONE Pro.Dniele Attmpto L vlutzione di integrli deiniti qundo non è not l primitiv dell unzione integrnd o qundo il procedimento nlitico riult compleo richiede l ppliczione

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento Polteno d Mlano Cnemata Dretta e Invera Fondament d obota a.a. / Perpaolo De Flpp Fondament d obota Contatt Perpaolo De Flpp Dpartmento d Elettrona e Informazone Va Ponzo 34/5 39947 evmento: olo u appuntamento

Dettagli

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 30/1/2018

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 30/1/2018 c II - Ingegner edc -.. /8 - ppell del //8 ---------------------------------------------------------------------------------------------------------------------- e: gne: Mtrcl: ----------------------------------------------------------------------------------------------------------------------

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot Prof. Gueppn Gn 7/8 Cnemt rett: Pozone e Gunt Pozone e Orentmento ell EnEffetor Obettvo ell nemt rett è l etermnzone ell pozone e orentmento ell orgno termnle

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione

Linearità. linearità = omogeneità + additività. matematica lineare fra causa ed effetto. Elemento lineare: presenta una relazione Lnertà Elemento lnere: preent un relzone mtemtc lnere fr cu ed effetto. Eempo: v/ relzone lnere 0 e αv relzone non lnere lnertà omogenetà ddtvtà Se l ngreo vene moltplcndo per un fttore cotnte, l uct rult

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla

, m = = = è la risultante delle sole forze esterne, dal momento che quella delle forze interne è nulla Eseczo l cento d ss () d un sste d punt tel è un punto geoetco l cu poszone spetto d un sste d feento è ndvdut dl ggo vettoe:, dove ed ppesentno spettvente le sse e vetto poszone de sngol punt tel che

Dettagli

Università del Sannio

Università del Sannio Università del Snnio Corso di Fisic 1 Leione 2 Vettori Prof.ss Stefni Petrcc Corso di Fisic 1 - Le. 02 - Vettori 1 Definiione dei vettori I vettori rppresentno grndee per le quli il vlore, misurto con

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro vlore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze vettorili Vengono definite dl loro vlore

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù rtter qutttv o vrl. L rer de legm etet r pù vrl poe ome rer delle relzo uzol he pogoo Y ome grdezz dpedete d u ere d vrl dpedet

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Lavoro in presenza di forze non conservative

Lavoro in presenza di forze non conservative oro n preenz d orze non conerte erczo: no crctore pnge un c ( totle =kg ) u un terreno d ceento con un orz orzzontle cotnte d ntentà. In uno potento rettlneo d=.5 l eloctà dell c dnuce d =.6 / =.9/. )

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Metodo di massima verosimiglianza (cenni) Maximum Likelyhood

Metodo di massima verosimiglianza (cenni) Maximum Likelyhood Metodo d mm veromglnz (cenn) Mmum kelhood In un proceo d mur (con mure rpetl ed ndpendent) ono tte ftte mure dfferent,,, 3,. S m l vlore vero (non noto) dell oervle e P(m) l dtruzone d proltà egut d dt

Dettagli

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004

Sviluppo curato da: Francesca Caporale e Lia Di Florio Docente: prof. Quintino d Annibale a.s. 2003/2004 Meccnc Legge d Newton e prncp d conervzone Lceo Scentco Tecnologco ESECZO TATTO DAL COMPTO FNALE DEL ANNO Svluppo curto d: Frncec Cporle e L D Floro cle LST A Docente: pro. Quntno d Annble.. /4 Teto Un

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito A Eeczo n. Un blocco, d denon tcubl e d d 4 Fcoltà d ngegne Fc Pov n tnee feb 5 Copto A kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo. 8 ll veloctà d odulo cotnte

Dettagli

Analisi dimensionale e omogeneità delle equazioni

Analisi dimensionale e omogeneità delle equazioni Anlisi dimensionle e omogeneità delle equzioni Anlisi Dimensionle v = spzio / tempo [v] = [LT -1 ] S.I: m/s C.G.S.: cm/s U = mgh [U] = [ML 2 T -2 ] [mgh] = [MLT -2 L]=[ML 2 T -2 ] 1 Multipli e sottomultipli

Dettagli

U.D.A. EQUILIBRIO DEL CORPO RIGIDO

U.D.A. EQUILIBRIO DEL CORPO RIGIDO U.D.. EQUILIRIO DEL CORO RIGIDO In quet lezione vedimo quli ono le condizioni per cui un corpo rimne in equilibrio STTICO (non i muove) Come i pplicno le forze d un corpo rigido? ) Nel co più emplice le

Dettagli

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C

Facoltà di Ingegneria Fisica I Prova in itinere 10 feb 2005 Compito C Eeczo n. Un blocco, d denon tcubl e d d Fcoltà d ngegne Fc Pov n tnee feb 5 Copto C kg, legto d un flo, vene ftto uote ozzontlente u un pno enz ttto, decvendo un cecho d ggo ll veloctà d odulo cotnte v.

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA

ISTITUTO TECNICO INDUSTRIALE E. FERMI LUCCA ISTITUTO TECNICO INDUSTRIALE "E. FERMI" LUCCA Anno Scolstico / Progrmm di MATEMATICA svolto dll clsse second se. A INSEGNANTE: MUSUMECI LUCIANA Divisione tr due polinomi.regol di Ruffini. Teorem del resto.

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y Geometr Anlt Dstnz tr due punt nel pno rtesno P ( x x ) + ( y ) P y Punto medo d due punt nel pno rtesno M x + x y + ( x ; y ) ; M M y Are d un trngolo nel pno rtesno prtre dlle oordnte de suo x y punt

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 3. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 3. a.a 32586 ELETTROTECNICA ED ELETTRONICA (C.I. Modulo d Elettronca Lezone 3 a.a. 20102011 Amplfcatore Operazonale Vource V V Io A 0 (V V Gnd Un Amplfcatore Operazonale (Operatonal Amplfer, OPAMP deale, è un

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero

Polo Scientifico Tecnico Professionale Settore Tecnico E.Fermi Programma di matematica classe II D e indicazioni per il recupero Polo Scientifico Tecnico Professionle Settore Tecnico E.Fermi Progrmm di mtemtic clsse II D e indicioni per il recupero Anno scolstico / Frioni lgeriche e reltive operioni. Le funioni polinomili. Il Teorem

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI I ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico -7 MATEMATICA Clsse E Istituto tecnico tecnologico Progrmm svolto Insegnnte : Ptrii Consni ALGEBRA: Regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

Università degli Studi Federico II di Napoli Facoltà di Architettura

Università degli Studi Federico II di Napoli Facoltà di Architettura Unverstà degl Stud Federco II d Npol Fcoltà d Archtettur Ferdnndo Csolro - Ivno Csolro Appunt del corso d Geometr CAPITOLO I - LA GEOMETRIA ANALITICA. - CENNI STORICI.2 - INTRODUZIONE ALLE COORDINATE CARTESIANE.3

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

MATEMATICA FINANZIARIA 3. RENDITE

MATEMATICA FINANZIARIA 3. RENDITE MATEMATICA FINANZIAIA Prof. Adre Berrd 999 3. ENDITE Coro d Mtetc Fzr 999 d Adre Berrd Sezoe 3 ENDITA Operzoe fzr copot, crtterzzt d cdeze (,,...,,...,, rcuotere quelle cdeze,,...,,...,, t e d port d pgre

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018

Isi E.Fermi Programma di matematica classe II L. Anno scolastico 2017/2018 Isi E.Fermi Progrmm di mtemtic clsse II L Prof.ss Tcchi Luci Anno scolstico / Ripsso: Polinomi ed operioni con essi. Prodotti notevoli. Scomposiioni. Frioni lgeriche. Equioni di primo grdo intere letterli

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: 7/8 Istituto tecnico settore tecnologico. Clsse II H Progrmm di mtemtic Equioni di primo grdo prmetriche. Disequioni di primo grdo sistemi di disequioni

Dettagli

ESERCIZI DI MATEMATICA PER LE VACANZE

ESERCIZI DI MATEMATICA PER LE VACANZE ESERCIZI DI MATEMATICA PER LE VACANZE CLASSE B Rislvi le seguenti equzini + + 6 + = + + + + + 6 6 + + = + = 6 + + = Rislvi le seguenti disequzini: ( )( + ) + ( ) + 6( + ) R ( )( ) + ( ) ( ) 6 + ( ) ( )

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014) ELETTROMGNETISMO PPLITO LL'INGEGNERI ELETTRI ED ENERGETI (ultim modific 02/10/2014) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale

Dispense del Corso di Fisica. a.s Prof. Quintino d Annibale Dspense del Corso d Fsc.s. 009-00 Prof. Quntno d Annle Meccnc Lezone Grndezze fsche ncertezz nell msur Grndezze Fsche Ogn grndezz fsc e compost d un numero e d un untà. Le legg fsche ndcno relzon tr grndezze

Dettagli

Struttura dello spazio della geometria euclidea e della fisica classica. Spazio affine euclideo

Struttura dello spazio della geometria euclidea e della fisica classica. Spazio affine euclideo Struttur dello spzio dell geometri euclide e dell fisic clssic. Spzio ffine euclideo Descrizione dell struttur del pino E 2 (e dello spzio E 3 ) dell geometri e dell fisic clssic come Spzio Affine Euclideo.

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lucc Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : II C Insegnnte : Podestà Tiin Divisione tr due polinomi.regol di Ruffini. Teorem del resto. Scomposiione

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

INDICI DI DISPERSIONE

INDICI DI DISPERSIONE Pcometra (8 CFU) Coro d Laurea trennale IDICI DI DISPERSIOE IDICI DI DISPERSIOE Conentono d decrvere la varabltà all nterno della dtrbuzone d frequenza tramte un unco valore che ne ntetzza le carattertche

Dettagli

Trasformazioni Elementari 2D

Trasformazioni Elementari 2D Traformazioni Elementari 2D Le traformazioni affini ono operazioni di ROTAZIONE, TRASLAZIONE e SCALATURA che permettono di modificare l oggetto 2D o 3D. Una traformazione è definita da una matrice T. Applicare

Dettagli

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate MEDIANA SUCCESSIONE N.B. I termn della ucceone devono eere pot n ordne non decrecente 1. Numero d termn dpar ( dpar) Me = x + 1. Numero d termn par ( par) Me = x + x + 1 VARIABILE STATISTICA N.B. Le frequenze

Dettagli