Appello del 27/1/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appello del 27/1/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato"

Transcript

1 Corso di Laurea in Economia e Management Appello del 27//27 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta dello studente, l esercizio 2 o il. Nel caso vengano svolti entrambi, verrà considerato ai fini del voto finale solo uno dei due (a discrezione del docente). Si noti che: Tutte le risposte vanno opportunamente motivate. L aver copiato anche un singolo esercizio causa l annullamento di tutto il compito. È possibile utilizzare una calcolatrice. Non si possono adoperare libri o appunti. È assolutamente vietato l utilizzo di un cellulare o altro strumento di telecomunicazione. Testo della prova. (27 punti) Si consideri la funzione f : A R R data da f() =. (a) Calcolare, se possibile, f( ), f(), f() ed f(2). (b) Determinare l insieme di definizione A della funzione f. (c) Determinare i punti di frontiera di A e dire se A è aperto e/o chiuso. (d) Calcolare i seguenti limiti, se possibile: lim f() lim f() lim f() (e) Determinare i punti di intersezione del grafico di f con gli assi. (f) Determinare il segno di f() al variare di. (g) Determinare gli eventuali asintoti orizzontali e verticali della funzione f. (h) Determinare gli eventuali asintoti obliqui della funzione f. (i) Calcolare la derivata della funzione f. (j) Determinare i punti di minimo e massimo relativo. (k) Determinare i punti di minimo e massimo assoluto. (l) Determinare l insieme f(a) delle immagini di f. (m) Calcolare la derivata seconda della funzione f. (n) Determinare concavità, convessità e punti di flesso della funzione. (o) Disegnare il grafico della funzione, evidenziando le intersezioni con gli assi, i punti di massimo e minimo relativo e i punti di flesso. (p) Determinare una primitiva di f.

2 (q) Determinare l area compresa tra il grafico della funzione, l asse delle ascisse e le rette = ed = (6 punti) Si calcolino i seguenti limiti: lim e e + sin( 2 ) lim (6 punti) Si consideri la seguente matrice: A = Calcolare la sua trasposta A T, e verificare che A T è anche l inversa di A.

3 Soluzione compito A. (a) f( ) non è calcolabile perché sarebbe necessario estrarre la radice quadrata di un numero negativo. Gli altri valori sono tutti calcolabili, e abbiamo f() = =, f() = = = e infine f(2) = 2 2. Notare che potete lasciare scritto f(2) come 2 2, non c è bisogno che lo approssimiate con un numero decimale! (b) L unica operazione problematica è la radice quadrata. La radice quadrata è definita quando il suo argomento è maggiore o uguale a. Quindi, la funzione f è definita per. Dunque A = } o, volendo usare la notazione con gli intervalli, A = [, + ). (c) Siccome A è un intervallo, i punti di frontiera sono gli estremi (finiti) di A. Dunque, in questo caso abbiamo un solo punto di frontiera, il numero. Per definizione, un insieme è chiuso quando il suo complementare è aperto. Il complementare di A è R \ A = (+, ) che è un intervallo aperto perché non comprende gli estremi. Dunque A è chiuso. (d) Il lim f() non esiste, in quanto non è punto di accumulazione per l insieme di definizione di f. Visto che f è continua, il lim f() si calcola facilmente per sostituzione e otteniamo lim f() = f() =. Per +, una semplice applicazione delle regole di calcolo dei limiti ci restituisce una forma indeterminata: lim f() = lim ( ) = lim Procediamo allora come segue: lim f() = lim ( ) = ( ) = lim lim ( lim ( lim ) = = +. ) = + ( ) = +, dove lim = perché è un infinito di ordine superiore rispetto a per +. (e) L intersezione con l asse delle ordinate è il punto di coordinate (, f()), ovvero O (, ). Per determinare l intersezione con l asse delle ascisse, bisogna risolvere l equazione f() =, ovvero =. Infatti, se f() =, allora (, ) è un punto di intersezione con l asse delle ascisse. Abbiamo: 2 = 2 = = = ( ) = = oppure = = oppure =. I punti di intersezione cercati sono quindi O (, ) e X (, ).

