Esercizi sulle funzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sulle funzioni"

Transcript

1 Esercizi sulle funzioni Esercizio. Siano f, g : R R definite da x x g ln x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione. Def(f) = [, ], Def(g) = (0, + ). f g : [ e, e] R, (f g) ln x (ln x). (ln x) 0 iff x [ e, e]. (g f) : [, ] R, (g f) ln(x x ). x x > 0 per i valori di x per cui è soddisfatto il seguente sistema x ( x )( x + ) 0 Cioè se e solo se x (, ). Esercizio. Sia f : R R definita da: { x x + in cui è un parametro reale. Dire se f è una funzione da R in R e, in caso affermativo, dire per quali valori del parametro reale f è (i) totale; (ii) iniettiva; (iii) suriettiva. Per i valori del parametro per cui f è invertibile, determinare la funzione inversa di f. f è una funzione da R in R, indipendentemente dai valori che assume il parametro. L unico problema riguardo l univocità di f si incontra in x = 0. Tuttavia si osserva che { f(0) = e quindi f è effettivamente una funzione di R in R. (i) Def(f) = R, indipendentemente da, quindi f è totale, per ogni R.

2 (ii) se = 0, f non è iniettiva, infatti f () = R +. se < 0, f non è iniettiva, infatti f (0) = {, }. se > 0, f è iniettiva, infatti - siano x, x > 0, x + è iniettiva; - siano x, x < 0, x è iniettiva; - siano, x > 0 e x < 0. Supponiamo, per assurdo, che x = x +, da cui x = x, che contraddice x > 0. (iii) Se 0 f non è suriettiva. Se > 0, f è suriettiva, l inversa è x, x f x, x Esercizio 3. Sia f : R R definita da: { (x ) x ln x x Dire se f è una funzione da R in R e, in caso positivo, dire se f è totale, iniettiva, suriettiva. Esiste l inversa di f? In caso affermativo, trovare f. f è una funzione poichè (x ) = 0 = ln x, inoltre è totale. f è inoltre iniettiva, infatti per x (x ) è iniettiva e positiva, mentre, per x, ln x è iniettiva e negativa. La suriettività di f la mostriamo esibendo l inversa di f e mostrando che il suo insieme di definizione è tutto R. { x, f e x, Esercizio. Siano f, g : R R definite da x x g e x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione. Def(f) = (, 0] [, + ). Def(g) = R. h (g f) e k (f g) e x x x ( e x Esercizio 5. Sia f : R R definita da: e Def(h) = (, 0) (, + ) ), Def(k) = (0, + ). { (x ) x ln x x Dire se f è una funzione da R in R e, in caso positivo, se f è totale, iniettiva, suriettiva. Esiste l inversa di f? In caso affermativo, travare f. Sololuzione f è una funzione poiché soddisfa la proprietà di univocità, infatti f è definita in due intervalli non disgiunti che hanno in comune in punto x =. Nei due intervalli x < e x > f è una funzione poiché è definita da funzioni,

3 per cui l unico punto in cui controllare l univocità è x = e in tale punto si ha che ( ) = 0 = ln. f è totale (poichè il suo insieme di definizione è R), è suriettiva dal momento che per x f è definita da un arco di parabola che assume solamente valori negativi e che si annula solo in x =, che è anche il vertice di tale parabola; per x f è definita dalla funzione logaritmo che è positiva e assume tutti i valori positivi per x > e si annulla solo per x =. Inoltre f è iniettiva, dal momento che le due funzioni che la definiscono nei due intervalli x e x, sono iniettive nei due intervalli, nulle in x = e (x ) è negativa in x < e ln x è positiva per x >. Di conseguenza f ammette inversa: { f x e x Esercizio 6. Sia f : R R definita da: { x x Dire se f è una funzione da R in R e, in caso positivo, dire se è totale, iniettiva, suriettiva. Esiste l inversa di f? In caso affermativo trovare f. Per x > 0 e per x < 0 f è certamente univa, poiché le due componenti x e x sono univoche. Quindi l unico punto in cui controllare l univocità è il punto x = 0. Ora x x=0 = 0 = x e quindi f è univoca. x=0 f è totale, poiché Def(f) = R. Inoltre f è suriettiva, infatti le due componenti di f lo sono. Infine f è anche iniettiva, infatti: siano x, x 0 tali che f(x ) = f(x ), cioè x = x ed essendo x, x 0 deve essere x = x ; se x, x 0 si procede con in precedenza; se invece x e x sono discordi, prendiamo ad esempio x > 0 e x < 0 allora f(x ) > f(x ) dal momento che il membro di sinistra è positivo mentre quello di destra è negativo. Poichè f è totale, iniettiva e suriettiva f è invertibile e la sua inversa è { f x x Esercizio 7. Sia f : R R definita da: Al variare di R, dire quando. f è una funzione da R in R; { e x x 3 +. f è suriettiva, e quando non lo è determinare Im(f); 3. f è totale;. f è iniettiva; 5. f è biettiva. 6. Infine determinare l inversa di f ove possibile.. f è funzione per ogni R, infatti l unico punto in cui si deve controllare l univocità è x = 0 e f (0) = indipendentemente da. 3

4 . È semplice notare che se > 0 f non è suriettiva, infatti x 3 +, mentre e x (0, ], quindi tutti i valori y (, + ) non stanno nell immagine di f. Quindi se > 0 allora Im(f ) = (, ]. Se = 0 allora f è la funzione costante che non è suriettiva e Im(f ) = {}. Se < 0 f non è suriettiva poiché f > 0 per ogni x R e quindi Im(f ) = [, + ). Riassumendo (, ] se x > 0 Im(f) = se x = 0 (0, + ) se x < 0 3. f è totale dal momento che Def(f ) = R indipendentemente da.. È semplice provare che se x, x R sono concordi, f è iniettiva. Siano, ad esempio, x, x > 0 tale che f(x ) = f(x ), cioè e x = e x se e solo se x = x. Analogamente si provano i casi x, x < 0 e x = x = 0. La cosa è più delicata se x e x sono discordi. Assumiamo che x > 0 e x < 0 tali che f(x ) = f(x ), cioè e x = x 3 + e cioè è vero se e solo se x = ln(x 3 + ) Ricordiamo che x 0 e quindi deve essere x 3 + < e x 3 + > 0. La prima disuguaglianza è verificata se e solo se > 0. Restringiamoci, quindi al caso > 0. In tal caso la seconda disuguaglianza è verificata se e solo se 3 < x < 0. Quindi f è iniettiva se e solo se > f non è mai biettiva. 6. f è invertibile solamente per > 0 e ln x se x (0, ] f 3 x se x > 0 Esercizio 8. Siano f, g : R R definite da ln x x g e x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione.. Def(f) = (, 0) (, + ); Def(g) = [0, + ).. f g : [ln, + ) R, (f g) ln e x ex ; (g f)(x) non è mai definita. Esercizio 9. Date le seguenti funzioni f(x) e g(x) di R in R, determinare per ciascuna l insieme di definizione, l immagine, dire se sono, totali, iniettive, suriettive e biettive. Se le funzioni risultano iniettive calcolare l inversa (sull immagine). Quindi calcolare e dire dove sono definite h := f g e k := g f. a. x, g x 3; b. x, g x ; b. x 5, g x ;

5 c. x+ x, g x ; d. x, g x ; e. x +, g 3x ; Esercizio 0. Date le funzioni f : [0, + ) R, x + e g : R \ {0} R, g iniettive e in caso affermativo, determinare le inverse sull imagine. x+, dire se sono Esercizio. Data la funzione di R in R, x 3 x 3 determinare insieme di definizione e immagine. Dire se f è iniettiva e iniettiva, suriettiva e biettiva. In caso di risposta f sia iniettiva, determinare l inversa di f. Esercizio. Data la funzione di R in R, x x 7 per x x per < x x x + per x determinare insieme di definizione e immagine. Disegnare f(x). Dire se f è iniettiva, suriettiva e biettiva. In caso di risposta f sia iniettiva, determinare l inversa di f. Esercizio 3. Sia f : R R definita da: { x e x Dire se f è una funzione da R in R e, in caso positivo, dire se è totale, iniettiva, suriettiva. Esiste l inversa di f? In caso affermativo trovare f. Esercizio. Siano f, g : R R definite da x g e x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione. Esercizio 5. Sia f : R R, { 3x se e x se Dire se f è una funzione di R in R, e in caso positivo, dire se f è totale, iniettiva o suriettiva. Esiste la funzione inversa di f? In caso affermativo, trovare f. Esercizio 6. Siano f, g : R R definite da [ ln + x3 ] x, g e x Determinare Def(f), Def(g), Im(f) e Im(g). Inoltre determinare f g e g f dove sono definite. Esercizio 7. Siano ϕ : A B e ψ : B C due funzioni. Si dimostri che:. se ψ ϕ è suriettiva allora ψ è suriettiva;. se ψ ϕ è iniettiva allora ϕ è iniettiva. Questo l ho fatto in aula. 5

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte). ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi proposti. Risolvere la disequazione x x +. è soddisfatta x IR ]. Disegnare i grafici di (a) y = x + x + 3 ; (b) y = x x

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni Matematica per le Applicazioni Economiche I A.A. 017/018 Esercizi con soluzioni Numeri reali, topologia e funzioni 1 Numeri reali Esercizio 1. Risolvere la disequazione x 6 4x 3 + 3 0. Soluzione. Poniamo

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Compito di matematica Classe III ASA 14 maggio 2015

Compito di matematica Classe III ASA 14 maggio 2015 Compito di matematica Classe III ASA 14 maggio 015 1. Data la funzione y = f(x) rappresentata sul piano cartesiano dal grafico sottostante: a) determinare l espressione analitica di f(x) b) disegnare (su

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A. 007-008 Foglio 4 1. Data la funzione x 6x + 8 x 0, 8 cos(x) x < 0, dire se è continua in 0. Affinché la funzione sia continua in zero, deve

Dettagli

Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a A = [ 1, 1] ( 1, 1) A = {1} R. x =

Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a A = [ 1, 1] ( 1, 1) A = {1} R. x = 1 Esercizi per il corso di Matematica per Biotecnologie Sanitarie a.a. 2010 2011 Es. 1 Si considerino gli insiemi A = {2, 3} e B = {1, 2, 3}. (i) Calcolare A B (ii) Calcolare B\A (iii) Calcolare A B (iv)

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

E' suciente mostrare che una delle seguenti ipotesi non vale:

E' suciente mostrare che una delle seguenti ipotesi non vale: QUESITI sui teoremi delle fuzioni derivabili ES. Data la funzione y = x e l'intervallo I = [ 2; 2], verica che NON soddisfa alle ipotesi del teorema di Lagrange, motivando la risposta E' suciente mostrare

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

14. Siano x k = k con k = i possibili esiti del lancio di un dado Calcolare σ 2 = var(x). (A) 33 25

14. Siano x k = k con k = i possibili esiti del lancio di un dado Calcolare σ 2 = var(x). (A) 33 25 gennaio 0 VARIANTE: 0 risposte: C A C B A D D B C B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %, P (Z >.) = 0%, P (Z >.) = %, P (Z >.00) =.%, P (Z >.)

Dettagli

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M. ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.Patrizia Pera Insiemi e numeri reali Parte -a. Risolvere le seguenti disequazioni:

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Si indichi con M(t) la mantissa di t. Il limite lim x 0 M(1 x ) non esiste (b) vale 1 (c) vale 0 è uguale a M(lim x 0 (1 x )). Sia a n una successione infinitesima e consideriamo

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

, α N, quando f è una delle seguenti

, α N, quando f è una delle seguenti . Determinare lim 0 + α f, α R, e lim 0 α f funzioni: f = ln 8 cos4+, f = ln f = sin sine., α N, quando f è una delle seguenti, f = ln ln, sin sin. Calcolare la derivata della funzione f definita da f

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

Data le funzioni e con, e tre generici insiemi, non. x A X. , a sua volta a questo elemento corrisponde, tramite la funzione, l elemento

Data le funzioni e con, e tre generici insiemi, non. x A X. , a sua volta a questo elemento corrisponde, tramite la funzione, l elemento Funzione composta Chiariamo prima di tutto il concetto di unzione composta: Data le unzioni e con, e tre generici insiemi, non necessariamente numerici, si ha che tramite ad ogni (x) Y l elemento : A X

Dettagli

15. Funzioni continue: esercizi

15. Funzioni continue: esercizi 15. Funzioni continue: esercizi Esercizio 15.7. Data la funzione f : R f(r) con legge α se 0 f() = β 2 se > 0, 1. dire se per α = β = 1 la funzione è invertibile e, in caso affermativo, determinare dominio,

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 5 FEBBRAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 5 FEBBRAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 5 FEBBRAIO 2019 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici.

Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici. Esercizi vari su esponenziali/logaritmi/valore assoluto/sup ed inf/grafici. 1) Esplicitare la forma della funzione in dipendenza x (vale a dire eliminando la presenza del modulo) e disegnare il grafico

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017

Scritto di Analisi Matematica I per STM Anno Accademico 2016/17 04/09/2017 Anno Accademico 2016/17 04/09/2017 COG ) lnx) 1) Scrivere l espressione lnxx2 lnx x come polinomio, ossia nella forma ) lnx) a m x m + a m 1 x m 1 + + a 1 x + a 0. 2) a) Dire per quali x R la serie + a

Dettagli

1 Soluzione degli esercizi del capitolo 4

1 Soluzione degli esercizi del capitolo 4 "Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.

Dettagli

Prove parziali per il corso di Analisi Matematica 1+2

Prove parziali per il corso di Analisi Matematica 1+2 Prove parziali per il corso di Analisi Matematica 1+ Decinma Prova Scritta 31/05/001 Si consideri l equazione y (x) 3y (x) + y(x) = e 3x + cos(x) A Determinare tutte le soluzioni dell equazione omogenea

Dettagli

Lezione 16 (18 dicembre)

Lezione 16 (18 dicembre) Lezione 16 (18 dicembre) Funzione logaritmica Funzioni crescenti e decrescenti Funzioni e traslazioni Funzioni pari e dispari Funzioni iniettive, suriettive, bigettive Grafico della funzione logaritmica

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 0/06 docente: Elena Polastri, plslne@unife.it Esercizi 6: DIAGONALIZZAZIONE e APPLICAZIONI LINEARI Matrici ortogonali.. Verificare che

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999 assegnato il 16 giugno 1999 16 2 x+7 x 2 + 3x 4 + (2x + 1)2 2 Scrivere l equazione della circonferenza passante per i punti A = (0, 2), B = (0, 10) e tangente alla retta r di equazione x 8 = 0 3 Sia f

Dettagli

Operazioni sulle funzioni

Operazioni sulle funzioni Operazioni sulle funzioni 1. Date le funzioni x 8x + 1 x 6, g(x) = x x 3x calcolarne il dominio. Inoltre dati gli insiemi D 1 = [0, + ), D = [1, 4], D 3 = [, ] calcolare, le seguenti controimmagini (osservare

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Recupero 16 Dicembre 2013

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Recupero 16 Dicembre 2013 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Recupero 6 Dicembre 03 Cognome: Nome: Matricola: Es.: 6 punti Es.(a): 3 punti Es.(b): 5 punti Es.(c): punti Es.3: 4 punti Totale. Sia F

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Compito di Matematica per Agraria 16/1/ Si disegni il grafico della seguente funzione: 1 x

Compito di Matematica per Agraria 16/1/ Si disegni il grafico della seguente funzione: 1 x 16/1/08 f(x) = ln x. Considerata poi la funzione g(x) = 1 x si calcoli dominio ed espressione 2. Si determini il dominio della funzione: 1 x f(x) = + 4 2x 1 + 1 1 + x x 1 3. data la funzione f(x) = 3 +

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010

Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010 1 Matematica per Biotecnologie Sanitarie Prima prova parziale 1/12/2010 NOME:....... COGNOME:.... N MATRICOLA:.... Svolgere gli esercizi in modo sintetico ed accurato negli spazi predisposti o nel lato

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 014/015 Esercizi sulle funzioni Esercizio 1. Determinare il dominio delle seguenti funzioni: + ; : + ; : + 1 ; : 1 ; : [, + [ 1 ; :

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

Sapienza Università di Roma Corso di Laurea in Informatica Insegnamento di Metodi matematici per l informatica, canale 1 1 Esonero, a.a.

Sapienza Università di Roma Corso di Laurea in Informatica Insegnamento di Metodi matematici per l informatica, canale 1 1 Esonero, a.a. 1 Esonero, a.a. 2011/12 FILA A 1. Sia K un insieme qualsiasi e si considerino i seguenti insiemi: A = {1, b, K, 2}, B = {a, K, {K},{1}} e C = P(A), cioè l'insieme delle parti di A. Si stabilisca se le

Dettagli

La topologia della retta (esercizi svolti)

La topologia della retta (esercizi svolti) La topologia della retta (esercizi svolti) Massimo Pasquetto ITS Cangrande della Scala Verona 6 novembre 2017 Esercizi tratti dal capitolo 12 del libro di testo [1] e svolti nelle classi 4A e 4C dell ITS

Dettagli

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =... Analisi I - IngBM - 2015-16 COMPITO A 6 luglio 2016 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =... 1. Istruzioni Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo;

Dettagli

Limiti. Lezione per Studenti di Agraria Università di Bologna. (Università di Bologna) Limiti 1 / 24

Limiti. Lezione per Studenti di Agraria Università di Bologna. (Università di Bologna) Limiti 1 / 24 Limiti Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Limiti 1 / 24 Esempi Sia f (x) = 2x + 2 ; calcoliamo f (x) per x che assume valori vicini a 1. Per prima cosa, prendiamo

Dettagli

9 ottobre Esercizio. Verificare se le seguenti affermazioni sono valide per ogni scelta dei parametri in gioco:

9 ottobre Esercizio. Verificare se le seguenti affermazioni sono valide per ogni scelta dei parametri in gioco: ANALISI Soluzioni del Foglio 1 9 ottobre 2009 1.1. Esercizio. Verificare se le seguenti affermazioni sono valide per ogni scelta dei parametri in gioco: x < a 2 a 2 < x < a 2 ; x y < x + y ; x y x y ;

Dettagli

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 018 SOLUZIONI Esercizio 1.a 1 x + 1 x 1 + 1 x+ < 0 sommiamo le frazioni e otteniamo 3x +x x(x 1)(x+) < 0. Studiamo il segno di numeratore

Dettagli

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie

11. Sia g(y) la funzione inversa di f(x) = x 3 + x + 1. Calcolare. 14. Calcolare la somma della serie Prova N. parti e : risposte Matematica e Statistica 0 gennaio 0 VARIANTE: 0 risposte: C A C B B B B D A B A C D C D B A C D A Ricordiamo che se Z ha distribuzione normale standard, si ha P (Z >.00) = %,

Dettagli

Limiti di funzioni. Mauro Saita Versione provvisoria. Ottobre 2015

Limiti di funzioni. Mauro Saita  Versione provvisoria. Ottobre 2015 Limiti di funzioni Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2015 Indice 1 Limiti 2 1.1 Definizione di ite................................ 2 1.2 Alcuni teoremi sui iti..............................

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI Presentiamo il grafico delle funzioni elementari e delle funzioni che si ottengono trasformando

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli

CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA, AMBIENTE - TERRITORIO, CHIMICA-MATERIALI Padova I prova parziale TEMA n.

CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA, AMBIENTE - TERRITORIO, CHIMICA-MATERIALI Padova I prova parziale TEMA n. CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA AMBIENTE - TERRITORIO CHIMICA-MATERIALI Padova 10-02-06 I prova parziale TEMA n.1 Esercizio 1. Si consideri lo spazio vettoriale delle matrici M 2

Dettagli

Soluzioni del Foglio 2

Soluzioni del Foglio 2 ANALISI Soluzioni del Foglio 16 ottobre 009.1. Esercizio. Assegnata la funzione x f : R R; f(x) = x + 1 determinare l insieme di definizione, dire se l insieme immagine è limitato, determinare se l insieme

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000 assegnato il 1 giugno 1 Risolvere il sistema di disequazioni ( ) 1 x 1 3 9 3 log (13 x) > 3 x 9 x 4 + 1 < Scrivere le equazioni delle circonferenze che passano per il punto A = (, ) e sono tangenti alle

Dettagli

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A

GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO Compito A Cognome e Nome: Matricola: Corso di laurea: GEOMETRIA E ALGEBRA LINEARE Prova scritta del 16 GENNAIO 2019 - Compito A (a) (b) (c) (d) Parziali 1 2 3 4 Regole: TOTALE: Scrivere solo con penna nera o blu

Dettagli

I Esonero di Matematica Discreta - a.a. 06/07 Versione C

I Esonero di Matematica Discreta - a.a. 06/07 Versione C I Esonero di Matematica Discreta - a.a. 06/07 Versione C 1. a. Sono dati gli insiemi A = 1, 2, 3,, 5, 6} e B = numeri naturali dispari}. Determinare A B, A B, B C N (A), C N (A B), P(A B), P(A) P(B). b.

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 16/01/2018

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 16/01/2018 Liceo Scientifico Paritario R Bruni Padova, loc Ponte di Brenta, 16/01/2018 Verifica di Matematica valida per il recupero del debito formativo del I periodo - Classe V sez U Soluzione Risolvi 4 degli 8

Dettagli

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno)

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno) Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 Risultato atteso individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

SIE (Ing. Edile) Fila A 15-gennaio-2007

SIE (Ing. Edile) Fila A 15-gennaio-2007 Prova scritta di I e SIE (Ing. Edile) Fila A 15-gennaio-2007 3 1 1 1 1 1 1 1 0 1 0 0 h 1 h 2 2 2h h 1 h 2 6 3 1 h determinare il rango di A al variare del parametro reale h. 3. (3 pt) Sia V = ( 1 0) e

Dettagli