Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015"

Transcript

1 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone è un proceo gauano. Morare che X = X nel eno d proce ndngubl dove X = e x + e. Poblmene, rponda alla domanda n due mod: a uando dreamene le defnzon e, a paando per l equazone da ee oddfaa. Calcolare meda e varanza d X. S verfch nolre che r E e B d e r B r dr = e r e d dr e mor come queo porebbe produrre un alra va per l calcolo d V ar X non compleare calcol, roppo lungh. v Deermnare che grado d hölderanà ha X. Sugg.: penare ad una oluzone veloce. Eerczo. pun Sa X n n una ucceone d v.a. ndpenden, d Bernoull, con P X n = = p n, P X n = = p n, dove p n,. Ponamo n = X X n per n, =. S oerv che è una ora d proceo d Poon a empo dcreo: pare da zero, aume valor ner non negav, aumenando ogn ano d un unà. Per ogn n, a F n la σ-algebra aocaa alle v.a. X,..., X n e a F la σ-algebra banale. Verfcare che n n non è una marngala n generale. S chama compenaore deermnco una ucceone a n n ale che n a n n a una marngala, nulla per n =. Trovare un compenaore e morare che è unco. Morare che n a n non è una marngala, n generale, e rovare un uo compenaore deermnco. Se τ è un empo d arreo a valor ner non negav, con E τ <, morare che E up n n τ <. S u la duguaglanza x x y + y che dcende da x x y + y. Eerczo 3. pun Sa Ω, F, P uno pazo d probablà u cu è defna una ucceone B,..., B,... d mo brownan ndpenden. Sa K : una funzone

2 lpchzana e lmaa con K =. equazon ocache Per ogn, conderamo l ema d d = K j= X j, d +, =, =,...,. Morare che, per ogn, l ema ha una ed una oluzone fore. Per ogn e per qua ogn ω Ω ndchamo con ω la mura d probablà u borelan d daa da = δ, ovvero defna da ω { } Card =,..., : ω B ω B = al varare de borelan B d. Scrveremo nel eguo ; queo è, n un eno opporuno che non erve qu precare, un proceo ocaco a valor nello pazo delle mure d probablà. Prea una funzone φ : regolare a upporo compao, conder l proceo ocaco a valor real, φ = φ x dx. Dmorare che, φ =, φ + +, φ d + φ x K x y dx dx d = φ,. Eamnamo ora l cao parcolare K =. Indcare con la legge, u u borelan d, d un moo brownano. Morare che, per ogn fao, la ucceone d v.a. = φ, converge a zero n meda quadraca e la ucceone d v.a., ϕ converge q.c. a, ϕ, per ogn funzone ϕ : regolare a upporo compao. Dedurre che, φ =, φ +, φ d.

3 Soluzon Eerczo. La oluzone ee ed è unca, nel eno fore, perché coeff cen ono lpchzan. Baa qund verfcare che quella daa è oluzone. Vale dx = e x e B d d e e B d = X d. Per la gauanà, bogna verfcare che, pre <... < n, l veore X,..., X n è gauano. Appromando l negrale con omme d emann, vede che l veore appromane X k,..., X k n è gauano perché raformazone lneare d un veore gauano una drbuzone d dmenone fna del moo brownano; po paa al lme n meda quadraca, conervando la gauanà. Per la formula d Iô, ovvero da cu d e B = e B d + e e B = e B d + e B = e e B d + e e. Souendo nella rova. Il econdo meodo rchede d verfcare che X oddfa l equazone rame la formula d Iô ed uare l uncà. Il cono a parre da è lunghmo ed è appuno quello ndcao nella econda pare della domanda. Invece, rovamo che E X = e x mmedaamene da l negrale ocaco è un ovva marngala e V ar X = e E e = e e d = e e = e. Alernavamene, uando la, avremmo X V ar X = E e x = E B e e B d = E B + e E e B d r = + e e r e d e r B r dr e E B dr e e d e B d 3