4 (f) Determinare il segno di f() al variare di vuol dire determinare per quali valori di la f() è positiva e per quali è negativa. Non vuol dire determinare se è pari e/o dispari, come invece alcuni di voi hanno fatto! Per rispondere alla domanda, potremmo risolvere le disequazioni f() > ed f() <, ma c è un metodo più semplice. Abbiamo già trovato i punti in cui f() =, ovvero = e =. Siccome f è continua, il suo valore non può cambiare di segno né nell intervallo (, ), né nell intervallo (, + ). Pertanto, è sufficiente calcolare il valore di f in un solo punto in questi intervalli per determinare il segno della funzione su tutti i punti dell intervallo. Siccome f(/) = / / = / /2 = / < e f() = = 2 = 2 >, abbiamo che f() < per (, ) e f() > per (, + ). (g) Siccome la f è continua, asintoti verticali possono esistere solo nei punti di frontiera dell insieme di definizione. Abbiamo visto che è l unico punto di frontiera. Ma siccome lim f() = è un numero finito, f non ha asintoti verticali per. Per quanto riguarda gli asintoti orizzontali, abbiamo già visto che lim f() = +. Questo vuol dire che f non ha asintoti orizzontali per +. Siccome f non è definita per numeri negativi, non può avere asintoti orizzontali per. (h) Per gli asintoti obliqui, occorre prima determinare, se esiste, il seguente limite: m = f() lim = lim = = lim ( ) = lim =. Siccome questo limite esiste, è finito, ed è diverso da zero, potrebbe esserci un asintoto obliquo. Calcoliamo allora quest altro limite: q = lim (f() m) = lim (f() ) = = lim ( ) = lim =. Siccome il limite esiste ma è infinito, non c è un asintoto obliquo. Se q fosse stato finito, allora ci sarebbe stato un asintoto obliquo di equazione y = m + q. Siccome f è definita solo per numeri positivi, non ha senso cercare asintoti obliqui per. (i) Per definizione f () = D[f()] = D[ ] = D[] D[ ] = 2. Se non ci si ricorda la derivata di, niente paura, basta riscrivere come 2 e utilizzare la formula standard per i polinomi, ovvro D[ α ] = α α. Otteniamo allora: D[ ] = D[ 2 ] = 2 = = 2. (j) Per determinare i punti di minimo e massimo relativo, bisogna studiare il segno della funzione f (). Risolviamo la disequazione f (), e

5 otteniamo: f () Dunque f () per, mentre f () < per < (o, più correttamente, per < <, perché per la f () non è definita). Ne consegue che f() è crescente per e decrescente per < <. Possiamo visualizzare la situazione come segue: f() + f () Si vede allora chiaramente che è un punto di minimo relativo mentre è un punto di massimo relativo. (k) Siccome c è un solo punto di minimo relativo (ovvero /), e la funzione f() + per +, allora è anche punto di minimo assoluto. Inoltre, proprio perché f() + per +, la funzione non ha un massimo assoluto. (l) Il punto di minimo assoluto è, per il quale la funzione assume il valore f ( ) = = =. La funzione assume valore arbitrariamente 2 grandi perché lim f() = +. Siccome è continua, assume tutti i valori maggiori di. Dunque f(a) = [, + ). (m) Per definizione f () = D[f ()] = D[ 2 ] = D[] D[ 2 ] = 2 D[ 2 ] = ( 2 2 ) 2 = 2 =. (n) Per determinare concavità, convessità e punti di flesso, bisogna studiare il segno della funzione f (). È ovvio che f () è sempre positiva per tutti i valori di > (per non è definita). Quindi f è sempre convessa e non ci sono punti di flesso.

6 (o) Ecco il grafico della funzione.6..2 O X.2 (p) Abbiamo f() d = m ( ) d = d d = = 2 2 /2 d = 2 2 /2+ /2 + = dove per comodità mettiamo tutte le costanti degli integrali indefiniti uguali a zero. Dunque F () = 2 2 è una primitiva di f. 2 (q) Dai punti (f) ed (o) si vede che f() è positiva per < < 2 e negativa per < <. Per determinare l area in questione, dobbiamo allora calcolare separatamente i due integrali f() d e 2 f() d, e poi sommare i risultati. Usando la primitiva calcolata al punto di prima, abbiamo: e inoltre 2 f() d = f() d = 2 f() = = ( ) d = = ( ) d = [ [ ( ) ] ] 2 ( = 2 2 ) = 6, = ( 2 2 ) = L area cercata è quindi = Per quanto riguarda il primo limite, si noti che sin( 2 ) è sempre limitato tra ed, quindi è un infinito di ordine inferiore di e per +. Pertanto,

7 rimpiazzando numeratore e denominatore con l infinito di ordine superiore, abbiamo e lim e + sin( 2 ) = lim e e = lim =. Per il secondo limite, una semplice sostituzione ci restituisce una forma indeterminata /. Si noti che 2, 2 e gli altri termini che compaiono nel limite non sono infinitesimi per. Pertanto, non possiamo risolvere il limite usando le proprietà degli infinitesimi. Invece, dobbiamo scomporre numeratore e denominatore della frazione in prodotti di polinomi di grado più piccolo. Siccome sia numeratore che denominatore si azzerano per =, sappiamo che entrambi sono divisibili per. Applicando Ruffini, o altri metodi analoghi, otteniamo = ( ) 2 e = ( )( + 2). Pertanto: lim = lim ( ) 2 ( )( + 2) = lim = / = La trasposta si ottiene scambiando le righe con le colonne. Otteniamo allora: A T = T = T = Per mostrare che A T è l inversa di A NON BISOGNA calcolare A, cosa molto più complessa e che non abbiamo neanche spiegato a lezione! È sufficiente mostrare che A T ha le proprietà che dovrebbe avere se fosse l inversa, ovvero che AA T è la matrice identica. Abbiamo AA T = che, con un po di conti, si vede essere proprio la matrice identica I..

8 Corso di Laurea in Economia e Management Appello del 27//27 Matematica per l Economia lettere E-Z, a.a , compito B, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta dello studente, l esercizio 2 o il. Nel caso vengano svolti entrambi, verrà considerato ai fini del voto finale solo uno dei due (a discrezione del docente). Si noti che: Tutte le risposte vanno opportunamente motivate. L aver copiato anche un singolo esercizio causa l annullamento di tutto il compito. È possibile utilizzare una calcolatrice. Non si possono adoperare libri o appunti. È assolutamente vietato l utilizzo di un cellulare o altro strumento di telecomunicazione. Testo della prova. (27 punti) Si consideri la funzione f : A R R data da f() = log e si tenga conto del limite notevole lim log =. (a) Calcolare, se possibile, f( ), f(), f() ed f(2). (b) Determinare l insieme di definizione A della funzione f. (c) Determinare i punti di frontiera di A e dire se A è aperto e/o chiuso. (d) Calcolare i seguenti limiti, se possibile: lim f() lim f() lim f() (e) Determinare i punti di intersezione del grafico di f con gli assi. (f) Determinare il segno di f() al variare di. (g) Determinare gli eventuali asintoti orizzontali e verticali della funzione f. (h) Determinare gli eventuali asintoti obliqui della funzione f. (i) Calcolare la derivata della funzione f. (j) Determinare i punti di minimo e massimo relativo. (k) Determinare i punti di minimo e massimo assoluto. (l) Determinare l insieme f(a) delle immagini di f. (m) Calcolare la derivata seconda della funzione f. (n) Determinare concavità, convessità e punti di flesso della funzione. (o) Disegnare il grafico della funzione, evidenziando le intersezioni con gli assi, i punti di massimo e minimo relativo e i punti di flesso.

9 (p) Verificare che 2 log 2 è una primitiva di f. 2 (q) Determinare l area compresa tra il grafico della funzione, l asse delle ascisse e le rette = ed = (6 punti) Si risolvano le seguenti disequazioni: e > e +. (6 punti) Si consideri la seguente matrice: A = ( ) 2 Calcolare la sua trasposta A T, e verificare che A T è anche l inversa di A.

10 Soluzione del compito B. (a) f() e f() non si possono calcolare perché l argomento del logaritmo deve essere strettamente maggiore di. Invece abbiamo f() = log = = e f(2) = 2 log 2 (quest ultimo può rimanere così, non c è bisogno di scriverne una approssimazione decimale). (b) L unica operazione problematica è il logaritmo. Sappiamo che l argomento del logaritmo deve essere un numero strettamente maggiore di. Quindi la funzione è definita per >, ovvero A = (, + ). (c) Essendo A un intervallo, i punti di frontiera sono i suoi estremi finiti. In questo caso abbiamo un solo punto di frontiera, lo. L intervallo è aperto perché non contiene i suoi estremi. (d) Il limite per non si può calcolare perché non è punto di accumulazione dell insieme di definizione A di f. Per, essendo f continua, si ha lim f() = f() =. Per + una semplice applicazione delle proprietà dei limiti ci da lim log = (lim )(lim log ) = + + = +. (e) f non ha intersezione con l asse delle ordinate perché f() non esiste. Per determinare l intersezione con l asse delle ascisse, si risolve l equazione f() =. Abbiamo che log = esattamente quando log = (il caso = non va bene perché f() non è definita). Naturalmente log = solo quando =. Per cui abbaiamo una intersezione con l asse delle ascisse nel punto di coordinate X (, ). (f) Siccome f è continua e si annulla solo in, per determinare il segno di f() basta provare con un valore di > e un valore di < (più precisamente < <, altrimenti usciamo dall insieme di definizione di f). Infatti, il segno di f non cambia nei due intervalli (, ) e (, + ). Per = e > abbiamo f(e) = e log e = e > mentre per = /e < abbiamo f(/e) = /e log(/e) = /e log e = /e <. Ne segue che f() < per < < ed f() > per >. (g) Gli asintoti verticali di f(), se ci sono, sono in corrispondenza dei punti di frontiera di A. Il testo dell esercizio ci dice che lim log = (se si prova a risolverlo direttamente viene una forma indeterminata). Dunque non ci sono asintoti verticali. Per determinare eventuali asintoti orizzontali calcoliamo lim f() che sappiamo già essere +. Non esistono pertanto asintoti orizzontali per +. Visto che la funzione non è definita per valori di negativi, non ci sono sicuramente asintoti orizzontali per. (h) Per determinare eventuali asintoti obliqui, calcoliamo m = lim f()/. Viene f() m = lim = lim log = +. Dunque non ci sono asintoti obliqui per +. Visto che la funzione non è definita per valori di negativi, non ci sono sicuramente asintoti obliqui per. (i) Per definizione, si ha f () = D[f()] = D[ log ] = D[log ]+D[] log = / + log = + log.

11 (j) Per determinare i punti di minimo e massimo relativo, occorre studiare il segno della funzione f (). Risolviamo allora la disequazione f (). Abbiamo: f () + log log Qualcuno nel compito ha concluso che questa è sempre vera perché log è sempre positivo. Niente di più falso!!!! È l argomento di log che deve essere positivo, altrimenti log non esiste, ma il risultato di log può essere negativo. Basta pensare al grafico della funzione logaritmo, che è negativo per <. Le soluzioni di log sono le stesse della disequazione che si ottiene ponendo e elevato al primo membro maggiore o uguale di e elevato al secondo membro. Ovvero: log e log e /e. Dunque f () per /e, ed ovviamente sarà f () < per < < /e. Questo, a sua volta, vorrà dire che f() è crescente per /e e decrescente per < /e. Pertanto /e è punto di minimo locale. Notare che non è punto di massimo locale, perché f non è definita in. (k) Poiché /e è l unico punto di minimo locale, e la funzione cresce quando ci allontaniamo da /e, si ha che /e è anche punto di minimo assoluto. La funzione non ha massimo assoluto perché f() + quando +. (l) Nel punto di minimo assoluto, la funzione assume il valore f(/e) = /e log(/e) = /e log(e ) = /e. Siccome f() + quando +, la funzione assume valori grandi a piacere. Essendo f continua, abbiamo che f() assume tutti i valori maggiori o uguali di /e, ovvero f(a) = [ /e, + ). (m) Per definizione f () = D[f ()] = D[ + log ] = D[] + D[log ] = /. (n) Per determinare concavità, convessità e punti di flesso bisogna studiare il segno di f (). È ovvio che per i valori in cui f() è definita, ovvero >, si ha f () = / >. Dunque f() è sempre convessa e non ci sono punti di flesso. (o) Ecco il grafico della funzione:.5.5 X.5 m.5.5 2

12 (p) Per determinare se F () = 2 log 2 2 è una primitiva di f NON È NECESSARIO calcolare l integrale indefinito di f, che è una operazione complessa che richiede di utilizzare il metodo di integrazione per parti che non abbia neanche spiegato a lezione. Invece, bisogna semplicemente usare la definizione di primitiva: F è una primitiva di f se la derivata di F è f. Abbiamo [ ] F 2 log() () = D 2 = 2 2 D[2 log ] D[2 ] = = 2 (D[2 ] log + 2 D[log ]) 2 = 2 (2 log + 2 ) 2 = = log + 2 = log. 2 Siccome otteniamo proprio f(), allora F () è una primitiva di f(). (q) Dal grafico della funzione, oltre che dal punto (f) di questo esercizio, sappiamo che f() è positiva per > e negativa per < <. Per calcolare l area in questione, allora, dobbiamo determinare separatamente f() d e 2 f() d e sommare i due risultati. Sappiamo già qual è la primitiva di f(), pertanto: e 2 f() d = [ 2 log f() d = 2 [ ] 2 log f() d = 2 = / 2 ] 2 2 = (2 log 2 ) ( /) = 2 log 2 /. Sommando i due valori abbiamo che l area complessiva è 2 log 2 /2. In realtà abbiamo un po barato. Nel determinare f() d abbiamo ] scritto [ f() d = 2 log 2 ma il valore al secondo membro non 2 si potrebbe calcolare, perché log non è definito per =. Il modo corretto di scrivere questi passaggi (ma nel compito andava bene anche la formulazione abbreviata di sopra) è questa: [ ] 2 log f() d = lim 2 = ɛ + 2 ɛ = lim ɛ + [ ( )] ɛ 2 log ɛ ɛ2. 2 Ricordando che lim log =, si verifica che questo limite è /. 2. Per la prima disequazione, prendendo il logaritmo di entrambi i membri otteniamo: e > e log e > log e > log e > 2 > >

13 Per la seconda, abbiamo + + ( + ) > > Consideriamo la disequazione L equazione associata (ovvero = ) ha discriminante = = <. Dunque, poiché il segno del termine di II grado è concorde con il segno della disequazione, si ha che la disequazione è sempre verificata. Quindi >. > La disequazione è quindi verificata per tutti gli >.. La trasposta di una matrice si ottiene invertendo le righe con le colonne. Abbiamo dunque: A T = [ 2 ( )] T = ( ) T = ( ) 2 2 Per mostrare che A T è l inversa di A NON BISOGNA calcolare A, cosa molto più complessa e che non abbiamo neanche spiegato a lezione! È sufficiente mostrare che A T ha le proprietà che dovrebbe avere se fosse l inversa, ovvero che AA T è la matrice identica. Abbiamo AA T = ( ) ( ) = ( ) ( ) 2 2 che dopo qualche calcolo si vede essere proprio uguale alla matrice identica I.

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Corso di Laurea in Economia e Management Appello del 16//017 Matematica per l Economia lettere E-Z, a.a. 016 017, compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Primo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Primo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Primo parziale di Matematica per l Economia lettere E-Z, a.a. 206 207, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta dello

Dettagli

Esempio di prova scritta per il primo parziale

Esempio di prova scritta per il primo parziale Esempio di prova scritta per il primo parziale Corso di Laurea in Economia e Management Matematica per l Economia (E-Z) a.a. 06 07 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE

SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 20 FEBBRAIO 2018 CORREZIONE SECONDO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 207/8 20 FEBBRAIO 208 CORREZIONE Esercizio Considerate la funzione f(x = log + x. Tracciate un grafico approssimativo

Dettagli

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4 oluzioni delle Esercitazioni II 4 8/09/08 A Equazioni intere i ha: + = 3 4 Portando a sinistra le e a destra le costanti diventa 6 =, = 3 + = 0 Raccogliendo si può riscrivere come ( + ) = 0, che ha per

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2017

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2017 Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 17-18) 11 novembre 2017 Compito 1 ). ) ; ; se se se ; se ) La prima cifra del numero non può essere nulla, pertanto

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 2 dicembre 20 Studio di funzioni. Studiare la seguente funzione FINO alla derivata seconda, con

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 22 luglio

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 22 luglio Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del luglio Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 8) Risolvere il seguente

Dettagli

1. Denotando con I(x 0, r) l intorno sulla retta reale di centro x 0 R e raggio r 0, si considerino i 3 insiemi

1. Denotando con I(x 0, r) l intorno sulla retta reale di centro x 0 R e raggio r 0, si considerino i 3 insiemi Matematica generale: svolgimento compito del 2 maggio 22 Tutte le risposte vanno motivate: rispondere solo si, no, o dare soltanto il risultato non basta. Gli esercizi e 2 vanno svolti perfettamente prima

Dettagli

Risoluzione del compito n. 1 (Gennaio 2018)

Risoluzione del compito n. 1 (Gennaio 2018) Risoluzione del compito n. (Gennaio 208 PROBLEMA Calcolate 3(2 i 2 i(5i 6 4+2i 2 5(3 + i. Determinate le soluzioni z C dell equazione z 2 + z = + i. Osserviamo che (2 i 2 = 4 4i = 3 4i e che 4+2i 2 = 6+4

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617/2/5

Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617/2/5 Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617//5 Determinare il grafico delle funzioni sotto indicate, rispondendo, per quando possibile, ai seguenti punti: Dove è definita la

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Esame del 15 Gennaio 2004 Vecchio Ordinamento. Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore.

Esame del 15 Gennaio 2004 Vecchio Ordinamento. Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore. Esame del Gennaio 4 Vecchio Ordinamento Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore. Esercizio n. Calcolare il massimo e minimo assoluti della seguente funzione nell intervallo,

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1 Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 7) novembre Compito ) ) L'espressione è equivalente a quindi sse ovvero, ma non può essere un numero negativo e

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ;

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ; Ingegneria Elettronica e Informatica Analisi Matematica a Foschi) Compito dell 8..08. Determina tutti i punti di accumulazione dell insieme { k E := k + k sin π ) } : k N. Soluzione: L insieme E è formato

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1 Esercizio Data la funzione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3 TEMA fx = x 3 + logx, a determinarne il dominio, calcolarne i iti agli estremi e determinare eventuali

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k Ingegneria Elettronica e Informatica Analisi Matematica 1a Foschi Compito del 18.1.018 1. Utilizzando la formula di Newton per le potenze del binomio calcola il valore della somma 9. = Soluzione: Ricordiamo

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2010/2011

Soluzioni dei problemi della maturità scientifica A.S. 2010/2011 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sunra J.N. Mosconi giugno Problema. (a) Studio di f Il dominio di f è R, e vale lim f() = ± ± Il segno di f si ottiene fattorizzando

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010

Correzione Quarto scritto di Matematica per Biologi, corso B, 2010 Correzione Quarto scritto di Matematica per Biologi, corso B, 010 31 gennaio 011 1 Parte 1 Esercizio 1.1. Per risolvere questo esercizio bisogna ricordarsi (formula.5 pag. 66 del vostro libro) che per

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

6 Grafici di funzioni

6 Grafici di funzioni 6 Grafici di funzioni Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri.ertsch - R.Dal Passo Lezioni di nalisi atematica, I edizione settembre 996, RCNE EDITRICE, via Raffaele Garofalo,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

Correzione dell appello del giorno 8 febbraio 2011

Correzione dell appello del giorno 8 febbraio 2011 Correzione dell appello del giorno 8 febbraio 2 Davide Boscaini Questa è la risol della versione del compito scritto di Analisi Matematica assegnata al gruppo B dell appello del giorno 8 febbraio 2. Invito

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi oltre che in ciascun foglio utilizzato.

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi oltre che in ciascun foglio utilizzato. UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esame di MATEMATICA San Floriano, 7/9/8 Informazioni personali Si prega di indicare il proprio nome, cognome

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

SCRITTO 02/07/18 - ANALISI MATEMATICA I

SCRITTO 02/07/18 - ANALISI MATEMATICA I SCRITTO 02/07/18 - ANALISI MATEMATICA I Esercizio 1. Determinare tutte le coppie z, w) C C tali che { zw = z 3 w 2 zw = 1 Soluzione: Dalla seconda equazione otteniamo che sia z che w non sono zero. Quindi

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Matematica - C.d.L. in Scienze Biologiche A.A. 2013/2014 Università dell Aquila Prova Scritta di Matematica del 3 febbraio Canale B Soluzioni

Matematica - C.d.L. in Scienze Biologiche A.A. 2013/2014 Università dell Aquila Prova Scritta di Matematica del 3 febbraio Canale B Soluzioni Matematica - C.d.L. in Scienze Biologiche A.A. 3/4 Università dell Aquila Prova Scritta di Matematica del 3 febbraio 4 - Canale B Soluzioni Esercizio. Sia r la retta di equazione +y =. Scrivere un equazione

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

Correzione terzo compitino, testo A

Correzione terzo compitino, testo A Correzione terzo compitino, testo A 24 maggio 2 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 2018

Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 2018 Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 218 Cognome: Nome: Matricola: 1. Disegnare il grafico della funzione

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Matematica per le Applicazioni Economiche I 12 gennaio 2017 FILA A

Matematica per le Applicazioni Economiche I 12 gennaio 2017 FILA A Matematica per le Applicazioni Economiche I gennaio 7 FILA A Laprovahaladuratadi due ore. Spiegateconmoltacuralevostrerisposte. Esercizio. (6 punti). Si diano le definizioni di insieme aperto e di insieme

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 giugno 2018 D) 73 60

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 giugno 2018 D) 73 60 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, giugno 08 Domanda + B e 3 D 6 e log lim x sin x x = x 0 + B Domanda La successione a n = n e n+ n e n non ha né massimo né minimo

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 12 Dicembre Calcolo di Derivate

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 12 Dicembre Calcolo di Derivate Esercitazioni di Matematica Generale A.A. 206/207 Pietro Pastore Lezione del 2 Dicembre 206 Calcolo di Derivate Nella seguente tabella elenchiamo le derivate delle funzioni elementari f() f () k 0 n e

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2014 Compito

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2014 Compito Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (AA 14-15) 11 novembre 2014 Compito ) L'insieme evidenziato in rosso nella figura che segue è ) con Come si nota facilmente

Dettagli

Esame del 24 Giugno Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore. (4x 1) log(x x 2 ) dx

Esame del 24 Giugno Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore. (4x 1) log(x x 2 ) dx Esame del 4 Giugno 004 Per lo svolgimento di questa prova è concesso un tempo massimo di tre ore. Esercizio n. Calcolare il seguente integrale: /4 0 (4x (x x dx. Soluzione. Calcoliamo innanzitutto una

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 15-16) 11 novembre 2015 Compito ) L'insieme evidenziato in rosso nella figura che segue è. ). Posto si ha che può

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 008/009 Calcolo, Esame scritto del 06.0.009 Consideriamo la funzione fx cos + x. a Determinare il dominio massimale di f. b Trovare tutti gli asintoti

Dettagli

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine.

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine. SOLUZIONI ESERCIZI GEOMETRIA ANALITICA ) y Il coefficiente angolare è mentre Q ha coordinate (0;) ) y E necessario passare alla forma esplicita della retta y Il coefficiente angolare è mentre Q ha coordinate

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Analisi Matematica I

Analisi Matematica I Università di Pisa - orso di Laurea in Ingegneria Edile-Architettura Analisi Matematica I Pisa, settembre omanda La funzione f : R R definita da f(x) = x + e x A) non è né iniettiva né surgettiva ) è iniettiva

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli