Il paradigma della programmazione dinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il paradigma della programmazione dinamica"

Transcript

1 Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato, ete un cclo emplce che contene tutt vertc? Problem d ottmzzazone: quale è la oluzone mglore? Parentezzazone d un prodotto d matrc: quale è l mnmo numero d operazon neceare? A.A. 006/ Il paradgma della programmazone dnamca 1

2 Problem brd (rcerca+ottmzzazone): etono delle oluzon valde? E quale è la mglore? Commeo vaggatore: cclo Hamltonano a coto mnmo. A.A. 006/ Il paradgma della programmazone dnamca Rappreentazone S: oluzon V: oluzon valde M: oluzon mglor f() A.A. 006/ Il paradgma della programmazone dnamca 4

3 Clafcazone Problem d rcerca S V ; V = 0? Trovare un V Problem d ottmzzazone S = V ; trovare max(f()) Problem brd S V ; trovare max(f()) garantendo che V A.A. 006/ Il paradgma della programmazone dnamca 5 Defnzon Soluzone ottma: mglore oluzone poble Soluzone ottma localmente: oluzone ottma n un domno contguo f(x) Soluzone ottma Soluzon ottme localmente A.A. 006/ Il paradgma della programmazone dnamca 6 x

4 Grafca e moltplcazone d matrc Scena trdmenonale come neme d trangol nello pazo Trangolo ndvduato da 4 coordnate: a x, y e z e dmenone fttza (per calamento) Operazon grafche elementar: calamento, rotazone e tralazone d fgure geometrche A.A. 006/ Il paradgma della programmazone dnamca 7 Scalamento (αx, βy) (x, y) α 0 0 [x, y, 1] 0 β 0 = [αx, βy, 1] A.A. 006/ Il paradgma della programmazone dnamca 8 4

5 Rotazone (x, y ) r Φ r Ψ (x, y) x = r co Ψ y = r n Ψ co (Φ+Ψ) = coφcoψ -nφnψ n (Φ+Ψ) = nφcoψ + coφnψ A.A. 006/ Il paradgma della programmazone dnamca 9 x = r co (Φ+Ψ) = rcoφcoψ -rnφnψ = xcoφ -ynφ y = r n(φ+ψ) = rnφcoψ + rcoφnψ = xnφ + ycoφ coφ nφ 0 [x, y, 1] -nφ coφ 0 = [x, y, 1] A.A. 006/ Il paradgma della programmazone dnamca 10 5

6 Tralazone (x + x, y + y) (x, y) [x, y, 1] = [x+ x, y+ y,1] x y 1 A.A. 006/ Il paradgma della programmazone dnamca 11 Traformazone: [x, y, z, 1] A 1 A.. A n Stea traformazone applcata a punt dver calcolo una volta per tutte del prodotto A 1 A.. A n A.A. 006/ Il paradgma della programmazone dnamca 1 6

7 Prodotto d matrc Due matrc A p x q e B x r ono compatbl e e olo e q = Ipote d emplfcazone: matrc quadrate d dmenone n x n Algortmo emplce: ccl anndat, completà T(n) = O(n ), e n = rchede 8 moltplcazon e 4 omme A.A. 006/ Il paradgma della programmazone dnamca 1 Prodotto n catena d n matrc Data la equenza d n matrc compatbl A 1, A, A,. A n dove A ha dmenon p -1 x p con = 1,,,n calcolare l prodotto A 1 A A. A n A.A. 006/ Il paradgma della programmazone dnamca 14 7

8 Parentezzazone Defnce l ordne d applcazone delle operazon d prodotto d due matrc con coto mnmo Eempo: A 1 A A A 4 5 parentezzazon pobl (A 1 (A (A A 4 ))) (A 1 ((A A ) A 4 )) ((A 1 A ) (A A 4 )) ((A 1 (A A )) A 4 ) (((A 1 A ) A ) A 4 ) A.A. 006/ Il paradgma della programmazone dnamca 15 Cot Date A p x q e B q x r, l coto d A B è legato al numero d moltplcazon calar p x q x r Eempo: A 1 A A dove A 1 10x100, A 100x 5, A 5x50 Parentezzazone #1: (A 1 A ) A coto d A 1 A 10x100x5 = 5000, rultato A 1 10x5 coto d A 1 A 10x5x50 = 500 coto totale 7500 A.A. 006/ Il paradgma della programmazone dnamca 16 8

9 Parentezzazone #: A 1 (A A ) coto d A A 100x5x50 = 5000, rultato A 100x50 coto d A 1 A 10x100x50 = coto totale A.A. 006/ Il paradgma della programmazone dnamca 17 Numero d parentezzazon P(n) = 1 n = 1 Σ 1 k n-1 P(k) P(n-k) n S dmotra che P(n)= C(n-1) dove C(n) è detto numero catalano e vale n C(n) = 1/(n+1) n = Ω(4 n / n / ) A.A. 006/ Il paradgma della programmazone dnamca 18 9

10 La Programmazone Dnamca Applcata a problem d ottmzzazone Pa: caratterzzazone della truttura d una oluzone ottma defnzone rcorva del valore d una oluzone ottma calcolo bottom-up del valore d una oluzone ottma cotruzone d una oluzone ottma. A.A. 006/ Il paradgma della programmazone dnamca 19 Struttura della parentezzazone ottma Notazone: A = A A +1.. A Dvone n ottoproblem A 1 n A 1 k A k+1 n 1 k < n Coto d A 1 n : coto d A 1 k + coto d A k+1 n + coto prodotto A 1 k A k+1 n A.A. 006/ Il paradgma della programmazone dnamca 0 10

11 Perché a ottma la oluzone d A 1 n devono eere ottme le oluzon d A 1 k ea k+1 n. Problema con ottotruttura ottma applcabltà del paradgma della programmazone dnamca A.A. 006/ Il paradgma della programmazone dnamca 1 Soluzone rcorva Sottoproblema: determnare l coto mnmo della parentezzazone d A con 1 n. m[, ]: coto mnmo per A 0 e = m[, ] = mn{m[,k]+m[k+1,]+p -1 p k p } e < k < [, ] contene l valore d k che dà una parentezzazone ottma nella dvone d A A.A. 006/ Il paradgma della programmazone dnamca 11

12 Lmt della oluzone rcorva aunzone d ndpendenza de ottoproblem numero d ottoproblem: uno per ogn celta d e con 1, qund n + n = Θ(n ) A.A. 006/ Il paradgma della programmazone dnamca Calcolo bottom-up del valore d una oluzone ottma A matrce p -1 x p con =1,,.n nput: equenza p=p 0, p 1,., p n, length[p]= n+1 tabella m[1 n, 1 n] per cot m[, ] tabella [1 n, 1 n] per l valore ottmo d k A.A. 006/ Il paradgma della programmazone dnamca 4 1

13 Peudocodce matrx-chan(p) n <-length[p]-1 for <- 1 to n do m[,] <- 0 for l <- to n do for <- 1 to n-l+1 do <- +l-1 m[,] <- for k <- to -1 do q <- m[,k] + m[k+1,] + p -1 p k p f q < m[,] then m[,] <- q [,] <- k return m ed A.A. 006/ Il paradgma della programmazone dnamca 5 Eempo A 1 4 x 4 A 4 x 6 A 6 x 15 A 5 x 10 p 0 4 p 1 4 p 6 p 15 p 0 m 1 4 A.A. 006/ Il paradgma della programmazone dnamca 6 1

14 m[1,1] = 0 m[,] = 0 m[,] = 0 m[4,4] = 0 m A.A. 006/ Il paradgma della programmazone dnamca 7 m[1,] = m[1,1] + m[,] + p 0 p 1 p = 96 k= m 4 1 A.A. 006/ Il paradgma della programmazone dnamca 8 14

15 m[,] = m[,] + m[,] + p 1 p p = 60 k= m 4 1 A.A. 006/ Il paradgma della programmazone dnamca 9 m[,4] = m[,] + m[4,4] + p p p 4 = 900 k= m 4 1 A.A. 006/ Il paradgma della programmazone dnamca 0 15

16 m[1,] = m[1,1] + m[,] + p 0 p 1 p = =600 k=1 m[1,] = m[1,] + m[,] + p 0 p p = = 456 k= m A.A. 006/ Il paradgma della programmazone dnamca 1 m[,4] = m[,] + m[,4] + p 1 p p 4 = =1140 k= m[,4] = m[,] + m[4,4] m + p 1 p p 4 = = 960 k= A.A. 006/ Il paradgma della programmazone dnamca 16

17 m[1,4] = m[1,1] + m[,4] + p 0 p 1 p 4 = = 110 k=1 m[1,4] = m[1,] + m[,4] + p 0 p p 4 = 16 m k= m[1,4] = m[1,] + m[4,4] + p 0 p p 4 = =1056 k= A.A. 006/ Il paradgma della programmazone dnamca Completà T(n) = Ω(n ) S(n) = Θ (n ) rpetto al coto eponenzale nel tempo della oluzone rcorva A.A. 006/ Il paradgma della programmazone dnamca 4 17

18 Cotruzone d una oluzone ottma matr-chan-mult(a,,, ) f > then X <- matr-chan-mult(a,,,[,]) Y <- matr-chan-mult(a,,[,]+1,) return matrx-mult(x,y) ele return A matr-chan-mult(a,, 1, 4) A 1 4 = ((A 1 A ) A ) A 4 1 A.A. 006/ Il paradgma della programmazone dnamca 5 Applcabltà della programmazone dnamca Etenza d una ottotruttura ottma Etenza d molt ottoproblem n comune vantaggo rpetto al dvde et mpera che aume l ndpendenza de ottoproblem approcco bottom-up rpetto a top-down (dvde et mpera) A.A. 006/ Il paradgma della programmazone dnamca 6 18

19 Rcorone con memorzzazone Approcco top-down Memorzzazone delle oluzon a ottoproblem Lookup: evta d rolvere problem gà trattat A.A. 006/ Il paradgma della programmazone dnamca 7 Eempo: parentezzazone ottma memozed-matr-chan(p) n <-length[p]-1 for <- 1 to n do for <- to n do m[,] <- return lookup-chan(p, 1, n) A.A. 006/ Il paradgma della programmazone dnamca 8 19

20 lookup-chan(p,, ) f m[,] < then return m[,] f = then m[,] <- 0 ele for k <- to -1 do q <-lookup-chan(p,,k) + lookup-chan(p,k+1,)+p -1 p k p f q < m[,] then m[,] <- q return m[,] A.A. 006/ Il paradgma della programmazone dnamca 9 Eempo: numer d Fbonacc Memorzzazone de valor calcolat n un array knownf nt F(nt ); { nt t; f (knownf[]!= unknown) return knownf[]; f ( == 0) t = 0; f ( == 1) t = 1; f ( > 1) t = F(-1) + F(-); return knownf[] = t; } A.A. 006/ Il paradgma della programmazone dnamca 40 0

21 Eempo: l problema dello zano Dato un neme d N oggett cacuno dotato d peo p e d valore v e dato un peo mamo M, determnare l ottoneme S d oggett tal che: S p x M S v x = MAX A.A. 006/ Il paradgma della programmazone dnamca 41 1

Algoritmi basati sulla tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera Qucksort Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi 1 Esercizi per il corso di Algoritmi Esercizi sulle Notazioni Asintotiche 1. Esercizio: In ciascuno dei seguenti casi, indicare se f(n) = O(g(n)), o se f(n) = Ω(g(n)), oppure entrambi (nel cui caso occorre

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIRETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Manpolatore: atena nemata (aperta) d orp rgd (bra) e gunt (rotodal e prmat) Per poter manpolare un oggetto nello

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Elemento Trave nel piano

Elemento Trave nel piano Il etodo degl Element Fnt Elemento Trave nel pano Dalle dpene del prof. Daro Amodo e dalle lezon del prof. Govann Santu.Cortee Progettazone eana agl Element Fnt (a.a. 11-1) Introduzone al alolo trutturale

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

I VALORI MEDI MEDIE COME CENTRI

I VALORI MEDI MEDIE COME CENTRI I VALORI MEDI Valor che vengono calcolat per eprmere ntetcamente l ntentà d un fenomeno e per conentre la comparazone del fenomeno con fenomen analogh MEDIE COME CETRI I numer x R (=,,) poono eere rappreentat

Dettagli

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA DIRETTA. Introduzione. Giunti e Bracci. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA DIETTA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona ALTAI -- Computer Sene Department Unverty of Verona Faoltá d Senze Motore, Coro d Bongegnera, Parte http://metropol..unvr.t

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE aptolo TOR DI VORI VIRTUI R TRVTUR. TOR DI VORI VIRTUI R TRVTUR Il teorema de lavor vrtual, che è tato dmotrato per la trave emplce, può eere eteo n entrambe le ue forme (potament vrtual e fore vrtual

Dettagli

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili

SVM learning. WM&R a.a. 2010/11. A. Moschitti, R. Basili SVM learnng WM&R a.a. 2010/11 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e Produzone Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

Controllo dei robot. (Prof. Rocco) Anno accademico 2004/2005 Appello del 20 Luglio 2005

Controllo dei robot. (Prof. Rocco) Anno accademico 2004/2005 Appello del 20 Luglio 2005 Controllo de robot (Prof. Roo) Anno aademo 2004/2005 Appello del 20 Luglo 2005 Cognome:... Nome:... Matrola:... Frma:... Avvertenze: Il preente faolo ompone d 8 pagne (omprea la opertna). Tutte le pagne

Dettagli

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott. Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs Teora de

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Programmazione Dinamica

Programmazione Dinamica Studiereo alcune tecniche per il progetto di algoriti e di trutture dati: Prograazione dinaica Algoriti goloi Analii aortizzata Vedreo poi alcuni tipi di trutture dati iportanti per le applicazioni: B-alberi

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Problemi risolvibili con la programmazione dinamica

Problemi risolvibili con la programmazione dinamica Problemi riolvibili on la programmazione dinamia Abbiamo uato la programmazione dinamia per riolvere due problemi. Cerhiamo ora di apire quali problemi i poono riolvere on queta tenia. Sono dei problemi

Dettagli

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri Segmentazone tramte modell ad hoc Indvduazone d lnee e curve Obbettvo: Data l mmagne d output d un algortmo d rlevamento d bord, trova tutte le stanze d una certa curva (lnea o ellss) o una sua parte.

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformatche per la chmca Dr. Sergo Brutt Rappreentazone de dat Come rappreenta un dato d mura? Negl eemp appena volt abbamo ncontrato 2 tp d rappreentazone de dat permental Rappreentazone matrcale

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

SVM learning WM&R a.a. 2015/16

SVM learning WM&R a.a. 2015/16 SVM learnng WM&R a.a. 2015/16 R. BASILI D I PA R T I M E N T O D I I N G E G N E R I A D E L L I M P R E S A U N I V E R S I TÀ D I R O M A T O R V E R G ATA E M A I L : B A S I L I @ I N F O. U N I R

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Programmazione dinamica

Programmazione dinamica Programmazione dinamica Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 29/21 I. Castelli Programmazione dinamica, A.A. 29/21 1/35

Dettagli

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata

SVM learning. R. Basili (A. Moschitti) WM&R a.a. 2013/14. Dipartimento di Ingegneria dell Impresa Università di Roma Tor Vergata SVM learnng WM&R a.a. 2013/14 R. Basl (A. Moschtt) Dpartmento d Ingegnera dell Impresa Unverstà d Roma Tor Vergata Emal: basl@nfo.unroma2.t 1 Sommaro Perceptron Learnng Lmt de classfcator lnear Support

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell per la panfcazone delle attvtà Paolo Dett Dpartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell per la panfcazone delle

Dettagli

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI

IL CALCOLO DELLE FREQUENZE VIBRAZIONALI IL CALCOLO DELLE FREQUENZE VIBRAZIONALI Il calcolo della frequenze rchede l calcolo della matrce delle costant d forza, coè le dervate seconde dell energa, valutate nella geometra d equlbro. Sa la geometra

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (13 gennaio 2017) (Prof. A. Muracchini) PRV SCRITT DI ECCNIC RZINLE (13 gennao 017) (Prof.. uracchn) Il sstema rappresentato n fgura è costtuto da: a) una lamna pesante, omogenea a forma d trangolo soscele (massa m, base l, altezza h) vncolata

Dettagli

Programmazione Dinamica (PD)

Programmazione Dinamica (PD) Programmazione Dinamica (PD) Altra tecnica per risolvere problemi di ottimizzazione, piu generale degli algoritmi greedy La programmazione dinamica risolve un problema di ottimizzazione componendo le soluzioni

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Tecniche di Programmazione Tecniche di progettazione e

Dettagli

Elemento Finito (FE) per travi 2D

Elemento Finito (FE) per travi 2D Eemento Fnto (FE) per trav D Govann Formca corso d Cacoo Automatco dee Strutture AA. 9/1 Premesse a modeo modeo fsco prncp d banco e dsspazone { Pest P nt = { q u S u = P nt φ modeo smuato (dscretzzazone)

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

INDICI DI DISPERSIONE

INDICI DI DISPERSIONE Pcometra (8 CFU) Coro d Laurea trennale IDICI DI DISPERSIOE IDICI DI DISPERSIOE Conentono d decrvere la varabltà all nterno della dtrbuzone d frequenza tramte un unco valore che ne ntetzza le carattertche

Dettagli

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto

Università degli Studi di Roma Tor vergata Dipartimento di Ingegneria Civile. Corso di. Gestione ed esercizio i dei sistemi i di trasporto Unverstà degl Stud d Roma Tor vergata partmento d Ingegnera Cvle Corso d Gestone ed eserczo de sstem d trasporto Docente: Ing. Perlug Coppola Lucd proettat a lezone La progettazone degl orar de servz d

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

PROGETTO PER IL LABORATORIO DI ASD A.A. 2017/18 VERSIONE 1.1

PROGETTO PER IL LABORATORIO DI ASD A.A. 2017/18 VERSIONE 1.1 PROGETTO PER IL LABORATORIO DI ASD A.A. 2017/18 VERSIONE 1.1 ALBERTO POLICRITI ALBERTO.POLICRITI@UNIUD.IT Sommaro. Scopo del progetto d laboratoro è verfcare che lo tudente a n grado d progettare, analzzare

Dettagli

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Gli algoritmi ricorsivi di ordinamento. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino ordinamento Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Merge Sort Ricorsivo, divide et impera Stabile Divisione: due sottovettori SX e DX rispetto al centro del vettore. p r A.A.

Dettagli

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento

Pierpaolo De Filippi Dipartimento di Elettronica e Informazione Via Ponzio 34/ Ricevimento: solo su appuntamento Polteno d Mlano Cnemata Dretta e Invera Fondament d obota a.a. / Perpaolo De Flpp Fondament d obota Contatt Perpaolo De Flpp Dpartmento d Elettrona e Informazone Va Ponzo 34/5 39947 evmento: olo u appuntamento

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

Avvertenze. Prova Scritta

Avvertenze. Prova Scritta Coro d Fondament d Informatca (M-Z) Prof Aldo Franco Dragon Avvertenze Conegnare olo fogl formato A4. Scrvere u un olo lato (no fronte retro) In ordne d preferenza uare nchotro nero, matta, nchotro blu.

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Introduzione alla Programmazione e Applicazioni per la Finanza M2 (Prodotti Derivati) Lezione 12

Introduzione alla Programmazione e Applicazioni per la Finanza M2 (Prodotti Derivati) Lezione 12 Introduzone alla Programmazone e Applcazon per la Fnanza M2 (Prodott Dervat) Lezone 12 Anno accademco 2006-07 Ttolare corso: Prof. Costanza Torrcell Docente: Dott.ssa Maranna Brunett In partcolare mplementeremo:

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

!! "# $ "# %&% '" (! ) *# + ) * %&% '" ( , - %., , - / 0.1,! '2/ -, - +, - /3 ) 4 " ( 4 / # " $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 :.!

!! # $ # %&% ' (! ) *# + ) * %&% ' ( , - %., , - / 0.1,! '2/ -, - +, - /3 ) 4  ( 4 / #  $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 :.! !! "# $ "# %&% '" (! ) *# + ) * %&% '" (! ) *# +, - %.,, - / 0.1,! '2/ -, - +, - /3 ) 4 " ( 4 / # " $ - % 5 $ %. 4 ( $! % / 4 ( $.1 67&& /8 9!! :.! ! "# $ %! & '( # $ % $) *+,+,$ " " "# # % +-. # $ /#&#

Dettagli

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate

MEDIANA. 1. Numero di termini dispari (s dispari) VARIABILE STATISTICA N.B. Le frequenze della distribuzione devono essere cumulate MEDIANA SUCCESSIONE N.B. I termn della ucceone devono eere pot n ordne non decrecente 1. Numero d termn dpar ( dpar) Me = x + 1. Numero d termn par ( par) Me = x + x + 1 VARIABILE STATISTICA N.B. Le frequenze

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale LTTOTCNCA nggnra ndutral MTOD D ANALS TASFOMATO DAL MUTU NDUTTANZ Stfano Pator Dpartmnto d nggnra Archtttura Coro d lttrotcnca (04N) a.a. 0-4 Torma d Thnn Condramo un bpolo L collgato al rto dl crcuto

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività

Metodi di Ottimizzazione mod. Modelli per la pianificazione delle attività Metod d Ottmzzazone mod. Modell er la anfcazone delle attvtà Paolo Dett Dartmento d Ingegnera dell Informazone e Scenze Matematche Unverstà d Sena Metod d Ottmzzazone mod. Modell er la anfcazone delle

Dettagli

Algoritmo del Modulo Serbatoi

Algoritmo del Modulo Serbatoi Algorto del Modulo Serbato Le eon proenent da erbato non dpendono da alcun cobutble e ono tutte d NMVOC. La bae d calcolo è enle, oero la ta è effettuata dettaglata ee per ee. Le eon poono eere ottenute

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 014/015 Elaborazone Dat Lab B CdL Fca Elaborazone dat permental Come raumere un neme d dat permental? Una tattca è propro un numero calcolato a partre da dat te. La Stattca decrttva fornce

Dettagli

Lezione 4 Ugo Vaccaro

Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2017 2018 Lezione 4 Ugo Vaccaro Introduciamo ora la notazione Ω, che ci sarà utile quando vorremo valutare limitazioni inferiori al tempo di esecuzione di algoritmi

Dettagli

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena La cnca lagrangana applcaa al problma dl Commo Vaggaor TSP Paolo D Unvrà d Sna Un lowr bound lagrangano pr l problma dl TSP Dao un grafo GV,A con p ugl arch, una formulazon pr l TSP mmrco è la gun: mn

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2

RICERCA OPERATIVA GRUPPO B prova scritta del 12 febbraio x2 RICERCA OPERATIVA GRUPPO B prova scrtta del febbrao 009. Dte se l vettore (,, ) è combnazone affne, conca o convessa de vettor ( ½,, ), (0, 5, 0) e (,, ). Il vettore (,, ) è combnazone affne de vettor

Dettagli

Memoria Attenzione. Perseveranza Motivazione al Successo. Istruzione dei genitori Reddito della Famiglia

Memoria Attenzione. Perseveranza Motivazione al Successo. Istruzione dei genitori Reddito della Famiglia Anal Fattorale Anal Fattorale Eploratva: Obettv, prncp general, celta de fattor e rotazone Fabo Preagh Nelle cenze ocal e comportamental è poble rcondurre problem d rcerca a due queton fondamental (Jorekog

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Laboratorio di Matematica e Informatica 1

Laboratorio di Matematica e Informatica 1 Laboratoro d Matematca e Informatca 1 Matteo Mondn Antono E. Porreca matteo.mondn@gmal.com porreca@dsco.unmb.t Dpartmento d Informatca, Sstemstca e Comuncazone Unverstà degl Stud d Mlano - Bcocca 10 Gennao

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati La Stablta La stabltà alla Lyapunov de sstem Semplce Asntotca Esponenzale Locale Globale La stabltà de sstem lnearzzat Stabltà nput-output (BIBO) Rsposta mpulsva (ved Marro par..3, ved Vtell-Petternella

Dettagli

Filtro passa-basso con celle RC attive

Filtro passa-basso con celle RC attive Elettronca delle Telecomuncazon Eerctazone Fltro paa-bao con celle RC attve Rev 98 P/DM Rev 9949 DDC Rev 9 DDC Specfche Progettare un fltro paa bao, con funzone d trafermento tale da rpettare la machera

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 09-0 mplfcatore

Dettagli

INDICE. Matrici e Determinanti. Scaricabile su: TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici

INDICE. Matrici e Determinanti. Scaricabile su:   TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici P r o f. Gu d of r a n c h n Anteprma Anteprma Anteprma www. l e z o n. j md o. c o m Scarcale su: http://lezon.jmdo.com/ Matrc e Determnant INDICE TEORIA Defnzone e tpologa d matrc Operazon tra matrc

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Geometria molecolare con distanze Euclidee

Geometria molecolare con distanze Euclidee Laboratoro Complement d Rcerca Operatva Prof. E. Amald Geometra molecolare con dstanze Eucldee Un mportante problema legato alla conformazone molecolare è quello del Molecular Dstance Geometry Problem

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti

Il problema dell'ordinamento. Algoritmi e Laboratorio a.a Lezioni. prof. Elio Giovannetti Unverstà d Torno Facoltà d Scenze MFN Corso d Stud n Informatca Currculum SR (Sstem e Ret) Algortm e Laboratoro a.a. 25-6 Lezon prof. Elo Govannett Parte 7 Algortm d ordnamento elementar (quadratc). versone

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. Le poligonali. 13 Giugno 2004

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. Le poligonali. 13 Giugno 2004 Unverstà del stud d Bresca Facoltà d Inenera orso d Toporafa A Nuovo Ordnamento Le polonal 3 Guno 2004 Anno Accademco 2006-2007 Polonale aperta vncolata al estrem DATI I vncol: A, B, A, B, P, Q, P, Q Le

Dettagli

Postulato delle reazioni vincolari

Postulato delle reazioni vincolari Potulato delle reazioni vincolari Ad ogni vincolo agente u un punto materiale P può eere otituita una forza, chiamata reazione vincolare, che realizza lo teo effetto dinamico del vincolo. reazione vincolare

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche Teora de process casual a tempo contnuo Seconda lezone: Valore medo e autocorrelazone Esemp Valor med de process Quas Determnat (QD) 005 Poltecnco d Torno Valore medo e autocorrelazone e valore atteso

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2005/06, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI E SPS, A.A. 2005/06, GEMMA PARMEGGIANI ALGEBRA LINEARE I (A PER SCIENZE STATISTICHE, SGI E SPS, A.A. 5/6, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova Programma del corso. Nota

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI GIOVANNI GAIFFI, CORSO DI ALGEBRA 1 2010/2011 NOTA: FA PARTE DEL PROGRAMMA SOLO LA CONOSCENZA DELL ENUNCIATO DEL TEOREMA

Dettagli

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione

Algoritmi greedy. Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Algoritmi greedy Gli algoritmi che risolvono problemi di ottimizzazione devono in genere operare una sequenza di scelte per arrivare alla soluzione Gli algoritmi greedy sono algoritmi basati sull idea

Dettagli