4 dove po e d = e d. Per arrvare qu va verfcaa l denà della domanda: E e B d e r B r dr = e r e r d dr r = e r e d + e rd dr r r = e r e d dr perché degn la regone r,, con r r er e rd dr = er e rdr d. v E quello del brownano, perché due proce dffercono per un proceo dfferenzable. Eerczo. Per rcorrenza, n n è adaao e negrable. Vale, per n, E n F n = E X n F n + n = E X n + n = p n + n. Qund n n è una marngala olo e p n = per ogn n, coè e è dencamene nulla. Se ponamo a n = p p n per n, a =, allora, per n, E n a n F n = p n + n a n = n a n qund a n n è un compenaore. Vcevera, e a n n è un compenaore, allora, per n, E n a n F n = n a n ma E n a n F n = p n + n a n, qund a n = a n + p n. Unamene al fao che dev eere a = per eere un compenaore, la ucceone a n n è unvocamene deermnaa. Ponamo Y n = X n p n per n, Y =, coì abbamo n a n = Y Y n per n. Vale n E n a n F n = E Y Y n F n = E Y Y j F n = n j= j= n Y Y j + E Yn + Y n Y F n = = n a n + E n Yn + Y E Y n = n a n + p n p n = 4

5 n quano E Y n =, E Y n = pn p n + p n p n = p n p n. In defnva, copramo che d nuovo n a n non è una marngala e modulo l fao ovvo che è negrable ed adaaa b n = n p p = è un compenaore. Il proceo n τ a n τ è una marngala, qund per la duguaglanza d Doob E up n τ a n τ 4E M τ a M τ = 4E M τ a M τ b M τ + 4E b M τ = 4E b M τ avendo uao l fao che anche n τ a n τ b n τ è una marngala, nulla n zero. Sccome E up n τ E up n τ a n τ + E up a n τ baa dmorare che ee una coane C > ale che E b M τ C e E a M τ C ndpendenemene da M, ed applcare l eorema d convergenza monoona. Vale b n = n = p p n, a n n, qund Eerczo 3. Poo X =,..., X,, l equazone per X, equazone dfferenzale ocaca n, ha la forma E b M τ E M τ E τ < E a M τ E M τ E τ <. X, dx = b X d + dove B è un moo brownano n e b : ha componen b x,..., x n = K x x j. j= 5

6 Vale, poo x = x,..., x n, x = x,..., x n b x b x L K K x x j K x x j j= x x j x x j j= L K x x + L K C x x x j x j qund b è lpchzano e per un noo eorema abbamo eenza ed uncà fore. Per la formula d Iô, dφ Vale, φ = d, φ = E = = φ d = φ = = K j= = φ φ + φ d, qund K j= X j, j= d + φ X j, d + φ x K x y dx dx + φ, =,j= E I ermn m ono null, per una noa formula. Qund = E φ, = = =, φ d + φ + φ d. φ + E φ, d φ. = = = φ. φ j, j. φ d 6

7 Oervamo po che proce = B ono mo brownan ndpenden, qund, ϕ = = ϕ = = ϕ B converge q.c. per la legge fore de grand numer a Dall denà E ϕ B = ϕ x dx =, ϕ., φ =, φ +, φ d + = φ, deducamo la e, per convergenza n probablà d ogn ermne. A que ulmo propoo oervamo che la convergenza n meda quadraca mplca quella n probablà rfera, quella q.c. mplca quella n probablà rfera a, φ e φ, a =, φ ed nfne la convergenza ω-q.c. d, φ a, φ ϕ = φ, per ogn, mplca la convergenza, ω-q.c. d, φ a, φ, qund la convergenza -q.c., per q.o. ω per Fubn-Tonell; ccome, φ è unformemene lmao da φ, per l eorema d convergenza domnaa oene che qund anche n probablà., φ d converge ω-q.c. a, φ d, 7

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 20/6/2013 Iiuzioni di Probabilià Laurea magirale in Maemaica prova cria del 0/6/03 Exercie. (puni 8 circa) Sia W un moo browniano reale. Sia ϕ : 0, + 0, + una funzione crecene, ia c : 0, + 0, + una funzione miurabile;

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t)

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t) A TASFOMATA D APAE E A SUA APPAZONE A UT NEA ON MEMOA. DEFNZONE E POPETÀ a raformaa d aplace d una funzone f( è defna dalla eguene relazone: [ f (] f ( e F ( dove F( è dea raformaa d aplace della funzone

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla).

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla). I crcu Defnzone: s defnsce crcuo un crcuo elerco n cu al generaore d fem sono collega una ressenza e un condensaore. V cordamo che per un condensaore è possble defnre la capacà come l rapporo ra la carca

Dettagli

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL SETTEMBRE 007 ECONOMIA AZIENDALE ESERCIZIO a Su un mercao deale vene smaa, rame prezz d TCN unar, la seguene sruura per scadenza de ass a pron (0,4,% ; (0,4,8%

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

L Amplificatore Operazionale. Argomenti della lezione: Introduzione. Introduzione. Sommario. Introduzione. v O =A(v P -v N )=Av id.

L Amplificatore Operazionale. Argomenti della lezione: Introduzione. Introduzione. Sommario. Introduzione. v O =A(v P -v N )=Av id. ommaro mplcaore perazonale amplcaore perazonale: Inroduzone agl.. Caraerche degl.. deal mplcaore Inerene e NN Inerene Ineguore Derenzale (mpl. da rumenazone) Crcu elemenar a rpoa dpendene dalla requenza

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

ELETTROTECNICA - BIPOLI E TRASFORMATE- Ingegneria Industriale. Stefano Pastore

ELETTROTECNICA - BIPOLI E TRASFORMATE- Ingegneria Industriale. Stefano Pastore ELETTOTENA ngegnera ndurale BPOL E TASFOMATE Sefano Paore Dparmeno d ngegnera e Archeura oro d Eleroecnca 4N a.a. 67 lafcazone de componen Dpende dalle equazon coue del modello del componene, e è lneare

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III. a III.3)

Dettagli

Fenomeno della circolazione veicolare

Fenomeno della circolazione veicolare Probablco Deermnco Lello Mcrocopco CONSIDERIAMO OGNI SINGOLO VEICOLO CON IL RELATIVO GUIDATORE Fenomeno della crcolazone ecolare Fluo Inerroo Fluo Innerroo Lello Macrocopco CONSIDERIAMO UN INSIEME DI VEICOLI

Dettagli

TEORIA dei CIRCUITI - BIPOLI E TRASFORMATE- Ingegneria dell Informazione. Stefano Pastore

TEORIA dei CIRCUITI - BIPOLI E TRASFORMATE- Ingegneria dell Informazione. Stefano Pastore TEOA de CCUT ngegnera dell nformazone - BPOL E TASFOMATE- Sefano Paore Dparmeno d ngegnera e Archeura Coro d Teora de Crcu 05N a.a. 06-7 Sorgen deal d enone e correne Una orgene deale d enone manene l

Dettagli

Lezione 9. Moduli finitamente generati.

Lezione 9. Moduli finitamente generati. Lezoe 9 Moul faee geera. Rchaao prelaree u porae eucao ell algebra leare. Propozoe 9. Sa K u capo e a C c )... a) la arce C è verble e e olo e e C 0 ; b) l ea leare oogeeo ua arce a coeffce K. Allora c

Dettagli

TEORIA dei CIRCUITI Ingegneria dell Informazione

TEORIA dei CIRCUITI Ingegneria dell Informazione TEOI de CICUITI Ingegnera dell Informaone DOPPI IPOLI Sefano Paore Dparmeno d Ingegnera e rcheura Coro d Teora de Crcu 5IN a.a. 3-4 N-polo Un componene a n ermnal n-polo ha, a caua d IK e IIK, fao un ermnale

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

Equazioni di stato per circuiti del I ordine

Equazioni di stato per circuiti del I ordine Lezone 5 Equazon d sao per crcu del ordne Lezone n.5 Equazon d sao per crcu del ordne. Equazone d sao per crcu del ordne. Dmensone fsca de coeffcen dell equazone d sao. Esercz. sere e parallelo. L sere

Dettagli

Lezione 11. Polinomi a coefficienti in un campo.

Lezione 11. Polinomi a coefficienti in un campo. Lezone Prerequs: Lezone 0. Polnom a coeffcen n un campo. Sa K un campo. In quesa lezone sudamo le propreà armeche dell'anello d polnom K[ X ], che sono analoghe a quelle valde nell'anello Z e da no consderae

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

18 Luglio 2002 recupero seconda prova

18 Luglio 2002 recupero seconda prova 8 Luo recupero econda prova Eerczo ATTENZIONE: errore d tampa ne teto: a f.d.t. G ( ) deve avere un oo zero, qund non è + + 7 3 3 G () = 7 3, ma G () 7 3 = (*) o G () = (**) + + + + + + 3 3 3 (entrambe

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t /4 Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao Poonano Sta d due rette /4 ozon d bae Varable cauale:

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t htt:\\hoe.d.un.t\froo\ A.A. 0-0 /4 htt:\\hoe.d.un.t\froo\ Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao

Dettagli

Esercizio 1. Sia L : R 3 R 2 l'applicazione lineare rappresentata, rispetto alle basi canoniche, dalla matrice : A =

Esercizio 1. Sia L : R 3 R 2 l'applicazione lineare rappresentata, rispetto alle basi canoniche, dalla matrice : A = Tuoraggio di Algebra Lineare e Geomeria Eercii di ripao ulle applicaioni lineari Eerciio Sia L : R R 2 l'applicaione lineare rappreenaa, ripeo alle bai canoniche, dalla marice : A ( 2 2 Deerminare la marice

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del /1/13 Exercise 1 punti 1 circa Un foglio browniano è un processo gaussiano a valori reali X s, t, indicizzato da s, t in [,

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Bayes. stati del mondo

Bayes. stati del mondo ayes Sao del mondo Se ndchamo con uno sao del mondo e un eveno, la probablà d dao ndca che s manfesa dao che è lo sao del mondo. Qund l eveno può essere pensao anche come uno sao del mondo. La formula

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prima prova in itinere di FISICA 24 Aprile 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prima prova in itinere di FISICA 24 Aprile 2004 ORSO DI LAUREA IN SIENZE IOLOGIHE Pra proa n nere FISIA 4 Aprle 4 ) Un proele parao ercalene ero l alo, a parre a una orre ala h 3, raune un alezza aa h a 33 rpeo al uolo. a) alcolare quano ale la elocà

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3 Eleroecnca 2 28/29 Toale ore: 3; re corrsponden: 3 Anals de crcu n funzonameno dnamco Anals nel domno del empo rcu del prmo ordne e del secondo ordne, elazone ngresso/usca ed equazon d sao, Prncpal segnal

Dettagli

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali Lo spazo e segnal Lo spazo e segnal Inroucao una rappresenazone veorale e segnal ella cosellazone M Serve a seplfcare proble n rcezone, ove nvece lavorare con le fore ona s (), è pù seplce lavorare con

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Introduzione ai Processi Stocastici

Introduzione ai Processi Stocastici Capolo 1 Inroduzone a Process Socasc 1.1 Prme defnzon 1.1.1 Process socasc Rcordamo che uno spazo d probablà è una erna Ω, F, P dove Ω è un nseme, F è una σ-algebra d par d Ω, P è una msura d probablà

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI Fondamen d Segnal e Trasmssone Segnal deermnsc e casual Un segnale () s dce DETEMIISTICO se e una funzone noa d, coe se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale

Dettagli

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA INVERSA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Cnemata Dretta Dat: angol a gunt Calola: pozone e orentamento organo termnale Cnemata Invera Dat: pozone e orentamento

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c

Algebra vettoriale. risultante. B modulo, direzione e verso A punto di applicazione. Somma e differenza di vettori: a + b = c Algebra eoriale A B modulo, direzione e ero A puno di applicazione Somma e differenza di eori: a + b = c b a c meodo grafico: regola del parallelogramma Proprieà della omma: a + b = b + a (commuaia) (a

Dettagli

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche Teora de process casual a tempo contnuo Seconda lezone: Valore medo e autocorrelazone Esemp Valor med de process Quas Determnat (QD) 005 Poltecnco d Torno Valore medo e autocorrelazone e valore atteso

Dettagli

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea:

G. Parmeggiani 3/6/2019. Algebra e matematica discreta, a.a. 2018/2019, Scuola di Scienze - Corso di laurea: G. Parmeggan 3/6/9 Algebra e matematca dscreta, a.a. 8/9, Scuola d Scenze - Corso d laurea: parte d Algebra Informatca ESERCIZIO TIPO Sa A(α) α, dove α è un numero reale non negatvo. (a) Per qual α real

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

Processi di Markov e code markoviane. Gianluca Reali

Processi di Markov e code markoviane. Gianluca Reali roce d Marov e code arovane Ganluca Real Obev Coprendere conce d bae relav alle preazon d una ree d elecouncazon effcenza ulzzazone rardo erda Tep d navà Eere n grado d valuare quanavaene al paraer n ca

Dettagli

A i = E. R i. R i. dt Moltiplico per idt e ottengo energie: 2. q RC. Quindi Lidi rappresenta energia magnetica immagazzinata in L.

A i = E. R i. R i. dt Moltiplico per idt e ottengo energie: 2. q RC. Quindi Lidi rappresenta energia magnetica immagazzinata in L. Maemaca e Fsca classe 5G ppun: crcu PPUNTI: IUITI SS nn eess,,, ssoo ool ll nneeaa uurree,,, nn eegg rraa zz oo nn aal ll eess oo IIUIITO = ED ENEGII DE MPO MGNETIIO d d = = + d d Molplco per d e oengo

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici Inroduzone a Modell d Duraa: Alun Modell Paramer a.a. 2009/2010 - Quaro Perodo Prof. Flppo DOMMA Corso d Laurea Spealsa/Magsrale n Eonoma Applaa Faolà d Eonoma UnCal 1. Esponenzale Modell Paramer Le funzon

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dfferenzal Porese aere l mpressone d non sapere nulla sulle equazon dfferenzal e d non aerne ma nconraa una. In realà quesa mpressone è sbaglaa perché la legge d Neon F ma s può

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

CP410: Esame 2, 3 febbraio 2015

CP410: Esame 2, 3 febbraio 2015 Dipartimento di Matematica, Roma Tre Pietro Caputo 2014-15, I semestre 3 febbraio, 2015 CP410: Esame 2, 3 febbraio 2015 Cognome Nome Matricola Firma 1. Sia (Ω, F, P) lo spazio di probabilità definito da

Dettagli

Presentazione. Lo scopo della presentazione e di dettagliare. Se leggendola si pensa di saper gia fare, si puo saltare.

Presentazione. Lo scopo della presentazione e di dettagliare. Se leggendola si pensa di saper gia fare, si puo saltare. Preenazione Lo copo della preenazione e di deagliare. Se leggendola i pena di aper gia fare, i puo alare. Preenazione cc1 C&N Clae 2 Daa col: MFKv=. queo a fondo giallo e il eo del compio Dao f: 1) Calc.

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena La cnca lagrangana applcaa al problma dl Commo Vaggaor TSP Paolo D Unvrà d Sna Un lowr bound lagrangano pr l problma dl TSP Dao un grafo GV,A con p ugl arch, una formulazon pr l TSP mmrco è la gun: mn

Dettagli

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A )

Fondamenti di comunicazioni elettriche (Ing. Elettronica - A.A ) Fondameni di comunicazioni eleriche (Ing. Eleronica - A.A.-) E. g (, ) rec / dipende dalla variabile aleaoria avene denià di probabilià uniforme nell inervallo [,]. rovare valor medio ed auocorrelazione

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

CP410: Esonero 1, 31 ottobre 2013

CP410: Esonero 1, 31 ottobre 2013 Dipartimento di Matematica, Roma Tre Pietro Caputo 2013-14, I semestre 31 ottobre, 2013 CP410: Esonero 1, 31 ottobre 2013 Cognome Nome Matricola Firma 1. Fare un esempio di successione di variabili aleatorie

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

C 2. Quesiti: 1) Calcolare tutte le correnti in figura. 2) Verificare la conservazione delle potenze complesse.

C 2. Quesiti: 1) Calcolare tutte le correnti in figura. 2) Verificare la conservazione delle potenze complesse. UNIESITÀ DEGI STUDI DI NPOI FEDEICO II FCOTÀ DI INGEGNEI COSO DI UE IN INGEGNEI BIOMEDIC COSO DI UE IN INGEGNEI MECCNIC I COSO DI UE IN INGEGNEI PE GESTIONE DEI SISTEMI DI TSPOTO Prof. ug erolno Prova

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

3. MODELLI MATEMATICI

3. MODELLI MATEMATICI 3. MODE MAEMA ASSFAZONE DE MODE iemi ono decrii da opporuni modelli maemaici. Poiamo claificarli in re caegorie: Modelli maemaici nel dominio del empo o in campo reale Decrivono il comporameno del iema

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Biani, BIO A-K 6 Seembre 7 Si conideri il eguene iema dinamico lineare a coefficieni coani a empo coninuo: u ( G ( y ( con G ( 5 a Di quale o quali, ra i iemi

Dettagli

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese.

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese. Adren-Mare Legendre (Parg, 18 seembre 175 Parg, 10 gennao 1833) è sao un maemaco francese. 1 Trasformazon d Legendre per cambare varable ndpendene Supponamoche samo neressa a conoscere una grandezza f

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 14: 18 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Schema algebrco de fluss d cassa con v = (1

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK. Nome Cognome. V=20 m/s

E SEVERAMENTE PROIBITO L USO DI CALCOLATRICI PROGRAMMABILI, TABLET, SMARTPHONE E NETBOOK. Nome Cognome. V=20 m/s 6/7-FIS-3---U Lceo Scentco Galleo Galle COMPITO IN CLSS FISIC SCONO Copto el SCONO quaretre aprle 07. Stanlao Clae TRZ Sez. Pro. Mauro TTORR SVRMNT PROIITO L USO I CLCOLTRICI PROGRMMILI, TLT, SMRTPHON

Dettagli

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3.

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3. Deermnare gl nsem delle soluon de seguen ssem lnear non omogene e srverl n forma d spao affne ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO 6 ESERCIZIO ESERCIZIO ESERCIZIO 9 ESERCIZIO SOLUZIONI

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 8

Controllo di Azionamenti Elettrici. Lezione n 8 Conollo Azonamen Elec ezone n 8 Coo auea n Ingegnea ell Auomazone Facolà Ingegnea Uneà egl Su Palemo Azonamen elec con mooe n coene alenaa Il mooe ancono negl azonamen a elocà aable anagg el mooe n coene

Dettagli

Richiami sui sistemi lineari

Richiami sui sistemi lineari Rcham u tem lnear Ingegnera dell'automazone Coro d Stem d Controllo Multvarable - Prof. F. Amato Verone. Ottobre 0 Rappreentazone ISU Rcordamo che la rappreentazone ISU d un tema LI a tempo-contnuo è del

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTOTECNICA Ingegnera Indusrale BIPOLI E TASFOMATE Sefano Pasore Dparmeno d Ingegnera e Archeura Corso d Eleroecnca 43IN a.a. 3-4 Classfcazone de componen Dpende dalle equazon cosue del modello del componene,

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t Il meodo d Runge-Kua Rassumendo possamo de che l meodo d Runge- Kua d odne due consse nell esegue una esapolazone del pmo odne da a x(/ nel aluae la deaa x (/ e nell ulzzala pe oenee una sma d x( esaa

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli