Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica)."

Transcript

1 Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo ( ), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere fgl alt e de getor bass ad avere fgl bass, l altezza meda de fgl at da getor d ua data altezza tedeva a muovers verso l altezza meda della popolazoe tera (reversoe). I altre parole, l altezza de fgl d getor eccezoalmete alt o bass tedeva a muovers verso la meda (l eccezoaltà regredva). La Legge d regressoe uversale d Galto fu cofermata da Karl Pearso, che raccolse pù d u mglao d altezze d membr d grupp d famgle. Egl trovò che l altezza meda de fgl d u gruppo d padr bass era maggore dell altezza meda del gruppo de loro padr e che l altezza meda de fgl d u gruppo d padr alt era more dell altezza meda del gruppo de loro padr, ossa che l altezza de fgl alt e bass regredsce verso l altezza meda d tutt gl uom. Nelle parole d Galto, questo corrspodeva al cocetto d regressotoward medocrt.

2 Che cos è u modello? Per la matematca u modello è ua descrzoe term matematc, coè medate fuzo, equazo, ecc., d u feomeo reale ed è grado d defre legam esstet tra le gradezze caratterstche del feomeo. Modello leare: = α + βx Equazoe della retta che descrve la relazoe tra ed. Iterpolazoe: calcolo d α e β Per la statstca u modello è u seme d potes su dat che s presume approssmo suffcetemete bee l meccasmo probablstco che l ha geerat. Modello d regressoe leare:. = α + βx + ε. E(ε ) = 0 3. var(ε ) = var( ) = σ 4. cov(ε, ε j ) = 0 ( j) 5. ota e seza errore 6. ε N(0, σ )

3 Regressoe leare Studa la relazoe tra varabl quattatve: x x x varable dpedete varable dpedete tra le qual è potzzable ua relazoe d tpo leare = α + βx S cerca la retta che approssm al meglo possble la poszoe de put el pao x, = α + βx α β I cu: α è la parte d varabltà d che o dpede da β msura la varazoe d coseguete ad ua varazoe utara d 3

4 Feomeo determstco Feomeo stocastco (o aleatoro) = temperatura grad Celsus = temperatura grad Fahrehet = spese pubblctà = fatturato = x 5 Se s osserva s può dedurre uvocamete (= seza errore) perché la relazoe è determstca (= esatta) ed è ota ella sua totaltà o s può dedurre dall osservazoe d perché ella relazoe c è ua parte che può essere rcodotta ad u modello (ad es. leare), ed ua parte casuale (o stocastca, o aleatora) che è detta errore

5 Per cascua osservazoe: e { ŷ Dat = modello + errore = α + β x + ε parte spegable attraverso ua fuzoe leare parte casuale che la fuzoe o può spegare a b x La mglore stma della vera retta, è quella pù vca possble a put: cu: ŷ = a + bx a è la stma dell tercetta b è la stma del coeffcete agolare 5

6 e { ŷ a b x ε = errore e = resduo Data la retta s ha: ŷ = a + bx = a + bx + e ŷ = e Valore teorco = valore d corrspodete a x che s trova sulla retta Valore osservato = valore d osservato corrspodeza d x Resduo = dffereza tra valore osservato e valore teorco

7 METODO DEI MINIMI QUADRATI Stma d α e β medate a e b che redoo mma la somma de quadrat de resdu e Fuzoe obettvo: ( ) ( ˆ ) ( ) f a,b = e = = a bx = m! = = = Codzo del I orde: f = ( ) = a bx 0 a = f = x ( a bx ) = 0 b = Codzo del II orde: f = ( ) 0 a f = ( ) x 0 b = Soluzo: b ( x x) ( ) ( x x) = = = = dev x σx = cod x, cov x, a = bx 7

8 Iterpretazoe del coeffcete d regressoe b b = 0: ed soo dpedet b > 0: aumeta all aumetare d = ed drettamete proporzoal b < 0: dmusce all aumetare d = ed versamete proporzoal b > 0 α µ µ b < 0 α µ µ α = b = 0 µ N.B.: la retta passa sempre per l puto d coordate (µ, µ ) µ 8

9 Ivertedo l ruolo delle varabl: = a + bx µ x = c + d a c µ x = c d c = a bx a µ µ Propretà delle due rette:. soo clate etrambe postvamete o etrambe egatvamete. s tersecao el puto d coordate (µ, µ )

10 VARIANZE DI REGRESSIONE = Varaza d regressoe: s e s = errore = stadard della regressoe dev ( reg) = e = ( ) Devaza d regressoe: Varaza d a: s s = a + = x ( x x) = = s a = errore stadard della stma d α Varaza d b: s = s b = ( x x) s b = errore stadard della stma d β 0

11 ANALISI DEI RESIDUI: MISURA DELL ADATTAMENTO D tutta a varabltà d (feomeo da spegare) la retta (modello) spega solo ua parte. Quato spega la retta? Idce d determazoe leare R Propretà d decomposzoe della devaza totale d : ( ) dev = = = ( ˆ ˆ ) = + = = ( ˆ ) ( ˆ ) = + = = dev() ŷ dev(e) dev(reg) cu ( ŷ ) = dev ( reg) = ( ˆ ) = dev ( e) = dev(e) dev(reg) = devaza d regressoe = parte della varabltà d spegata dal modello (dalla retta) = devaza resdua = parte della varabltà d o spegata dal modello (dalla retta) dev reg dev e R = = dev dev

12 Iterpretazoe dell R dev reg dev e R = = dev dev Msura la porzoe d varabltà del feomeo (formazoe) che l modello resce a rappresetare R = 0 R = 0 R la devaza totale è par alla devaza resdua: Il modello leare o spega ulla della relazoe tra e La relazoe tra ed o è leare I dat o cofermao l potes d leartà (l modello leare o è adatto a dat) la devaza totale è par alla devaza d regressoe: l modello leare spega completamete la relazoe tra e La relazoe tra ed è propro leare ( put s trovao esattamete sulla retta) = I dat cofermao perfettamete l potes d leartà (l modello s adatta perfettamete a dat) = dev ( reg) = 0 dev ( e) = 0

13 Relazo tra alcu dc dev( ) cov, cod, b = = σ dev( ) cov, cod, d = = σ ρ = = = = = = σσ σ σ cov, cod, σ dev σ dev b b d d dev dev dev dev ρ = ± b d cov, R = ρ = σσ

14 Iterpretazoe grafca Correlazoe ulla: σ = ρ = 0 R = 0 Correlazoe massma postva σ = σ σ ρ = + R = + Correlazoe massma egatva σ = -σ σ ρ = - R = +

15 Correlazoe postva: σ > 0; ρ > 0 (ovvero 0 < ρ < ) R =? ρ 0. R 0.04 ρ 0.5 R 0.4 ρ 0.8 R 0.64

16 Correlazoe postva: σ < 0; ρ < 0 (ovvero - < ρ < 0) R =? ρ -0. R 0.04 ρ -0.5 R 0.4 ρ -0.8 R

17 Prcpal obettv della regressoe leare Descrvere la relazoe tra ed Msurare la dpedeza d da Prevedere valor d corrspodet a valor d o osservat: Idcatore fedeltà () 0,933 0,400 0,80,000 Idcatore rsposta a reclam () 0,067 0,600 0,80 0,000 Dall terpolazoe rsulta: = x Domada: quale sarebbe l dcatore d fedeltà () per u azeda che avesse u dcatore d rsposta a reclam (x) par a 0.5? Rsposta: = = 4.

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Analisi della Dipendenza

Analisi della Dipendenza Aals della Dpedeza La correlazoe Il presete materale ddattco è stato parte estratto e adattato dal materale prodotto dal prof. Claudo Caplupp dell Uverst Uverstà d Veroa, che s rgraza. La resposabltà del

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Statistica per le ricerche di mercato. 10. La regressione lineare semplice

Statistica per le ricerche di mercato. 10. La regressione lineare semplice Statstca per le rcerche d mercato A.A. 0/3 Dr. Luca Secod 0. La regressoe leare semplce Il terme regressoe fu trodotto verso la metà dell Ottoceto dall glese Sr Fracs Galto (8-9) che, e suo stud d eugeetca,

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Regressione. Modelli statistici. Esempio: le automobili si vendono a peso? Esempio: le automobili si vendono a peso? prezzo=a+b*(peso-500)+errore

Regressione. Modelli statistici. Esempio: le automobili si vendono a peso? Esempio: le automobili si vendono a peso? prezzo=a+b*(peso-500)+errore Modell statstc Regressoe Ccchtell Cap. 0 La relazoe tra varabl può essere studata per mezzo d modell statstc varable (es. peso) Quato c s dscosta da u valore tpco modello varabl (peso-altezza) Quato c

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

Capitolo 13 Il modello di regressione lineare

Capitolo 13 Il modello di regressione lineare Captolo 3 Il modello d regressoe leare La fase pù operatva della statstca è dretta alla costruzoe d modell e coè d rappresetazo semplfcate, aalogche e ecessare della realtà attraverso le qual provare a

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Il modello di regressione multipla

Il modello di regressione multipla S. Borra A. D Cacco Statstca metodologe per le sceze ecoomche e socal McGraw Hll 4 ISBN 88-386-66-6 9 Il modello d regressoe multpla Relazoe statstca modello d regressoe leare multpla omoschedastctà superfce

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA Captolo 9 - Il modello d regressoe leare multpla 9 - IL MODELLO DI REGRESSIONE LINEARE MULTIPLA 9 9. Itroduzoe 9. Il modello d regressoe leare multpla 9.3 Il modello d regressoe leare multpla forma matrcale

Dettagli

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale

Statistica. Maura Mezzetti Sono indipendenti i caratteri X e Y? Y Totale. Totale .09.06 Statstca Maura Mezzett maura.mezzett@uroma.t Soo dpedet caratter X e? A B Totale X 0 0 0 0 0 0 3 0 0 0 Totale 40 0 50 .09.06 Soo dpedet caratter X e? A B C Totale X 40 0 0 40 0 40 0 60 Totale 40

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

valido se i dati E dato da max(x i )-min(x i )

valido se i dati E dato da max(x i )-min(x i ) Idc d Dspersoe o d Varabltà: Rage e DIQ No basta la coosceza d quale è la poszoe meda de dat statstc, serve ache cooscere quale è la varabltà de dat raccolt attoro al valore medo. Allo scopo d troducoo

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Analisi statistiche bivariate

Analisi statistiche bivariate Aals statstche bvarate Aals coguta d due caratter (varabl) osservat per ua utà statstca (ad es. peso ed altezza d studet) Rappresetazoe de dat tabelle elecazoe completa delle modaltà a doppa etrata grafc

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Francesco Ciatara ELEMENTI STATISTICA

Francesco Ciatara ELEMENTI STATISTICA Fracesco Catara ELEMENTI d STATISTICA 0 La dstrbuzoe statstca Per llustrare e defre gl uvers, per assemblare le utà grupp, sosttuedo a soggett class equvalet, o meglo, costrure collettv mor costtut da

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Marco Riani - Analisi delle statistiche di vendita 1

Marco Riani - Analisi delle statistiche di vendita 1 ORARIO LEZIONI ANALISI DELLE STATISTICHE DI VENDITA Marco Ra mra@upr.t http://www.ra.t Mercoledì 3 aula Lauree Mercoledì 4 6 aula Lauree Govedì 3 Eserctazoe Semar? LIBRI DI TESTO Teora Ra M., Laur F. 8,

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Rappresentazioni analitiche delle distribuzioni

Rappresentazioni analitiche delle distribuzioni Rappresetazo aaltche delle dstrbuzo Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 9 - Fogga Cocetto d rappreset esetazoe aaltca Problema: terpretare,

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale

Corso di Laurea di Scienze biomolecolari e ambientali Laurea magistrale UNIVERSITA DEGLI STUDI DI PERUGIA Dpartmeto d Chmca, Bologa e Botecologe Va Elce d Sotto, 0613 Peruga Corso d Laurea d Sceze bomolecolar e ambetal Laurea magstrale Corso d ANALISI DEI SISTEMI ECOLOGICI

Dettagli

CAP. 5 MODELLO STATISTICO LINEARE

CAP. 5 MODELLO STATISTICO LINEARE B Cadotto Versoe 7 Cap 5 Modello statstco leare CAP 5 MODELLO STATISTICO LINEARE Itroduzoe S suppoga ce la mafestazoe d uo specfco feomeo, ad esempo la domada d u certo bee d cosumo da parte delle famgle,

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

APPUNTI di FISICA SPERIMENTALE

APPUNTI di FISICA SPERIMENTALE APPUNTI d FISICA SPERIMENTALE Igegera Elettrca e Meccaca 008-009 premessa: l metodo spermetale msurazoe d gradezze fsche caratterstche degl strumet d msura sstem d utà d msura aals dmesoale aals delle

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Capitolo 2 APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD

Capitolo 2 APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD Captolo APPROSSIMAZIONI DI DATI E FUNZIONI CON MATHCAD A. M. Ferrar - Apput d LPCAC SOMMARIO. APPROSSIMAZIONE DI DATI E FUNZIONI... 3. Itroduzoe... 3. I crter d scelta... 4.. Osservazo... 5. LE CURVE DI

Dettagli

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova - -. Varabl statstche STATISTICA DESCRITTIVA modulo Corso d Laurea SMID Elda Guala e Ivao Repetto Dpartmeto d Matematca - Uverstà degl Stud d Geova I dat rportat sotto s rferscoo a studet uverstar che

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

SERVIZIO DAF: FONTI STATISTICHE

SERVIZIO DAF: FONTI STATISTICHE Gacomo Bulgarell Uffco Servz Statstc SERVIZIO DAF: FONTI STATISTICHE Mercoledì 3 ottobre 202 4. La Statstca (III) Idc d poszoe Nella rcerca scetfca e tecologca, così come elle sceze ecoomche, socal e poltche,

Dettagli

DISTRIBUZIONE DI STUDENT

DISTRIBUZIONE DI STUDENT Laboratoro d Fsca ( Meccaca e Termodamca a.a. 007/08 F.Balestra PICCOLI CAMPIONI. TET d TUDENT. INTERVALLI d CONFIDENZA: DITRIBUZIONE DI TUDENT 0.4 0. N N N5 N0 N5 N50 0. - 4-4 Itervall cofdeza P[ - μ

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Il campionamento e l inferenza

Il campionamento e l inferenza e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao

Dettagli

CONFRONTI TRA RETTE, CALCOLO DELLA RETTA CON Y RIPETUTE, CON VERIFICA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA

CONFRONTI TRA RETTE, CALCOLO DELLA RETTA CON Y RIPETUTE, CON VERIFICA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA APITOLO VII ONFRONTI TRA RETTE, ALOLO DELLA RETTA ON Y RIPETUTE, ON VERIFIA DI LINEARITA E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA 7.. ofroto tra due rette d regressoe co l test t d Studet e calcolo

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio.

= = stimatori degli indici statistici di variabilità. Definizione della varianza campionaria. Definizione dello scarto quadratico medio. regressoe- M. Maravalle dell'aqula - A.A. 3-'4 Uverstà scarto stadard devazoe stadard stmator degl dc statstc d varabltà varaza σ scarto quadratco medo rage {ma-m} σ Defzoe della varaza campoara,..., σ

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli