Richiami sui sistemi lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami sui sistemi lineari"

Transcript

1 Rcham u tem lnear Ingegnera dell'automazone Coro d Stem d Controllo Multvarable - Prof. F. Amato Verone. Ottobre 0

2 Rappreentazone ISU Rcordamo che la rappreentazone ISU d un tema LI a tempo-contnuo è del tpo: x ( t Ax( t Bu( t y( t Cx( t Du( t dove A, B, C, D ono matrc opportune la cu dmenone dpende dall ordne del tema, dal numero d ngre e dal numero d ucte. Amato Verone. Ottobre 0

3 Le rappreentazon ISU pretano n modo del tutto naturale a rappreentare tem MIMO. In partcolare e l tema è d ordne n con m ngre e r ucte, avremo x( t n m R u( t R y( t R r A R nxn B R nxm C R rxn D R rxm Amato Verone. Ottobre 0 3

4 Un tema LI a tempo-dcreto può nvece rappreentare come egue x( k y( k Ax( k Cx( k Bu( k Du( k Nell ambto d queto coro tratteremo eenzalmente tem LI a tempo-contnuo; tuttava tem a tempo-dcreto aranno utl per dervare n manera emplfcata e pù ntutva alcun rultat vald anche nel tempo-contnuo. Amato Verone. Ottobre 0 4

5 Funzone d trafermento Una rappreentazone alternatva d un tema lneare, nel cao SISO, è cottuta dalla funzone d trafermento (Fd. La funzone d trafermento preenta otto forma del rapporto d due polnom della varable complea. Ea è defnta come l rapporto tra la traformata d Laplace dell ucta e la traformata d Laplace dell ngreo del tema. W ( Y ( b b n n 0 n n U ( a b a n n Amato Verone. Ottobre 0 5

6 Amato Verone. Ottobre 0 6 Le vare rappreentazon della fdt Per llutrare le vare rappreentazon d una tea funzone d trafermento rcordamo che un polnomo del econdo ordne avente radc complee conugate α±jω può avere le eguent equvalent rappreentazon: morzamento coeffcente d pulazone naturale dove : ω α α ξ ω α ω ω ω ξ a a a a a a a a a a n n n

7 Conderamo ad eempo W ( ( ( ( ( ( 0.5 rapporto d polnom zer - pol guadagno e cotant d tempo 3 / 3 ( 3 ( 3 guadagno, cotant d tempo, pulazon natural e coeffcent d morzamento Amato Verone. Ottobre 0 7

8 Dunque n generale la fdt può metter nella forma: ' ' ( τ ( τ ' ' ξ ξ ' ' ' ' ωn ω n ωn ω n W ( k ξ ξ ( τ ( τ ωn ω n ωn ω n k guadagno (tatco ' τ cotant d tempo degl zer real τ cotant d tempo de pol real ' ξ coeffcent d morzamento degl zer comple conugat ξ coeffcent d morzamento de pol comple conugat ' ωn pulazone naturale degl zer comple conugat ω pulazone naturale de pol comple conugat n Amato Verone. Ottobre 0 8

9 I termn notevol che compaono nell epreone d W( ono: Pol (zer real emplc (τ ±, dove τ è detta cotante d tempo. Pol (zer real multpl (τ ± Pol (zer comple emplc ( / ω n ξ/ω n ± dove ω n è detta pulazone naturale e ξ coeffcente d morzamento. Pol comple multpl (raro Amato Verone. Ottobre 0 9

10 Un tema MIMO vene decrtto attravero una Matrce d rafermento, coè una matrce cu element ono Fd. Amato Verone. Ottobre 0 0 ( ( ( ( ( ( ( ( ( W W W W W W W W W rm r r m m

11 Legame tra le rappreentazon Il legame tra la rappreentazone ISU e la rappreentazone IU (data dalla Fd è eprea dalla formula ( I A B D W ( C Rcordamo che pol della Md d un dato tema rappreentano un otto-neme (non necearamente tretto degl autovalor della matrce dnamca A. Amato Verone. Ottobre 0

12 Rpota de tem LI La rpota nello tato d un tema LI a tempo-contnuo, a partre da una data condzone nzale x 0, può por nella forma (evoluzone lbera pù forzata: t A( t τ 0 e Bu( τ At x( t e x dτ 0 La funzone matrcale e At chama Matrce d ranzone e può eere calcolata a analtcamente che numercamente. Amato Verone. Ottobre 0

13 e In partcolare e At può calcolar come ommatora d eponenzal calar attravero l epreone dervante dalla decompozone pettrale (qu fa l pote che tutt gl autovalor d A ano dtnt: e At λ t u w λ u w : : autovalore emo d A Au w λ u A λ w autovettore detro emo d A autovettore ntro emo d A Nota : ad autovalor dtnt corrpondono autovettor lnearmente ndpendent Amato Verone. Ottobre 0 3

14 Data l epreone d e At, not che l evoluzone forzata nello tato può crver n u 0 t e λ ( t τ w Bu( τ dτ Da cu deduce che l nfluenza dell ngreo u(. nella drezone ndvduata nello pazo d tato dall autovettore u dpende temporalmente dalla legge e λt e come ampezza da w B. Se w B0 l ngreo non dà neun contrbuto nella drezone u. Vedremo che queto corrponde alla tuazone n cu l modo d evoluzone -emo non è controllable. Amato Verone. Ottobre 0 4

15 Se uppone che gl autovalor λ,,,p ano real e gl autovalor λ h, h,,q ano comple conugat, con pqn, può crvere: e At p q λt e uw h ( u u ha hb e α t h co en ( ωht en( ωht ( ω t co( ω t h h w w ha hb λ u w u α w h ha ha ± ± ± autovalor real d A autovettor real detr d A autovettor real ntr d A jω ju h hb jw hb autovalor comple conugat d A autovettor detr comple conugat d A autovettor ntr comple conugat d A Amato Verone. Ottobre 0 5

16 I termn dpendent da e λt ono dett mod d evoluzone aperodc. I termn dpendent da e αht enω h t, e αht coω h t, ono dett mod d evoluzone peudoperodc. Un altro modo per calcolare e At analtcamente, è quello d effettuare l anttraformata della matrce d tranzone e At Φ( L ( Φ( ( I A Amato Verone. Ottobre 0 6

17 Infne e At può eere calcolata numercamente attravero l epreone dervante dal uo vluppo n ere: e At I At A t! Amato Verone. Ottobre 0 7

18 La rpota n ucta d un tema LI a tempocontnuo, a partre da una data condzone nzale x 0, può por nella forma t At y( t Ce x W ( t τ u( τ dτ 0 0 dove W(t è la rpota mpulva del tema. Amato Verone. Ottobre 0 8

19 Utlzzando l epreone d e At, l ucta può crver y( t n Cu e n λ t t λ ( τ w x t Cu 0 e w 0 Bu( τ dτ S not che e Cu 0 l modo d evoluzone aocato all autovalore -emo non compare n ucta. Come vedremo queto è legato al fatto che l modo d evoluzone -emo non è oervable. Inoltre, relatvamente all -emo modo d evoluzone, l azone dell ngreo u(. è dretta (nello pazo delle ucte nella drezone ndvduata dal vettore Cu e l ampezza dpende da w B. Amato Verone. Ottobre 0 9

20 La rpota d un tema LI a tempo-contnuo può eere calcolata: Analtcamente, utlzzando l metodo della traformata d Laplace Numercamente attravero la mulazone al calcolatore Amato Verone. Ottobre 0 0

21 Cambo d bae nello pazo d tato Un dato tema lneare poede nfnte rappreentazon ISU tutte equvalent tra loro. È poble paare da una rappreentazone ad un altra ad ea equvalente, attravero una traformazone d bae nello pazo d tato. S conder un dato tema avente una rappreentazone ISU ndvduata dalla quadrupla (A,B,C,D. Sa una matrce quadrata nvertble; conderamo l cambo d bae epreo da z x Amato Verone. Ottobre 0

22 Attravero l cambo d bae gungamo ad una nuova rappreentazone del tpo z Az ˆ Bu ˆ y Cz ˆ Du Aˆ A Bˆ B Cˆ C Amato Verone. Ottobre 0

23 Attravero l cambo d bae gungamo ad una nuova rappreentazone del tpo z Az ˆ Bu ˆ y Cz ˆ Du Aˆ A Bˆ B Cˆ C Amato Verone. Ottobre 0 3

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

Modelli nel dominio della pulsazione complessa s

Modelli nel dominio della pulsazione complessa s Modello VS: Modell el domo della pulaoe complea x&( t) Ax() t Bu() t yt () Cxt () Dut () x() x( ) Ax() Bu () y () Cx () Du () x() ( I A) Bu() ( I A) x() [ ] y () CI ( A) B Du () CI ( A) x() 444444443 44443

Dettagli

Power-Oriented Graphs (POG)

Power-Oriented Graphs (POG) .. MODELLISTICA - Modelltca dnamca.3 Power-Orented Graph (POG) Blocco d elaborazone (cao calare): x x 2 y() =G()[x () x 2 () y G() y G() = b + a x y x 2 y : Potenza che fluce by 2 : Potenza dpata 2 ay2

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIFICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 2-3 mplfcatore

Dettagli

AMPLIFICATORI. Esp

AMPLIFICATORI. Esp MPLIICTOI mplfcatore dfferenzale a BJT mplfcator operazonal. Sorgent Controllate e mplfcator Clafcazone degl amplfcator mplfcazone con feedback pplcazon degl amplfcator operazonal. Ep-3 09-0 mplfcatore

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nformatche per la chmca Dr. Sergo Brutt Rappreentazone de dat Come rappreenta un dato d mura? Negl eemp appena volt abbamo ncontrato 2 tp d rappreentazone de dat permental Rappreentazone matrcale

Dettagli

18 Luglio 2002 recupero seconda prova

18 Luglio 2002 recupero seconda prova 8 Luo recupero econda prova Eerczo ATTENZIONE: errore d tampa ne teto: a f.d.t. G ( ) deve avere un oo zero, qund non è + + 7 3 3 G () = 7 3, ma G () 7 3 = (*) o G () = (**) + + + + + + 3 3 3 (entrambe

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III. a III.3)

Dettagli

Adattamento di una funzione ad un insieme di misure Metodo dei minimi quadrati

Adattamento di una funzione ad un insieme di misure Metodo dei minimi quadrati dattamento d una funzone ad un neme d mure Metodo de mnm quadrat Eempo: voglono tudare le propretà elatche d una molla. S fa la molla ad un etremo, applca una forza all altro etremo e murano gl allungament

Dettagli

Tecnologie dei sistemi di controllo

Tecnologie dei sistemi di controllo Tecnologe de tem d controllo Rcham d fondament d automatca rof.. Magnan Anal e rogetto de tem d controllo Funzon d trafermento d uo corrente E necearo conocere. Rota allo calno. alcolo d modulo e fae rm

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

4. La realizzazione dei sistemi multivariabili. 4.1 La determinazione dell'ordine minimo nei sistemi multivariabili. Γ =

4. La realizzazione dei sistemi multivariabili. 4.1 La determinazione dell'ordine minimo nei sistemi multivariabili. Γ = . La realzzazone de tem multvaral. La realzzazone de tem multvaral, coè a pù ngre e pù ucte, decrtt qund da una matrce d funzon d trafermento W(), è prolema d natura molto pù complea d quello del cao de

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA INVERSA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Cnemata Dretta Dat: angol a gunt Calola: pozone e orentamento organo termnale Cnemata Invera Dat: pozone e orentamento

Dettagli

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1

Lezione 20. Progetto per sistemi a fase minima. F. Previdi - Automatica - Lez. 20 1 Lezone 20. Progetto per tem a fae mnma F. Prevd - Automatca - Lez. 20 Introduzone Il progetto d controllor medante loop hapng laca al progettta molt grad d lbertà, n partcolare nella celta della parte

Dettagli

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!!

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!! avoro ed Energa eempo: corpo oggetto a orza varable con la pozone [orza d gravtà, orza della molla] oppure traettora complcata utlzzando la ola legge d Newton ma non poo calcolare la veloctà del corpo

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Avvertenze. Prova Scritta

Avvertenze. Prova Scritta Coro d Fondament d Informatca (M-Z) Prof Aldo Franco Dragon Avvertenze Conegnare olo fogl formato A4. Scrvere u un olo lato (no fronte retro) In ordne d preferenza uare nchotro nero, matta, nchotro blu.

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 3. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 3. a.a 32586 ELETTROTECNICA ED ELETTRONICA (C.I. Modulo d Elettronca Lezone 3 a.a. 20102011 Amplfcatore Operazonale Vource V V Io A 0 (V V Gnd Un Amplfcatore Operazonale (Operatonal Amplfer, OPAMP deale, è un

Dettagli

Filtro passa-basso con celle RC attive

Filtro passa-basso con celle RC attive Elettronca delle Telecomuncazon Eerctazone Fltro paa-bao con celle RC attve Rev 98 P/DM Rev 9949 DDC Rev 9 DDC Specfche Progettare un fltro paa bao, con funzone d trafermento tale da rpettare la machera

Dettagli

INDICI DI DISPERSIONE

INDICI DI DISPERSIONE Pcometra (8 CFU) Coro d Laurea trennale IDICI DI DISPERSIOE IDICI DI DISPERSIOE Conentono d decrvere la varabltà all nterno della dtrbuzone d frequenza tramte un unco valore che ne ntetzza le carattertche

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

Circuiti di ordine superiore

Circuiti di ordine superiore Crcut d orde uerore 6 E oble coderare ache crcut co elemet damc,. S uoe emre d aver gà oerato evetual emlfcazo ere/ arallelo e d o eere reeza d ca degeer. I tal ote, l crcuto è rareetable da u equazoe

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

Progetto Di Filtri Attivi. Dicembre 2009 Modellistica Circuitale A.A 2009/2010 1

Progetto Di Filtri Attivi. Dicembre 2009 Modellistica Circuitale A.A 2009/2010 1 Progetto D Fltr Attv Dcembre 9 Modelltca rcutale A.A 9/ Outlne Mamo amplan L'amplfcatore Operazonale Fltr a ngolo polo Sngle Amplfer Bquad SAB Fltr d Sallen e Key rcuto d Antonou onfgurazone ad anello

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w IDROLISI La reazone con l acqua dell acdo conugato d una bae debole, o quella della bae conugata d un acdo debole, chama reazone d drol. L drol è una reazone acdo-bae che può avvenre quando un ale è olublzzato

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08 VII eserctazone Una fattorzzazone che rvela propretà della matrce: La Sngular value decomposton (SVD) fattorzza una matrce rettangolare reale o complessa è utlzzata nelle applcazon: nella trasmssone d

Dettagli

I VALORI MEDI MEDIE COME CENTRI

I VALORI MEDI MEDIE COME CENTRI I VALORI MEDI Valor che vengono calcolat per eprmere ntetcamente l ntentà d un fenomeno e per conentre la comparazone del fenomeno con fenomen analogh MEDIE COME CETRI I numer x R (=,,) poono eere rappreentat

Dettagli

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace) ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI coro: Teoria dei Circuiti docente: Stefano PASTORE 1 Eempio di tableau dinamico (tempo e Laplace) 1.1 Dominio del tempo Conideriamo il eguente circuito dinamico

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 5 Febbraio 05 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ(t) =

Dettagli

Controllo dei robot. (Prof. Rocco) Appello del 19 Luglio 2007

Controllo dei robot. (Prof. Rocco) Appello del 19 Luglio 2007 Controllo de robot (Prof. Roo) Appello del 19 Luglo 27 Cognome:... Nome:... Matrola:... Frma:... Avvertenze: Il preente faolo ompone d 8 pagne (omprea la opertna). Tutte le pagne utlzzate vanno frmate.

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Compito di SISTEMI E MODELLI 25 Gennaio 2016

Compito di SISTEMI E MODELLI 25 Gennaio 2016 Compto d SISTEMI E MODELLI 5 Gennao 06 È vetato l uso d lbr o quadern. Le rsposte vanno gustfcate. Saranno rlevant per la valutazone anche l ordne e la charezza espostva. Consegnare SOLO la bella copa,

Dettagli

Algoritmo del Modulo Serbatoi

Algoritmo del Modulo Serbatoi Algorto del Modulo Serbato Le eon proenent da erbato non dpendono da alcun cobutble e ono tutte d NMVOC. La bae d calcolo è enle, oero la ta è effettuata dettaglata ee per ee. Le eon poono eere ottenute

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010 Modellazione e controllo di sistemi dinamici/ca2 25/6/21 a) Si considerino i due sistemi dinamici S1 e S2 con ingresso u e uscita y descritti rispettivamente da S1 : { ẋ = 4x + 8u y = x u S2 : G(s) = 5

Dettagli

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE

4. TEOREMA DEI LAVORI VIRTUALI PER LE TRAVATURE aptolo TOR DI VORI VIRTUI R TRVTUR. TOR DI VORI VIRTUI R TRVTUR Il teorema de lavor vrtual, che è tato dmotrato per la trave emplce, può eere eteo n entrambe le ue forme (potament vrtual e fore vrtual

Dettagli

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 014/015 Elaborazone Dat Lab B CdL Fca Elaborazone dat permental Come raumere un neme d dat permental? Una tattca è propro un numero calcolato a partre da dat te. La Stattca decrttva fornce

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t /4 Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao Poonano Sta d due rette /4 ozon d bae Varable cauale:

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Dicembre Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Massima verosimiglianza

Massima verosimiglianza Maa veroglanza I. Froo AIS Lab. froo@d.un.t htt:\\hoe.d.un.t\froo\ A.A. 0-0 /4 htt:\\hoe.d.un.t\froo\ Overvew ozon d bae Funzone d veroglanza Sta alla aa veroglanza Il cao Gauano Ste a n quadrat Il cao

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del 2 Dicembre 25 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile;

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile; Sitemi Dinamici: Induttore: i = x, v = Lx Condenatore: i = Cx, v = x x = x x = p Maa: x =, dove x u = v M u = F x = x Ocillatore meccanico: x = (Kx M Dx + u), dove Pendolo: x = x x = g l in x + ml u k

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Stabilità e punti di equilibrio

Stabilità e punti di equilibrio Capitolo 4 Stabilità e punti di equilibrio 4. Stabilità di un itema epreo da un equazione di tato Si è motrato come un itema poa eere epreo con il itema cotituito dalle equazioni 3.6 e 3.7 ovvero: X()

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal esatte, cambo d varabl, equazon del secondo ordne 28 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/21? Exact dfferental equatons If Q

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Febbraio 206 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere l andamento temporale della funzione di ucita y(k), oluzione dell

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 27 Aprile 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la forma eplicita della matrice di tranizione dello

Dettagli

Il contatto diretto di una fase gassosa con una fase liquida, in cui il gas sia sostanzialmente insolubile, può essere realizzato con vari scopi:

Il contatto diretto di una fase gassosa con una fase liquida, in cui il gas sia sostanzialmente insolubile, può essere realizzato con vari scopi: UMIDIFICAZIONE E DEUMIDIFICAZIONE Il contatto dretto d una fae gaoa con una fae lquda, n cu l ga a otanzalmente noluble, può eere realzzato con var cop: - Deumdfcare un ga: quando mette a contatto una

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Eserctazon a grupp svolte. Esercz tpo

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Capitolo 3. Modelli. 3.1 La macchina a stati finiti

Capitolo 3. Modelli. 3.1 La macchina a stati finiti Captolo 3 ex-or L nterrttore complevo è cho e ono alt o D o D2, ma non entramb De nor n retroazone V 3 V V odell 3 La macchna a tat fnt 32 La macchna combnatora 33 La macchna ancrona 34 La macchna ncrona

Dettagli

Regressione e correlazione

Regressione e correlazione Regressone e correlazone Corso d statstca socale prof. Natale Carra - Unverstà degl Stud d Bergamo a.a. 005-06 Regressone Questo modello d anals bvarata esamna le relazon fra coppe d varabl contnue. Un

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

L incertezza di misura

L incertezza di misura L ncertezza d mura - 1 L ncertezza d mura 1 - La norma nternazonale Introduzone Poché l epreone dell ncertezza d mura non era unforme a lvello nternazonale, l CIPM (Comtè Internatonal de Pod et Meure)

Dettagli

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche

Teoria dei processi casuali a tempo continuo. Seconda lezione: Medie statistiche Teora de process casual a tempo contnuo Seconda lezone: Valore medo e autocorrelazone Esemp Valor med de process Quas Determnat (QD) 005 Poltecnco d Torno Valore medo e autocorrelazone e valore atteso

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittanti, BIO A-K) Settembre Si conideri il eguente itema dinamico a tempo continuo decritto mediante chema a blocchi: ut () _ yt () 9 a Si calcoli la funione

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 3-3-9) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

FUNZIONE DI TRASFERIMENTO

FUNZIONE DI TRASFERIMENTO FUNZIONE DI TRASFERIMENTO Molt tem damc SISO (Sgle Iput Sgle Output) pooo eere rappreetat da modell lear e tempovarat per mezzo d equazo dfferezal lear e a coeffcet cotat, che eprmoo ua relazoe fra la

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 5-4-7) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

Discretizzazione del controllore

Discretizzazione del controllore Dipartimento di Ingegneria Dicretiaione del controllore Michele Ermidoro Ingegneria dei itemi di controllo - Senori Perchè dicretiare? Introduione Il paaggio al mondo dicreto è neceario e i vuole implementare

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli