Modelli nel dominio della pulsazione complessa s

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli nel dominio della pulsazione complessa s"

Transcript

1 Modello VS: Modell el domo della pulaoe complea x&( t) Ax() t Bu() t yt () Cxt () Dut () x() x( ) Ax() Bu () y () Cx () Du () x() ( I A) Bu() ( I A) x() [ ] y () CI ( A) B Du () CI ( A) x() evoluoe forata evoluoe lbera

2 Modello I/O ( ) ( ) y a y L a y& a y& a y y() L a y() a y() Y () ( m) bu L bu& bu& bu m m b u () L bu () bu () U () m m b m L b b y () u () L a a evoluoe forata Y () U () o L a a evoluoe lbera

3 Modello I/O: fuoe d trafermeto (fdt) G ()& y () u () codo al ulle { ( )} t y δ G CI A B D C I A B adj( ) () ( ) det( I A) D G () m b L b b m L a a Per tem lear varat G() è ua fuoe raoale: G () N (), dove N( ) e D( ) oo polom D () 3

4 Il paaggo VS fdt è dato dalla relaoe G( ) m bm L b b L a a C( I A) C adj( I det( I C adj( I B A) A) B D A) B Ddet( I det( I A) D A) 4

5 Il paaggo fdt VS o è uvoco. Eempo: m b L b m L b b G () L a a O O A O O, a a L L a B M M [ L L ] C b b a b b a b b a, D b m m 5

6 6 Il paaggo fdt VS o è uvoco. Eempo: [ ] m m m m b D C b a b b a b b a b B a a a A a a b b b b G,, ) ( L M M M O M O O L L L

7 7 Il paaggo fdt VS o è uvoco. Eempo (λ real dt.): [ ] [ ], o o,... ) ( r D r r r C r r r B A r r r r a a b b b b G m m L L M M M M O O L L L λ λ λ λ λ λ

8 Aal della damca (tem lear) x() ( I A) Bu() ( I A) x() y () Cadj( I A) B det( I A) D Cadj( I A) x( ) u () ( I A) det det( I A) evoluoe forata evoluoe lbera N() N () D() m b m L b b y () u () L a a evoluoe forata pote emplfcatva: u () N D u u Y () U () o L a a () () evoluoe lbera 8

9 9 pote emplfcatva: D() e D u () hao radc dtte evoluoe lbera evoluoe forata ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( λ λ λ λ λ u u u u u u r r r y D D D N D N D N y u u

10 Applcado l attraformata d Laplace: u λt λut λ yt () re re u re evoluoe forata evoluoe lbera t e e λ t λ u t & & mod propr mod forat l evoluoe forata è ua combaoe leare d mod propr e d mod forat; l evoluoe lbera è ua combaoe leare d mod propr; el cao d pol comple cougat e/o multpl, rultat aumoo forma mle.

11 Eempo: trovare la rpota el tempo del tema decrtto dalla fdt G(), co greo a grado ampo 5, da codo al Y G () ( )( 3) ut () 5 5 u () y( ) Y y&( ) mod propr modo for. 678 mod propr t 3t t t t oluoe: yt () e e4444 e3 44 e 44 e3 ev. for. 3e e e t 3t t ev. lb.

12 fdt: G () N () D () pol: radc del deomatore er: radc del umeratore guadago taoaro: { } { A} { } D () λ autval. N() ζ K lm G(), t { } co umero d tegrator defoe: mbolo guadago d pooe K p veloctà K v acceleraoe K a

13 cotat d tempo: τ (pol real) λ τ λ τ σ ( σ parte reale pol compl. co.) guadago a : { m ()} K lm G Defte le precedet gradee, è poble rappreetare la fdt dver mod; d volta volta, bae al problema correte, potrà ceglere la forma pù coveete. 3

14 Rappreetao della fdt: forme caoche polomale: fattorata: G () m b L b b m L a a ( G K ζ ) L( ζ m) () ( λ ) L( λ ) frao paral: G( ) r r λ λ L (pol emplc) cotat d tempo: L ζ ζ ' m G( ) K t L τ λ ' λ τ 4

15 Mod del prmo orde Il modo del prmo orde corrpode a u polo reale: g( ) K λ g( t) Ke λ t forma grafca 5

16 .8 Mod propr del prmo orde: exp(lambda*t) co lambda-, -,, λ lambda.6.4 Ampee Tempo t 6

17 Rpota al grado utaro G( ), y( t) e τ t τ 7

18 Mod del ecodo orde Il modo del ecodo orde corrpode a ua coppa d pol comple e cougat σ ± jω o g () 4b a 4> 43 K a b K ( σ jω o)( σ jω o) K ζω ω K gt e σt () ( ω o t ) forma grafca ω T o o o π, τ ω σ 8

19 Parametr d u modo propro del ecodo orde jω o ω α e( α) ζ σ ω σ σ ζω ω o ω ζ -jω o ω α σ arcta ω o σ ω o 9

20 Mod propr del ecodo orde: exp(-*w*t)*[w*t*(-^)^.5] co.9,.5 ζ ω w.5 Ampee Tempo ormalato w*t

21 Rpota al grado utaro σ ω ω ω ω ζ ω ζ ζ ω ζω ω σ ζω o o t o t t e t e t y G arcta arcta ) (, ) ( l prodotto ω t può defre come uova varable dpedete (tempo ormalato)

22 .o orde: rpota al grado utaro t r ŝ ± ε Ampea t tˆ ω t ε t

23 Pol c.c: parametr carattertc della rpota al grado ŝ : ovraelogaoe mama relatva; tˆ : tempo corrpodete alla ŝ; t : tempo d alta; t r : tempo d alta % 9% t ε : tempo d aetameto a ±ε. 3

24 4 Pol c.c: parametr carattertc della rpota al grado ( ) (**) (*) l arcta ˆ ˆ ζ ζ ε ω ζ ω ζ ζ π ζ ω ω π ζ π ω ε ω σ π ζ πζ t t t t e e r o o ( * ) Fuoe appromate la oluoe umerca. ( ** ) I realtà l vero tempo d aetameto a ±ε è leggermete ferore.

25 Boler, Scattol, Schavo: Fodamet d cotroll automatc, McGraw-Hll 5

26 Boler, Scattol, Schavo: Fodamet d cotroll automatc, McGraw-Hll 6

27 TRASFORMATA Z (varabl caual:, < ) defoe: Y() propretà della traformata Z: Z - j {y()} y(j) co C j Y() Z {y()} ; X() Z {x()} - leartà: - leartà: 3 - hft detro: 4 - hft avat: 5 - hft compleo: Z{y() x()} Y() Z{a y()} a Y() Z{y( Z{y( Z{e a ovvero - k)} k)} y()} Z{b -k k Y( Y() Y() e y()} X() -a ) - k - j y(j) Y(/b) k - j 7

28 TRASFORMATA Z 6 - covoluoe el tempo: Z{y() x()} Y() X() 7 - covoluoe complea: Z{y() x()} Y() X() 8 - dervata parale: Z{ y(,a)} Y(, a) a a 9 - uctà: y() x() Y() X() - teorema del valore ale: - teorema del valore fale: lm lm - veroe: Y() y() d πj y() y() lm Y() lm {( -) Y()} () (o) ( ) () (o) ( ) v() y() x() j y(j) x( j) j x(j) y( j) R() Y() U() Y(w) U(/w) dw/w U(w) Y(/w) dw/w πj πj vero olo e (- - )Y() ha pol co modulo more d j x(j) y( j) 8

29 TRASFORMATA Z 3 - ommatora: 4 - dfferea: y(j) Z j Z{y() - y(-)} ( Y() ) Y() N 5 - y(.) co perodo N: Z{ y()} Z{y ()} N N dy() 6 - dervata : Z{ y()} d è coveete utlare le tavole delle traformate Z 9

30 SISTEMI DISCRETI tema dcreto damco cauale: u() S y() u() S y() 3

31 RAPPRESENTAZIONI varabl d tato: x() A x() B u() y() C x() D u() x() X Z X() (I - A) - B U() (I - A) - X Y() [C (I - A) - B D] U() C(I - A) - X evoluoe forata evoluoe lbera è qud defta la fuoe d trafermeto: G() Y() C(I A) U() B D C adj(i A)B D det(i A) N() C adj(i A) B D det(i A) D() det(i A) pol f.d.t. autovalor d A N() D() 3

32 RAPPRESENTAZIONI a S ua matrce x vertble; defca u uovo tato : x Sx allora: x() SAS - x() SB u() y() CS - x() D u() ovvero x( ) A x() B u() y() C x() D u() la f.d.t. è ua varate del tema: G() C(I A) B D CS (SS SAS ) SB D C(IA) B D G() la f.d.t. o dpede dalla celta degl tat pol, er e guadago oo varat 3

33 RAPPRESENTAZIONI Quatere A, B, C, D f.d.t. G() S 33

34 RAPPRESENTAZIONI (d tem lear) y() a y(-) a y(-) b u() b m u(-m) codo al Z (e codo al ulle) Y() a - Y() a - Y() b U() b m -m U() S defca la fuoe d trafermeto G(): G() Y() U() b b a... b... a m m ovvero G() b b a a b m a m - N( ) D( ) { ζ { λ } er } pol N() D() 34

35 RAPPRESENTAZIONI N() D() { ζ { λ } } er pol K lm G() T K è l guadago taoaro d u tema dcreto ( è l tpo del tema, ovvero d tegrator, ovvero d pol ). 35

36 G() C(I A) b RAPPRESENTAZIONI B D... b b... a a varabl d tato forma caoca d cotrollo forma caoca d oervaoe K Π( ζ ) Π( λ ) j () cacata r k t k p q k k D (O) f.c. d Jorda ( ) a volte ζ λ (o) a volte r j j h o h t h 36

37 RAPPRESENTAZIONI (varabl d tato) D u() B x() - x() C y() A 37

38 RAPPRESENTAZIONI (forma caoca d cotrollo) A c a a..... a B c.. ' C c b b b a.. b a D c b G() b... b b... a a.... y b b - b b u - x ().... x 3 () - - x () x () -a - -a -a

39 RAPPRESENTAZIONI (forma caoca d oervaoe) A.. a a.. a B b b b b a b a.. b a C '.. D b u G() b... b b... a a.... b b b - b - x () - x ().... x - () - x () y -a -a -a

40 RAPPRESENTAZIONI (forma caoca d d Jorda) traformaoe ugl tat: S Q - dove: Q matrce modale d A (le coloe oo gl autovettor d A); eempo: A j λ... q k p k B j b b b.. j jk jk C ' j c c c.. j jk jk D j D b c j j r.. b k b q b c p jk c jk b jk c jk jk c jk b jk c jk k jk k k t k.. G() r λ... k p t k k q k... D 4

41 RAPPRESENTAZIONI (forma caoca d d Jorda) r - x () λ u p k - - x k () x k () x k () -q k k t k y D 4

42 SISTEMI DEL PRIMO ORDINE (polo λ; λ r) x y() r x y() x τ τ r cotate d tempo (.o pa) y() r x y() r 4

43 SISTEMI DEL PRIMO ORDINE (polo λ; λ r) x y() δ() x y() (-) r x y() (-) x y() (-) r 43

44 SISTEMI DEL SECONDO ORDINE (polo λ; λ r; λ f) x τ r cotate d tempo (.o pa) τ T T π f perodo ocllaoe (.o pa) x τ T x T 44

45 SISTEMI DEL SECONDO ORDINE (polo λ; λ r; λ f) x τ T x puto ale vluppo f T τ x τ T 45

FUNZIONE DI TRASFERIMENTO

FUNZIONE DI TRASFERIMENTO FUNZIONE DI TRASFERIMENTO Molt tem damc SISO (Sgle Iput Sgle Output) pooo eere rappreetat da modell lear e tempovarat per mezzo d equazo dfferezal lear e a coeffcet cotat, che eprmoo ua relazoe fra la

Dettagli

Filtri attivi. (versione del ) Filtri attivi

Filtri attivi.  (versione del ) Filtri attivi Fltr attv www.de.g.ubo.t/per/matr/ddattca.htm veroe del --6 Fltr attv U fltro pavo è u fltro compoto olo da compoet pav I fltr attv fao uo ache d compoet attv d olto amplfcator operazoal A dffereza de

Dettagli

Circuiti di ordine superiore

Circuiti di ordine superiore Crcut d orde uerore 6 E oble coderare ache crcut co elemet damc,. S uoe emre d aver gà oerato evetual emlfcazo ere/ arallelo e d o eere reeza d ca degeer. I tal ote, l crcuto è rareetable da u equazoe

Dettagli

Controlli Automatici A

Controlli Automatici A Cotroll Automatc A Cors d laurea treal Igegera Elettroca, Iformatca, Telecomucazo a.a. 200/2002 Docete: Prof. Aurelo Pazz Emal: aurelo@ce.upr.t http://www.ce.upr.t/people/pazz/ Cotroll Automatc A Prof.

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Soluzione per sistemi dinamici LTI TC Esercizi risolti

Soluzione per sistemi dinamici LTI TC Esercizi risolti Eserciio per sistemi dinamici LTI TC Esercii risolti Dato il seguente sistema dinamico LTI a tempo continuo: [ [ 5 ẋ(t) x(t) + u(t) 4 8 y(t) [ x(t) + 8u(t) determinare l espressione analitica del dello

Dettagli

Risposte nel tempo di sistemi LTI del 1 e 2 ordine

Risposte nel tempo di sistemi LTI del 1 e 2 ordine Ripote el tempo di itemi LTI del e ordie Fodameti di Automatica Prof. Silvia Strada Coro di Studi i Igegeria Getioale (Cogomi H PO) Sitemi del ordie E molto comue crivere G () a b µ + a + τ b τ K τ G ()

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Introduzione. La funzione di risposta armonica... 2 Diagrammi della risposta armonica... 4

Introduzione. La funzione di risposta armonica... 2 Diagrammi della risposta armonica... 4 Apput d Cotroll Automatc Captolo 6 parte I Dagramm d ode Itroduzoe... La fuzoe d rpota armoca... Dagramm della rpota armoca... 4 DIARAMMI DI ODE... 5 Regole d cotruzoe de dagramm d ode... 5 Dagramm d ode

Dettagli

Controlli Automatici 2

Controlli Automatici 2 Controlli Automatici 2 Stefano Miani 1 1 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica Università degli Studi di Udine tel: 0432 55 8262 email: miani.stefano@uniud.it web: www.diegm.uniud.it/smiani

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Si definisce prodotto di A e B la matrice data da:

Si definisce prodotto di A e B la matrice data da: MRICI Ua matrce Mat(m,) è ua tabella ordata d umer dspost m rghe ed coloe. Idchamo co aj l'elemeto d posto j che può essere reale o complesso. Operazo d matrc: ) (α)j α aj α C 2) (+ B)j aj + bj Propretà

Dettagli

Approfondimenti sui diagrammi di Bode

Approfondimenti sui diagrammi di Bode Approfodmet su dagramm d ode L espressoe (4.4) d ua fuoe d trasfermeto m m N( s) ams + am s +... + a = = D( s) b s + b s +... + b può essere rscrtta el seguete modo: ( )( )...( ) ( z)( z)...( ) z z ( p

Dettagli

Lezione 20. Campi numerici ed anelli di Dedekind.

Lezione 20. Campi numerici ed anelli di Dedekind. Lezoe 0 Prerequst: Lezo 9 Dom ad deal prcpal Camp umerc ed aell d Dedekd Defzoe 0 S dce campo umerco og estesoe fta d Q coteuta C Osservazoe 0 Essedo Q u campo perfetto (poché è d caratterstca 0 ved la

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Definizione algebrica dello stato di tensione

Definizione algebrica dello stato di tensione Comportameto meccaco de materal Defoe algebrca dello stato d tesoe Stato d tesoe e d deformaoe Defoe algebrca dello stato d tesoe Premessa Tesoe e rapporto bvettorale Il tesore della tesoe Equlbro e relao

Dettagli

d 1 (t) u(t) + m(t)

d 1 (t) u(t) + m(t) Lo chema a blocch rappreentatvo el tema controllo conerato è _ r(t) y(t) (t) m(t) u(t) (t) (t) Le funzon trafermento cacun blocco poono eere calcolate n bae a at e manpolate per evenzarne la componente

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Stabilità esterna e analisi della risposta

Stabilità esterna e analisi della risposta Stabilità esterna e analisi della risposta Risposte di sistemi del 1 e 2 ordine Introduzione Risposta al gradino di sistemi del 1 ordine Determinazione di un modello del 1 ordine Risposta al gradino di

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Controlli Automatici LA Funzione di trasferimento

Controlli Automatici LA Funzione di trasferimento Controlli Automatici LA Analisi dei sistemi dinamici lineari stabilita dei sistemi lineari proprietà generali della risposta al gradino DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it

Dettagli

Ammortamento dei prestiti indivisi. Benedetto Matarazzo

Ammortamento dei prestiti indivisi. Benedetto Matarazzo Ammortameto de prett dv Beedetto Matarazzo oro d Matematca Fazara Ammortameto d pret e cottuzoe d captal efzo prelmar Prcpal propretà Ammortameto a rate cotat potcpate Ammortameto a rate cotat atcpate

Dettagli

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1)

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1) Risposta Armoica (vedi Marro Par. 3. a 3.) (vedi Vitelli-Petterella par.vii., VII..) Che Cosa e Come si calcola (Come si misura) Criteri di stabilita automatica ROMA TRE Stefao Pazieri- Che Cosa è (vedi

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

Controlli Automatici LA Analisi dei sistemi dinamici lineari

Controlli Automatici LA Analisi dei sistemi dinamici lineari Controlli Automatici LA Analisi dei sistemi dinamici lineari Funzione di trasferimento stabilita dei sistemi lineari proprietà generali della risposta al gradino Prof. Carlo Rossi DEIS-Università di Bologna

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittanti, BIO A-K) Settembre Si conideri il eguente itema dinamico a tempo continuo decritto mediante chema a blocchi: ut () _ yt () 9 a Si calcoli la funione

Dettagli

Alcuni metodi per la risoluzione di sistemi lineari con matrici strutturate.

Alcuni metodi per la risoluzione di sistemi lineari con matrici strutturate. Alcu meto per la rsoluzoe sstem lear co matrc strutturate. A. url - Calcolo Scetco Problema Rsolvere l sstema leare: A A. url - Calcolo Scetco Problema q A Co A matrce el tpo: p O A è ua matrce tragoale!

Dettagli

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale.

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale. Esercz 2/0/2007 Dsequazo Sego d u prodotto. Voglamo studare l sego d u prodotto d due umer real. I altr term vedere qual soo le codzo affché due umer real A e B soddsfo AB 0. Ragoamo come segue: rcoducamo

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

COMPITO DI SEGNALI E SISTEMI 11 gennaio 2007

COMPITO DI SEGNALI E SISTEMI 11 gennaio 2007 COMPITO DI SEGNALI E SISTEMI 11 gennaio 007 Teoria 1. [5 punti] Con riferimento ad sistema lineare descritto da una equazione differenziale (lineare a coefficienti costanti) di ordine n, si ricavi esplicitamente,

Dettagli

Progetto dei sistemi di controllo

Progetto dei sistemi di controllo Lucidi del corso di Progetto dei sistemi di controllo Corso di Laurea triennale in Ingegneria dell Automazione Università di Siena, Facoltà di Ingegneria Parte III Sistemi dinamici lineari a tempo continuo

Dettagli

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1)

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1) Risposta Armoica (vedi Marro Par. 3. a 3.) (vedi Vitelli-Petterella par.vii., VII..) Che Cosa e Come si calcola (Come si misura) Criteri di stabilita automatica ROMA TRE Stefao Pazieri- Che Cosa è (vedi

Dettagli

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1)

Risposta Armonica (vedi Marro Par. 3.1 a 3.2) (vedi Vitelli-Petternella par.vii.2, VII.2.1) Risposta Armoica (vedi Marro Par. 3. a 3.) (vedi Vitelli-Petterella par.vii., VII..) Che Cosa e Come si calcola (Come si misura) Criteri di stabilita G.U -FdA- Risp.Armoica Che Cosa è (vedi BodeUPolo_.vi

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

exp("# (al posto di n) var Ca Coefficiente di asimmetria, indipendente dal valore dei parametri. f X DISTRIBUZIONE EV1 o DI GUMBEL.

exp(# (al posto di n) var Ca Coefficiente di asimmetria, indipendente dal valore dei parametri. f X DISTRIBUZIONE EV1 o DI GUMBEL. DISTRIBUZIONE EV o DI GUMBEL. x x [ $ e ] exp[ e ] F x exp co: Sgfcato de parametr: f exp al posto d : Numero medo d evet dpedet [ 0,t], ad esempo u ao. / :Valore medo della gradezza dell eveto, esempo

Dettagli

y = α + βx + ε Qui ci soffermeremo su un unica classe di modelli, detti modelli statistici lineari. Si veda la seguente figura:

y = α + βx + ε Qui ci soffermeremo su un unica classe di modelli, detti modelli statistici lineari. Si veda la seguente figura: Il problema della regressoe s poe quado l valore d ua varable aleatora y, chamata varable dpedete, è fuzoe d ua varable o aleatora x, chamata varable dpedete Qu c soffermeremo su u uca classe d modell,

Dettagli

Var iabili aleatorie continue

Var iabili aleatorie continue Var abl aleatore cotue Probabltà e Statstca I - Varabl aleatore cotue - a.a. 04/05 Per ua varable aleatora dscreta, la fuzoe massa d probabltà ) f f è tale che ( x ) ) a 3) x f :,..., ( x Defzoe { x, x,,

Dettagli

Analisi di un sistemi del secondo ordine Circuito RLC

Analisi di un sistemi del secondo ordine Circuito RLC Aal d u tem del ecodo orde Crcuto RLC S vuole aalzzare la rota d u crcuto RLC er dver valor dello morzameto. S celgoo tre valor d reteza corrodeza de qual lo morzameto rulta maggore d uo, more d uo, o

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici Evoluzione forzata di un equazione differenziale: la trasformata di Laplace Y(s) del segnale di uscita y(t) è uguale al prodotto della trasformata di Laplace X(s)

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Forma Locale Vuoto. rote. rot Eo Eo. V y. V z. E x. E y. Fisica III 1. Forma locale della legge di Gauss. Forma locale della legge di Gauss.

Forma Locale Vuoto. rote. rot Eo Eo. V y. V z. E x. E y. Fisica III 1. Forma locale della legge di Gauss. Forma locale della legge di Gauss. F gg Gu. F u F gg Gu.,,,, g. (,, g w, à gu :., u.,,,, F. : Gé qu è g u g u bb : u è à è. U. g g. U U U u g. b u à g g u u. u. U u è u gg qu b u u. u u u u è qu u. u u., g, u è u., gg Gu, à è u u. qu u

Dettagli

Controlli Automatici LA Prova del 29/10/2008 Gruppo A

Controlli Automatici LA Prova del 29/10/2008 Gruppo A Cognome Nome Matr. Prova del 9//8 Gruppo A Indicare a quale o a quali delle f.d.t. indicate possono corrispondere le seguenti risposte al gradino unitario 3 Amplitude - - Step Response (s + ) (s + 5)(s

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

Modelli di guerra e pace

Modelli di guerra e pace Modelli di guerra e pace Emanuele Bucarelli Firenze, 22 Aprile 2009 Lewis Fry Richardson (1881-1953) Il Modello di Richardson Il modello proposto da Richardson è: {ẋ = ax(t) + by(t) + e ẏ = cx(t) dy(t)

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 11 1 11 Giugno 1 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Esercizi su risposta libera e modi naturali nel dominio del tempo

Esercizi su risposta libera e modi naturali nel dominio del tempo Esercizi su risposta libera e modi naturali nel dominio del tempo. Effettuare l analisi modale del sistema µ ẋ (t) x (t) y (t) x (t) per µ x () Soluzione. Il polinomio caratteristico è µ µ µ det λ µ λ

Dettagli

Realizzazione, Raggiungibilità e Osservabilità

Realizzazione, Raggiungibilità e Osservabilità Prof. Carlo Cosetio Fodameti di Automatica, A.A. 26/7 Corso di Fodameti di Automatica A.A. 26/7 Realizzazioe, Raggiugiilità e Osservailità Prof. Carlo Cosetio Dipartimeto di Medicia Sperimetale e Cliica

Dettagli

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010 Modellazione e controllo di sistemi dinamici/ca2 25/6/21 a) Si considerino i due sistemi dinamici S1 e S2 con ingresso u e uscita y descritti rispettivamente da S1 : { ẋ = 4x + 8u y = x u S2 : G(s) = 5

Dettagli

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante

Consistenza : se una distribuzione è fatta da termini costanti allora la media deve essere uguale a tale costante ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Indici di Posizione: Medie Algebriche

Indici di Posizione: Medie Algebriche ANALISI DELLE DISTRIBUZIONI STATISTICHE L Aal delle Dtrbuzo Stattche cote ell elaborazoe ateatca de dat tattc. Lo copo è quello d rcavare tutte le orazo tetche pù portat che rguardao dat raccolt. Idc d

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lear Traformaa d aplace Fuzoe d Trafermeo Mod poa Impulva Calcolo dell uca oo l greo 6-febbrao- Terza Uvera degl ud d oma G.U -FdA- Traformaa d aplace peraore leare che raforma egal el domo

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Quale retta? La retta migliore è quella che più si avvicina all insieme dei 115

Quale retta? La retta migliore è quella che più si avvicina all insieme dei 115 Quale retta? Quale retta? Questa? Oppure questa? Questa certamete o! 0 1 0 1 La retta mglore è quella che pù s avvca all seme de 115 put corrspodet alle coppe d valor (x, y ). Per la stma de parametr s

Dettagli

7. REGRESSIONE LINEARE

7. REGRESSIONE LINEARE 7. REGRESSIONE LINEARE 7. Itroduzoe Nella rlevazoe coguta d due varabl X e Y u utà tattche, lo tudo dell evetuale relazoe d dpedeza fra loro può eere effettuato a ulateralmete (quado uppoe che ua varable

Dettagli

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010 COMPITO DI SEGNALI E SISTEMI 5 febbraio 00 Teoria. Con riferimento ad un sistema lineare a tempo di screto descritto da un equazione alle differenze del tipo n m a i yk i = b i uk i i=0 i=0. Si ricavi,

Dettagli

LUOGO DELLE RADICI. ( s) D( s) kn( s) 0

LUOGO DELLE RADICI. ( s) D( s) kn( s) 0 LUOGO DELLE RADICI U LUOGO DELLE RADICI Y k G () G () N() D () ( ) kg( ) D( ) kn( ) ( ) D () W cl () kg() kg ( ) Al varare del guadago K (reale) da - a + le radc dell equazoe carattertca ()= decrvoo u

Dettagli

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2)

sistema di equazioni algebriche in Fig Fasi dello studio nel dominio di s. t Cx t Du t. (3.2.2) 1 Cp. 3 Sudo de modell ler e zor el domo d 3.1 Iroduzoe Lo udo d u modello memco el domo d è d gr lug pù emplce d quello el domo del empo quo, co opporue operzo, rece rformre l modello couo, geerle, d

Dettagli

APPLICAZIONI di MATEMATICA ESERCIZI parte 8

APPLICAZIONI di MATEMATICA ESERCIZI parte 8 APPLICAZIONI di MATEMATICA ESERCIZI parte 8 Esercizi teorici Es. 1.1 - Sia F razionale, reale positiva e F (0) = 0. Stabilire se è RP la funzione G(s) = F (s 24) Es. 1.2 - Sia F reale, razionale e sia

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 10 settembre 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali Luglio 2014 Esercizio 1 Si determini la risposta totale nel dominio complesso e si studi la stabilita asintotica e BIBO del sistema descritto dalla seguente

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaboraione di segnali e immagini: modulo segnali Giugno 2014 Tempo a disposiione: 3 ore per il totale, 2 ore il pariale. Eserciio 1 Si determini la risposta totale nel dominio complesso utiliando la trasformata

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

Richiami di Statistica

Richiami di Statistica Rcham d Stattca Ifeeza u paamet del modello d egeoe Auzo del modello d egeoe Leatà Idpedeza de edu dalle ealzzazo della vaale dpedete geee aute come eogee e ta d loo aeza d autocoelazoe de edu ua ee toca

Dettagli

Appunti di. Elaborazione dei dati sperimentali

Appunti di. Elaborazione dei dati sperimentali Apput d Elaboraoe de dat spermetal Corso d sca er cors d Laurea Igegera Uverstà d adova sura d ua gradea fsca Ua gradea fsca s rappreseta co uo (o pù) umer segut da ua utà d msura. Il umero che quatfca

Dettagli

Modellazione e controllo di sistemi dinamici

Modellazione e controllo di sistemi dinamici Modellazione e controllo di sistemi dinamici Prof. Stefano Miani 1 1 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica Università degli Studi di Udine tel: 0432 55 8262 email: miani.stefano@uniud.it

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica 1 Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2 Esame del 22 Gennaio 2018 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione di libri, dispense e quaderni.

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

TEORIA DEI SISTEMI ANALISI MODALE

TEORIA DEI SISTEMI ANALISI MODALE TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI MODALE Ing. Cristian Secchi Tel.

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

STATISTICA A K (63 ore) Richiami sulla regressione RETTA DI REGRESSIONE MODELLO DI REGRESSIONE. Marco Riani, Univ. di Parma 1

STATISTICA A K (63 ore) Richiami sulla regressione RETTA DI REGRESSIONE MODELLO DI REGRESSIONE. Marco Riani, Univ. di Parma 1 STATISTICA A K 63 ore Rcham ulla regreoe Marco Ra mra@upr.t http://www.ra.t MODELLO DI REGRESSIONE y = a + b + e =,, dove: a + b rappreeta ua retta: a = ordata all orge tercetta b = coeff. agolare coeff.

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

SECONDA PROVA INTERMEDIA DI STATISTICA CLEA gennaio 2005 COMPITO C2

SECONDA PROVA INTERMEDIA DI STATISTICA CLEA gennaio 2005 COMPITO C2 Cogome Numero d matrcola SECONDA PROVA INERMEDIA DI SAISICA CLEA 07 7-77-08 geao 00 Nome COMPIO C A f della valutazoe s terrà coto solo ed esclusvamete d quato rportato egl appost spaz. Al terme della

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato 4 Analisi nel dominio del tempo delle rappresentazioni in variabili di stato Versione del 21 marzo 2019 In questo capitolo 1 si affronta lo studio, nel dominio del tempo, dei modelli di sistemi lineari,

Dettagli