CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona"

Transcript

1 CINEMATICA DIRETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona

2 Introduzone Manpolatore: atena nemata (aperta) d orp rgd (bra) e gunt (rotodal e prmat) Per poter manpolare un oggetto nello pazo bogna onoere pozone e orentamento dell organo termnale La nemata dretta alola la poa dell organo termnale n funzone de parametr d gunto 2 2

3 Gunt e Bra Gunto: l ollegamento tra una oppa d orp rgd he permette un moto relatvo aratterzzato da due due uperf he lttano l una ull altra Gunto rotodale Gunto prmato Brao: è un orpo rgdo he defne le relazon geometrhe he nterorrono tra due gunt adaent del manpolatore 3 3

4 Il Problema Problema Dat parametr geometr del manpolatore e le varabl d gunto Calolare poa e orentazone del manpolatore Soluzone Applare un neme d tem d rfermento al manpolatore e agl oggett dell ambente eguendo la onvenzone d Denanvt-Hartenberg 4 4

5 Traformazone Omogenea Organo Termnale Conderamo un manpolatore da n+ bra onne da n gunt. Pozone ed orentazone fnale dell organo termnale ono funzone olo de valor aunt dalle varabl d gunto n ( q) ( q) a ( q) p ( q) T ( q) = 5 5

6 Traformazone Omogenea Organo Termnale n ( q) ( q) a ( q) p ( q) T ( q) = Dove: q è l vettore (nx) delle varabl d gunto n è l verore normale dell utenle termnale a è l verore d approo è l verore d volamento 6 6

7 Eempo 2 2 L + L2 2 2 L + L2 T ( q) = Manpolatore planare a 2 braa N.B.... j... j = n( ) = o( ) j j

8 Convenzone d Denavt-Hartenberg Defne una proedura operatva per l alolo della nemata dretta fruttando la natura d atena nemata aperta del manpolatore Ogn gunto onnette olo due bra oneutv Conderamo prma ngolarmente l problema della derzone geometra de legam tra due bra oneutv Suevamente rolvamo rorvamente l problema della derzone dell ntero manpolatore 8 8

9 Convenzone d Denavt-Hartenberg Defnzone della pozone e orentamento relatv d due bra oneutv Indvduazone d terne oldal on tal bra Calolo della matre d traformazone he lega le due terne 9 9

10 D-H Defnzone Parametr S dentfano gl a d rotazone de gunt - ed Calolo della dtanza a - tra due a d rotazone (normale omune) Calolo dell angolo α - d rotazone (ull ae a - ) neearo per portare l ae del prmo gunto ul pano defnto dal eondo ae e l egmento a -

11 D-H Defnzone Parametr Calolo della dtanza d lungo l ae tra le due normal omun α - e α (e l gunto è prmato d èvarable) S alola l angolo d rotazone (ull ae ) neearo per allneare a - on a (e l gunto è rotodale è varable)

12 D-H Pozone delle Terne L orgne del tema {} è poto ull nterezone tra a e l ae d gunto L ae Z onde on l ae d gunto L ae X onde on la normale omune a L ae Y è elto n modo da ompletare la terna 2 2

13 D-H Eleno de Parametr Se tem d rfermento ono pot n bae alla onvenzone, ha: a - La dtanza tra Z - e Z murata lungo l ae X - α - L angolo tra Z - e Z murato rpetto l ae X - d La dtanza tra X - e X murato lungo l ae Z L angolo tra X - e X murato rpetto l ae Z Nota: a -, mentre α - d e ono quanttà on egno 3 3

14 Eempo Manpolatore planare a tre bra e tre gunt rotodal 4 4

15 Eempo Identfazone degl a d rotazone de gunt rotodal 5 5

16 Eempo Identfazone delle normal omun agl a d rotazone de gunt 6 6

17 Eempo Defnzone del vero degl a Z de tem d rfermento 7 7

18 Eempo Aegnamo gl a X allneandol on le normal omun e on l vero puntante l ae del gunto uevo. X 3 è allneato on l entro dell organo termnale del manpolatore 8 8

19 Eempo α - a - d 2 L 2 3 L

20 Il Problema (raunto) Problema Determnare la traformazone R he lega tra loro le terne de tem d rfermento {} e {+} La traformazone è funzone d quattro parametr: a - α - d d u olo uno è varable: varable per gunt rotodal, d per quell prmat 2 2

21 Compozone d Traformazon Soluzone Calolamo la traformazone T ome ompozone d 4 traformazon elementar 2 2

22 Quattro Traformazon) S defnono tre tem d rfermento ntermed {P} {Q} {R} Prma traformazone omogenea (ruota e trala) {R} dffere da {-} olo per la rotazone α - {Q} dffere da {R} olo per la tralazone a - Seonda traformazone omogenea (ruota e trala) {P} dffere da {Q} olo per la rotazone {} dffere da {P} olo per la tralazone d 22 22

23 23 23 Due Matr Omogenee Prma traformazone omogenea Seonda traformazone omogenea = = ) ( ) ( R Q R Q a a T T R α α α α α = = ) ( ) ( P Q P Q d d T T R

24 La Traformazone R Fnale Avendo empre lavorato n terna orrente, la traformazone fnale rultante, ottene moltplando da x a dx le ngole omponent: R ( Q Dove q è la varable d gunto e vale: q ) = R R Q q = q = d e l gunto è rotodale e l gunto è prmato 24 24

25 25 25 La Traformazone R Fnale In formule, la matre d traformazone fnale dventa: = ) ( d d a q R α α α α α α α α

26 26 26 Eempo (ontnua) 3 L L 2 d a - α - = = = ) ( ) ( ) ( L q R L q R q R

27 Eempo (fne) La matre fnale eprme la traformazone dalla terna x y z alla terna x 3 y 3 z 3 2 R 3 = R ( q) R2 ( q2) R3 ( q3) Le prme tre olonne rappreentano veror della terna x 3 y 3 z 3, mentre la quarta è la pozone dell orgne o 3 rpetto alla terna bae 27 27

28 La Famgla Puma 28 28

29 Puma

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona ALTAI -- Computer Sene Department Unverty of Verona Faoltá d Senze Motore, Coro d Bongegnera, Parte http://metropol..unvr.t

Dettagli

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento Polteno d Mlano Cnemata Dretta e Invera Fondament d obota a.a. / Perpaolo De Flpp Fondament d obota Contatt Perpaolo De Flpp Dpartmento d Elettrona e Informazone Va Ponzo 34/5 39947 evmento: olo u appuntamento

Dettagli

Elemento Trave nel piano

Elemento Trave nel piano Il etodo degl Element Fnt Elemento Trave nel pano Dalle dpene del prof. Daro Amodo e dalle lezon del prof. Govann Santu.Cortee Progettazone eana agl Element Fnt (a.a. 11-1) Introduzone al alolo trutturale

Dettagli

Controllo dei robot. (Prof. Rocco) Anno accademico 2004/2005 Appello del 20 Luglio 2005

Controllo dei robot. (Prof. Rocco) Anno accademico 2004/2005 Appello del 20 Luglio 2005 Controllo de robot (Prof. Roo) Anno aademo 2004/2005 Appello del 20 Luglo 2005 Cognome:... Nome:... Matrola:... Frma:... Avvertenze: Il preente faolo ompone d 8 pagne (omprea la opertna). Tutte le pagne

Dettagli

Controllo dei robot. (Prof. Rocco) Appello del 14 Luglio Firma:...

Controllo dei robot. (Prof. Rocco) Appello del 14 Luglio Firma:... Controllo de robot (Prof. Roo) Appello del 14 Luglo 2010 Cognome:... Nome:... Matrola:... Frma:... Avvertenze: Il preente faolo ompone d 8 pagne (omprea la opertna). Tutte le pagne utlzzate vanno frmate.

Dettagli

Controllo dei Robot. Corso di Controllo dei Robot Cinematica Parte 2. Paolo Lino. Dipartimento di Ing. Elettrica e dell Informazione (DEI)

Controllo dei Robot. Corso di Controllo dei Robot Cinematica Parte 2. Paolo Lino. Dipartimento di Ing. Elettrica e dell Informazione (DEI) Coro d Cnemt Prte Polo Lno Dprtmento d Ing. Elettr e dell Informzone (DEI) Cnemt drett Un mnpoltore è ottuto d un neme d orp rgd (br) onne n t trmte oppe nemthe (gunt). S ume he d ogn gunto orrpond un

Dettagli

Controllo dei Robot 1

Controllo dei Robot 1 Tble of ontent Introduton Cnemt Prte Dprtmento d Ing. Elettr e dell Informzone (DEI) Polteno d Br e-ml: polo.lno [t] polb.t Coro d Cnemt drett S onder un mnpoltore ottuto d n + br onne n t (ten pert) trmte

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

terna base, dalla matrice di trasformazione omogenea Terna utensile

terna base, dalla matrice di trasformazione omogenea Terna utensile Cnemt drett Un mnpoltore è ottuto d un neme d orp rgd (br) onne n t trmte oppe nemthe (gunt). S ume he d ogn gunto orrponde un grdo d mobltà dell truttur. d ogn gunto noltre vene ot un vrble dett vrble

Dettagli

Sistemi a più gradi di libertà: cinematica diretta

Sistemi a più gradi di libertà: cinematica diretta Sstem a pù grad d lbertà: cnematca dretta Introduzone La poszone e l'orentamento d una terna soldale all ultmo elemento d un meccansmo a pù grad d lbertà (robot) dpende evdentemente dalle caratterstche

Dettagli

Analisi cinematica del PUMA

Analisi cinematica del PUMA Unverstà d Bologna Faoltà d'ingegnera Meana de Robot Anals nemata del PUMA Equaon d husura La Fg. mostra la onvenone adottata per la selta de sstem d rfermento su asun membro. S adotta la notaone d Denavt-Hartenberg

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

CINEMATICA DIFFERENZIALE

CINEMATICA DIFFERENZIALE CINEMATICA DIFFERENZIALE Paolo Forn Dartmento d Informatca Unverstà degl Stud d Verona ALTAIR -- Comuter Scence Deartment Unversty of Verona Master n Informatca Medca, Corso d Robotca, Parte 8 Introduzone

Dettagli

MATRICI DI TRASFORMAZIONE

MATRICI DI TRASFORMAZIONE MAICI DI ASFOMAZIONE Paolo Fiorini Diartimento di Informatia Univerità degli Studi di Verona ALAI -- Comuter Siene Deartment Univerit of Verona Mater in Informatia Media, Coro di obotia, Parte Introduione

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

1 - SCELTA TIPOLOGICA DELLE OPERE DI FONDAZIONE

1 - SCELTA TIPOLOGICA DELLE OPERE DI FONDAZIONE 1 - SCELTA TIPOLOGICA DELLE OPERE DI FODAZIOE La tpologa delle opere d fondazone sono onsone alle arattersthe meanhe del terreno defnte n ase a rsultat delle ndagn geognosthe. el aso n esame, la struttura

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformatche per la chmca Dr. Sergo Brutt Rappreentazone de dat Come rappreenta un dato d mura? Negl eemp appena volt abbamo ncontrato 2 tp d rappreentazone de dat permental Rappreentazone matrcale

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Linguaggio C. funzioni e procedure. Università degli Studi di Brescia. Docente: Massimiliano Giacomin

Linguaggio C. funzioni e procedure. Università degli Studi di Brescia. Docente: Massimiliano Giacomin Lnguaggo C funzon e procedure Unverstà degl Stud d Bresca Docente: Massmlano Gacomn Un esempo Acqusre dall utente un numero ntero n, rpetendo l acquszone se è prmo. Successvamente, stampare 5 numer prm

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot Prof. Gueppn Gn 7/8 Cnemt rett: Pozone e Gunt Pozone e Orentmento ell EnEffetor Obettvo ell nemt rett è l etermnzone ell pozone e orentmento ell orgno termnle

Dettagli

Prova di verifica parziale N Dic 2008

Prova di verifica parziale N Dic 2008 Corso d GEOTECNICA Ingegnera Edle-Arhtettura a.a. 8/9 Prova d verfa parzale N. 7 D 8 Eserzo q kpa SABBIA LIMOSA γ 8 kn/m φ' SABBIA E GHIAIA γ 9 kn/m φ' Con rfermento al muro d sostegno n fgura alolare:

Dettagli

Elasticità nei mezzi continui

Elasticità nei mezzi continui Elastctà ne mezz contnu l tensore degl sforz o tensore d stress, σ j Consderamo un cubo d dmenson untare n un mezzo elastco deformato. l cubo è deformato dalle forze eserctate sulle sue facce dal resto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema

F E risultante t delle forze esterne agenti su P i. F forza esercitata t sul generico punto P ij del sistema da P : forza interna al sistema DINAMICA DEI SISTEMI Sstema costtuto da N punt materal P 1, P 2,, P N F E rsultante t delle forze esterne agent su P F E F forza eserctata t sul generco punto P j del sstema da P : forza nterna al sstema

Dettagli

I VALORI MEDI MEDIE COME CENTRI

I VALORI MEDI MEDIE COME CENTRI I VALORI MEDI Valor che vengono calcolat per eprmere ntetcamente l ntentà d un fenomeno e per conentre la comparazone del fenomeno con fenomen analogh MEDIE COME CETRI I numer x R (=,,) poono eere rappreentat

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Esercitazione I : Determinazione dei pesi

Esercitazione I : Determinazione dei pesi Esertazone I : Il proget d un nuovo velvolo parte da una stma prelmnare de pes del velvolo stesso, ovvero dalla determnazone delle dverse alquote d peso he è le attenders he gl ompetano. Le alquote da

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate MEDIANA SUCCESSIONE N.B. I termn della ucceone devono eere pot n ordne non decrecente 1. Numero d termn dpar ( dpar) Me = x + 1. Numero d termn par ( par) Me = x + x + 1 VARIABILE STATISTICA N.B. Le frequenze

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Variabili casuali doppie

Variabili casuali doppie Varabl casual doe Una varable casuale doa (,) è una funzone defnta sullo sazo degl event che assoca ad ogn evento una coa d numer real (x,y) (x 1, y 1 ) S y 1 A B y (x, y ) (x 3, y 3 ) C y 3 x 1 x x 3

Dettagli

Reti in fibra ottica. Prima Esercitazione Lunghezze d onda e potenze

Reti in fibra ottica. Prima Esercitazione Lunghezze d onda e potenze Ret n bra otta Prma Esertazone Lunghezze d onda e potenze Eserzo Un sstema d trasmssone otto è aratterzzato da una banda dsponble, mposta dalla urva d guadagno dell EDFA, par a 30 nm entrata attorno a

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

links utili:

links utili: dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl: http://scenceworld.wolfram.com/physcs/angularmomentum.html http://hyperphyscs.phy-astr.gsu.edu/hbase/necon.html Momento della quanttà d

Dettagli

Formule principali per il calcolo delle caratteristiche geometriche

Formule principali per il calcolo delle caratteristiche geometriche Struttura dell aereo Gl aere ogg n attvtà sono osttut da vare omponent essenzal: la fusolera, le al o superf portant, l'apparato propulsore sstem d guda e d ontrollo; e.. La struttura tpa dell'ala onsste

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate MEDIANA SUCCESSIONE N.B. I termn della ucceone devono eere pot n ordne non decrecente 1. Numero d termn dpar ( dpar) Me x + 1. Numero d termn par ( par) Me x + x + 1 VARIABILE STATISTICA N.B. Le frequenze

Dettagli

Corpi rigidi (prima parte)

Corpi rigidi (prima parte) Corp rgd (prma parte) Corp rgd Un corpo rgdo è un corpo n cu le dstane tra le vare par che lo compongono rmangono costan3. r CM d CM È un po parcolare d sstema d N parcelle. Valgono ancora le legg dp dt

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

5.3 LE TURBINE RADIALI

5.3 LE TURBINE RADIALI 5.3 LE TURBINE RADIALI 5.3. INTRODUZIONE Se la omponente d portata della velotà del fludo, nvee he parallela all asse d rotazone della mahna, è ad esso ortogonale, la turbna s de radale, entrfuga o entrpeta

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini) PRV SCRITT DI ECCNIC RZINLE (13 gennao 017) (Prof.. uracchn) Il sstema rappresentato n fgura è costtuto da: a) una lamna pesante, omogenea a forma d trangolo soscele (massa m, base l, altezza h) vncolata

Dettagli

Ricordiamo che una trasformazione ortogonale di coordinate da una terna T (O, i, j, k) a una terna T 0 (O 0, i 0, j 0, k 0 ) e rappresentata da

Ricordiamo che una trasformazione ortogonale di coordinate da una terna T (O, i, j, k) a una terna T 0 (O 0, i 0, j 0, k 0 ) e rappresentata da III Sstem rgd 1. Grado d lberta d un sstema rgdo lbero Dare la poszone d un sstema rgdo S rspetto ad una terna T e equvalente a dare la poszone d una terna T 0 rspetto a T. Infatt dat tre punt non allneat

Dettagli

Problemi risolvibili con la programmazione dinamica

Problemi risolvibili con la programmazione dinamica Problemi riolvibili on la programmazione dinamia Abbiamo uato la programmazione dinamia per riolvere due problemi. Cerhiamo ora di apire quali problemi i poono riolvere on queta tenia. Sono dei problemi

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

METODI PER L'ANALISI DEI CIRCUITI

METODI PER L'ANALISI DEI CIRCUITI MTODI P 'NISI DI IUITI Nel seguto engono llustrat, medante esemp, alun tra metod pù utlzzat per l'anals de rut elettr. Il problema he s uole rsolere è l seguente: assegnato l ruto elettro e le grandezze

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

APPUNTI DI COSTRUZIONI

APPUNTI DI COSTRUZIONI ur D Sotegno n Cemento rmato PPUNT D COSTRUZON UR D SOSTEGNO N CEENTO RTO NG. ENUELE SPDRO N.B. n queta dpena fa rfermento al modulo E e al manuale tecnco della collana ODUL D COSTRUZON d C. Farron e R.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Avvertenze. Prova Scritta

Avvertenze. Prova Scritta Coro d Fondament d Informatca (M-Z) Prof Aldo Franco Dragon Avvertenze Conegnare olo fogl formato A4. Scrvere u un olo lato (no fronte retro) In ordne d preferenza uare nchotro nero, matta, nchotro blu.

Dettagli

Esercizi sui circuiti magnetici

Esercizi sui circuiti magnetici Esercz su crcut magnetc Eserczo a. Nel crcuto magnetco llustrato calcolare, trascurando la rluttanza del ferro, coeffcent d auto nduzone degl avvolgment e e l coeffcente d mutua nduzone tra due avvolgment

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

Esercizi numerici Parte A

Esercizi numerici Parte A Polteno d Mlano Faoltà d Ingegnera dell Informazone Eserz numer Parte A Ret Radomobl Eserzo S onsder una rete ellulare d tpo multarrer-tdma he dspone d 24 portant, asuna on 3 anal a) Utlzzando l modello

Dettagli

IL PREDIMENSIONAMENTO DELLE STRUTTURE IN CEMENTO ARMATO prof. Luis Decanini

IL PREDIMENSIONAMENTO DELLE STRUTTURE IN CEMENTO ARMATO prof. Luis Decanini Lu Deann. Il predmenonamento delle trutture n emento armato Unvertà degl Stud d Roma La Sapenza Prma Faoltà d rhtettura Ludovo Quaron IL PREDIESIOETO DELLE STRUTTURE I CEETO RTO prof. Lu Deann (verone

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE aptolo TOR DI VORI VIRTUI R TRVTUR. TOR DI VORI VIRTUI R TRVTUR Il teorema de lavor vrtual, che è tato dmotrato per la trave emplce, può eere eteo n entrambe le ue forme (potament vrtual e fore vrtual

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Elementi di strutturistica cristallina I

Elementi di strutturistica cristallina I Chmca fsca superore Modulo 1 Element d strutturstca crstallna I Sergo Brutt Impacchettamento compatto n 2D Esstono 2 dfferent mod d arrangare n un pano 2D crconferenze dentche n modo da tassellare n modo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Postulato delle reazioni vincolari

Postulato delle reazioni vincolari Potulato delle reazioni vincolari Ad ogni vincolo agente u un punto materiale P può eere otituita una forza, chiamata reazione vincolare, che realizza lo teo effetto dinamico del vincolo. reazione vincolare

Dettagli

Cinematica differenziale

Cinematica differenziale Cnemata dfferenae La nemata dfferenae arattera egam tra e vetà de gunt e e rrndent vetà near e angare dea nfgurane de manatre. Ta egam n ere da una matre d trafrmane, dendente daa nfgurane de manatre,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto Unverstà degl Stud d Roma Tor vergata partmento d Ingegnera Cvle Corso d Gestone ed eserczo de sstem d trasporto Docente: Ing. Perlug Coppola Lucd proettat a lezone La progettazone degl orar de servz d

Dettagli

Appendice B Il modello a macroelementi

Appendice B Il modello a macroelementi Appendce B Il modello a macroelement Al fne d una descrzone semplfcata del comportamento delle paret nel propro pano, è stata svluppata una metodologa d anals semplfcata che suddvde la parete murara con

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 21 Giugno 2006

FISICA per SCIENZE BIOLOGICHE, A.A. 2005/2006 Prova scritta del 21 Giugno 2006 FISICA per SCIENZE BIOLOGICHE, A.A. 5/6 Prova scrtta del Gugno 6 ) Un corpo d massa m = 5 g scvola lungo un pano nclnato lsco d altezza h = m e nclnazone θ=3 rspetto all orzzontale. Il corpo parte da ermo

Dettagli

Introduzione al Calcolo Strutturale Matriciale

Introduzione al Calcolo Strutturale Matriciale 0/6/05 Introzone l Clolo Strttrle Mtrle Dlle pene el prof. Dro Amoo e lle lezon el prof. Gonn Snt.Cortee Progettzone Men gl Element nt ( 05-06) Introzone l lolo trttrle mtrle Strttr ret Per trttr ret ntene

Dettagli

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

SPAZIO DI LAVORO. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona SPAZIO DI LAVORO Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona 1 11 Introduzione Equazione Cinematica Diretta Esprime la posizione della terna utensile rispetto alla terna

Dettagli

Il modello del lot sizing

Il modello del lot sizing Il modello del lot sng Dspensa per gl student del orso d Rera Operatva II Autore: Prof. Guseppe Bruno 009 Dspensa per l orso d Rera Operatva II - Prof. Guseppe Bruno IL MODELLO DEL LOT SIZIG Il modello

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Dimensionamento di un impianto di evaporazione a triplo effetto

Dimensionamento di un impianto di evaporazione a triplo effetto Dmensonamento d un mpanto d evaporazone a trplo effetto 500 kg/h d soluzone d soda austa, he s trova a 5 devono essere onentrat dall 8.5% nzale al 5% n peso. ome flud d servzo sono dsponbl vapore d aqua

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli