Cap. 8 Sistemi di controllo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cap. 8 Sistemi di controllo"

Transcript

1 Cap. 8 Sistemi i controllo Come già etto, in generale, un sistema è solo potenzialmente in grao i soisfare gli obiettivi per i quali è stato costruito, e cioè i comportarsi nella maniera esierata. Per conseguire tale obiettivo occorre esercitare sul sistema un complesso i azioni, ette azioni i controllo o, più semplicemente controllo. Per are una efinizione precisa i controllo si ammetta che: a) il comportamento effettivo el sistema possa essere riassunto all anamento temporale i una o più granezze uscita; b) l informazione sul comportamento esierato el sistema possa essere riassunta all anamento temporale i una o più granezze, ette granezze i comano o granezze i riferimento, il cui valore sia, istante per istante, proporzionale al valore esierato elle granezze i uscita. Forzare il sistema a comportarsi nel moo esierato significa, allora, far sì che le granezze uscita risultino proporzionali alle granezze i comano entro prefissati margini i tolleranza, contrastano gli effetti ei isturbi e elle variazioni parametriche che agiscono sul sistema. È possibile a questo punto fornire la seguente efinizione i controllo. Definizione 8. Si chiama controllo un insieme i azioni che consente i far variare nel moo voluto le granezze i uscita i un sistema, alle quali sia associato un livello i potenza notevolmente superiore rispetto a quello elle granezze i comano. Il controllo che i esercita senza l intervento ell uomo si ice controllo automatico. Un sistema i controllo automatico è un insieme i elementi fra loro interagenti, nei quali almeno una interazione rientra nella efinizione i azione i controllo automatico. Il sistema al quale si vuole imporre il comportamento esierato viene enominato, come etto sistema controllato, le granezze che esercitano l azione i controllo su i esso vengono enominate granezze controllanti, quelle i uscita vengono enominate granezze controllate. Il problema el controllo viene risolto associano al sistema controllato un opportuno sistema controllante, il cui compito è quello i sviluppare le azioni i controllo a partire alle granezze i riferimento e, eventualmente, a altre granezze. 8. Classificazione ei sistemi i controllo Un primo criterio i classificazione ei sistemi i controllo è quello basato sulle moalità i controllo impiegate. Le moalità i controllo i base sono: il controllo a catena aperta; il controllo a catena chiusa o a controreazione. Il controllo si ice a catena aperta se le azioni i controllo vengono esercitate a partire alle granezze i comano e alle cause i errore, cioè ai isturbi e alle variazioni parametriche, qualora questi possano essere misurati. In proposito, con riferimento ai isturbi si osservi che alcuni tipi i isturbi possono essere irettamente misurati, mentre altri tipi possono solamente essere stimati inirettamente, cioè a partire alle misure i altre granezze accessibili per la misura. Le variazioni parametriche, invece, possono solamente essere stimate inirettamente. Un sistema i controllo si ice a catena aperta se la moalità i controllo impiegata è quella a catena aperta. Lo schema strutturale i principio i un sistema i controllo a catena aperta è riportato in Fig Si noti che il ispositivo i controllo, usualmente realizzato meiante l impiego i sistemi igitali basati su microprocessore, ha il compito i elaborare

2 segnali i controllo i aeguato anamento temporale. Gli organi i potenza vengono utilizzati per conferire a tali segnali il livello i potenza aeguato generano azioni i controllo in grao i guiare l evoluzione el sistema controllato. SISTEMA CONTROLLANTE MISURA DISTURBI MISURA VARIAZ. PARAMETRICHE DISPOSITIVO ORGANI DI SISTEMA u( t ) DI CONTROLLO POTENZA m( t ) CONTROLLATO y( t ) Fig. 8.. Schema i principio i un sistema a catena aperta. Il controllo si ice invece a catena chiusa, o a controreazione se le azioni i controllo vengono esercitate a partire alla ifferenza tra le granezze i riferimento e le misure elle granezze controllate. Un sistema i controllo si ice a catena chiusa se in esso vengono sviluppate azioni i controllo a catena chiusa. Lo schema strutturale i principio i un sistema i controllo a catena chiusa è riportato nella Fig variazioni parametriche isturbi DISPOSITIVO DI CONFRONTO E CONTROLLO ORGANI DI POTENZA SISTEMA CONTROLLATO SISTEMA CONTROLLANTE DISPOSITIVO DI MISURA Fig. 8.. Schema i principio i un sistema a catena chiusa. L esame egli schemi i controllo a catena aperta e chiusa, mostra che: lo schema a catena aperta genera le azioni i controllo a partire alle cause i errore, isturbi e variazioni parametriche, mentre lo schema a catena chiusa genera le azioni i controllo a partire agli effetti che le cause i errore hanno sull uscita; se isturbi e variazioni parametriche potessero essere tutti misurati (anche inirettamente), i ispositivi i misura fossero istantanei e privi i errori, il ispositivo i controllo fosse in grao i elaborare i segnali i controllo in tempo reale e gli organi

3 3 i potenza fossero istantanei, lo schema a catena aperta potrebbe funzionare in assenza i errore sulle variabili i uscita; lo schema a catena chiusa, anche nelle succitate ipotesi ieali, comporterebbe la presenza i un errore finito che, a secona el tipo i legge i controllo elaborata al ispositivo i controllo, potrebbe o meno convergere a zero; lo schema a catena aperta, in presenza i isturbi o variazioni parametriche non previste, e quini non misurate, non è in grao i moificare le azioni i controllo generate in assenza i tali aizionali cause i errore, mentre lo schema a catena chiusa è in grao i reagire a esse poiché tali cause provocano effetti sulle granezze i uscita che rilevate al ispositivo i confronto e controllo, eterminano una moifica elle azioni i controllo preesistenti; Ne consegue che lo schema a catena chiusa è in grao i assicurare prestazioni migliori i un sistema i controllo a catena aperta. Ovviamente, possono essere realizzati schemi i controllo nei quali sono presenti entrambe le moalità i controllo. Un secono criterio i classificazione ei sistemi i controllo è quello basato sulle finalità che tale sistema persegue. In accoro a tale criterio, i sistemi i controllo si istinguono in: sistemi i regolazione; sistemi i asservimento. In un sistema i regolazione le granezze i riferimento sono costanti, e quini la sua finalità è quella i mantenere costanti e pari al livello esierato le granezze i uscita contrastano gli effetti ei isturbi e elle variazioni parametriche. Un sistema i asservimento è invece caratterizzato al fatto che le granezze i comano sono generiche funzioni el tempo, e la sua finalità è quella i forzare le granezze i uscita a assumere un anamento proporzionale a quello elle granezze i ingresso, entro prefissati margini i tolleranza, opponenosi anche in questo caso agli effetti ei isturbi e elle variazioni parametriche. Un terzo criterio i classificazione è quello basato sulla natura fisica elle granezze controllate. In accoro a tale criterio, i sistemi i controllo si istinguono in: sistemi i controllo cinetici; sistemi i controllo i processo. Nei sistemi i controllo cinetici le granezze controllate sono i natura meccanica (posizione, velocità, accelerazione), mentre nei sistemi i controllo i processo le granezze controllate sono i natura non meccanica (temperature, livelli, portate, tensioni, frequenze). I sistemi i asservimento i tipo cinetico vengono anche enominati servomeccanismi. Nelle Figg e 8..4 vengono illustrati ue possibili schemi i controllo, a catena aperta e a catena chiusa, il cui scopo è quello i mantenere costante il livello el liquio in un serbatoio. Nel sistema i Fig viene, anzitutto, misurato il isturbo q u. Tale informazione viene inviata al ispositivo i controllo che riceve anche quella relativa al livello esierato. A partire a tali informazioni, il ispositivo i controllo elabora un segnale elettrico che viene amplificato in livello e in potenza, al fine i forzare un motore a corrente continua a trascinare in rotazione il rotore i una pompa volumetrica alla velocità ionea a immettere nel serbatoio liquio con una portata q i ionea a contrastare gli effetti i q u. E facile renersi conto che a causa i inevitabili errori i misura e i ritari nel calcolo ella legge i controllo, il livello

4 4 el liquio non si mantiene costante e pari a quello esierato. Il serbatoio potrebbe, al limite, svuotarsi el tutto o riempirsi completamente. MOTORE C. C. ω AMPLIFICATORE DI POTENZA E DI LIVELLO DISPOSITIVO DI CONTROLLO POMPA VOLUMETRICA q i l q u MISURA DELLA PORTATA q u Fig Sistema i regolazione a catena aperta el livello el liquio in un serbatoio. Nel sistema i Fig la granezza l (t) viene misurata tramite un galleggiante e trasformata in una granezza i tipo elettrico, a essa proporzionale, collegano il galleggiante stesso al cursore i un potenziometro a ue cursori. L altro cursore viene posizionato in moo a fornire una granezza elettrica proporzionale al valore esierato el livello el liquio. La ifferenza fra le ifferenze i potenziale fra i ue cursori e la massa el potenziometro è, quini, proporzionale all errore i livello. A partire a tale granezza proporzionale all errore, il ispositivo i controllo elabora una legge i controllo che forza tale granezza, e quini l errore i livello, a seguire un anamento temporale esierato che tene a zero o a un valore inferiore a una soglia prefissata. ω AMPLIFICATORE DI POTENZA E DI LIVELLO DISPOSITIVO DI CONTROLLO guie r ( t ) r ( t ) POMPA VOLUMETRICA q i l (t) q u Fig Sistema i controllo a catena chiusa. 8. Struttura ei sistemi i controllo a controreazione Lo schema strutturale i un sistema i controllo a controreazione è illustrato nella Fig. 8..5, ove i blocchi e le granezze mostrati hanno il significato che segue. u: granezza i comano; G: generatore ella granezza i comano, ammesso che essa sia nota a priori; T, T : trasuttori, cioè ispositivi che moificano la natura fisica ei segnali ingresso u e y, generano segnali r e y c ella stessa natura fisica, ma i natura fisica iversa a u e y, legati a queste ultime granezze tramite una legge nota; le granezze i uscita ei ue trasuttori sono, generalmente, i natura elettrica per la semplicità

5 5 con cui tali segnali possono essere manipolati, e la notevole isponibilità i ispositivi in grao i manipolarli; r: segnale i riferimento in senso stretto; y c : segnale i controreazione; u : segnale agente; m: granezza controllante; C: controllore o ispositivo i controllo, che ha il compito i elaborare la legge i controllo in moo che la granezza v abbia un anamento temporale esierato; A l : amplificatore elettrico i livello (v > v ), che agisce in moo che il guaagno ella funzione i trasferimento che lega y a u sia sufficientemente elevato; A p : amplificatore elettrico i potenza (v 3 ha un potenza maggiore i v ); E: esecutore o attuatore, che fornisce in uscita una granezza fisica m i natura ionea a poter pilotare il sistema controllato; poiché le granezze i ingresso e i uscita i E hanno una potenza elevata, si può ritenere che E sia un trasuttore a livello i potenza i potenza; S.C.: sistema controllato. LINEA DI AZIONE DIRETTA G u r u v v 3 T C A l A p + E S.C. y c T v m y Fig Struttura ei sistemi i controllo a controreazione. I blocchi a C a S.C. costituiscono la linea i azione iretta, il ramo su cui è presente T costituisce la linea i controreazione. Il segnale agente u può, in generale, non essere proporzionale all errore e( t) = y ( t) y( t) ato alla ifferenza fra l uscita esierata e quella effettiva. Tuttavia, in molti casi si preferisce utilizzare uno schema i controllo nel quale la legge i controllo viene elaborata a partire all errore o a una granezza a esso proporzionale. Si supponga, a esempio, che u(t) rappresenti proprio l anamento esierato ella granezza i uscita y ( t ), e che T e T abbiano la stessa funzione i trasferimento costante e pari a h. In tal caso si ha: Assumeno, invece, che: r( t) = hu( t), yc ( t ) = hy ( t ), u ( t) = r( t) y ( t) = h( y ( t) y( t)) = he( t) (8..) c y ( t) = K u( t), (8..) LINEA DI CONTROREAZIONE

6 6 è ancora possibile realizzare un sistema i controllo basato sull errore isponeno sulla linea i controreazione un blocco i trasferenza pari a K, come inicato nella Fig u (t) + u (t) y (t) h y c K h Fig Schema i controllo basato sull errore. 8.3 Analisi ello schema funzionale a controreazione Si ammetta, aesso, che associano a ciascun elemento ello schema i Fig il relativo moello matematico e utilizzano le relazioni i interconnessione, che esprimono il moo in cui i vari elementi sono interconnessi fra loro, sia possibile pervenire allo schema funzionale i Fig U ( s ) U ( s ) Y ( s ) G (s) + c ( ) Y s H (s) Fig Schema elementare a controreazione. Come già etto in preceenza, allo schema i Fig è possibile associare la funzione i trasferimento: Y G W = U = + G H. (8..3) Inoltre, al succitato schema possono essere associate la funzione i trasferimento a catena aperta F( s ) e la funzione ifferenza D( s ), ate a: F = G H, (8..4) D = + F = + G H. (8..5) La funzione ifferenza gioca un ruolo fonamentale nello stuio ei sistemi i controllo. Infatti, alla (8..3) emerge che gli zeri ella funzione ifferenza coinciono con i poli ella W ( s ). Inoltre, in certe conizioni, esiste una importante relazione tra la funzione ifferenza e il polinomio caratteristico ella matrice inamica, A cl, el moello con lo stato el sistema a catena chiusa. Al fine i stabilire tale relazione, si consieri il sistema a controreazione i Fig. 8..8, ove i ue sottosistemi S (ella linea iretta) e S c (ella linea i controreazione) sono escritti ai seguenti moelli con lo stato:

7 7 x = A x + b u S : T y = c x x c = Ac xc + bcuc S c : T y = c x + u c c c c c (8..6) (8..7) n n con x C, x C c. Le relazioni i interconnessione sono ate a: c u = u y = u u = u T uc = y = c x T T T c cc xc c c cc xc cc x. (8..8) Fig Schema a controreazione costituito all interconnessione i S e S c. Dalle relazioni (8..6)- (8..8) si ottiene: u( t ) u ( t ) y( t ) + yc ( t ) S S c che in forma matriciale iventano: T T = + u c c c T x c = Ac xc + bcc x, x A x b ( c x c x ), T T x A b cc b cc x b = + u T. (8..9) x c bcc Ac xc 0 Assumeno come stato ell intero sistema a controreazione l insieme egli stati ei sottosistemi S e S c, ove: T T T x = x x c, il moello a catena chiusa risulta: x = A x + b, (8..0) cl cl u T y = ccl x, (8..) T T A b cc b c c b T T T Acl =, b, T cl = ccl = c 0. bcc Ac 0 Le funzioni i trasferimento ei sistemi S e S c sono ate a:

8 8 T φ G = c ( si A ) b =, (8..) T φc H = cc ( si Ac ) bc + c =, (8..3) c ove ( s ) e c sono, rispettivamente, i polinomi caratteristici elle matrici A e imostra il risultato che segue. A. Si c Teorema 8.. Il polinomio caratteristico ella matrice A, ( ), risulta: cl cl s φ φc cl = et( si Acl ) = c + = c + φ φc,(8..4) c La funzione ifferenza el sistema i Fig. 8..8, è ata a: c D = + G H = + φ φ. (8..5) Il confronto fra le (8..4) e (8..5) permette i imostrare la seguente Asserzione. Asserzione 8.. Assumeno che non esistano fenomeni i cancellazione nella funzione i trasferimento a catena aperta F = G H, gli zeri ella funzione ifferenza coinciono con gli zeri i cl, cioè con gli autovalori ella matrice inamica el moello a catena chiusa. Osservazione 8.. I fenomeni i cancellazione non evono essere presenti né nella G( s ), né nella H ( s ), né nel prootto G H ( s ) ; conseguentemente, S e S c evono essere completamente controllabili e completamente osservabili e, inoltre, non evono esistere zeri i G( s ) comuni a poli i H ( s ), né poli i G( s ) comuni a zeri i H ( s ). 8.4 Confronto fra sistemi a catena aperta e a catena chiusa Si consieri il sistema a catena aperta illustrato nella Fig. 8..9, ove Gc ( s ) e Gp ( s ) sono, rispettivamente, le funzioni i trasferimento el ispositivo i controllo e el sistema controllato, Z( s ) è la trasformata i Laplace i un isturbo z( t ), non misurabile, che agisce all uscita el sistema controllato e M ( s ) è la trasformata i Laplace ella granezza controllante. Si noti che l uscita el blocco G ( s ) non è accessibile per la misura; infatti, l insieme ei blocchi a M ( s ) a Y ( s ), compreso il isturbo Z( s ), costituiscono tutti una schematizzazione el sistema controllato. Si consieri, inoltre, il sistema a catena chiusa illustrato nella Fig. 8..0, ove N( s ) rappresenta la trasformata i Laplace i un segnale equivalente i rumore introotto al ispositivo i misura ella granezza i uscita, H ( s ) rappresenta la funzione i trasferimento el ispositivo i misura, mentre le altre granezze e/o funzioni hanno lo stesso significato illustrato in preceenza. p c

9 9 U ( s ) M ( s ) Gc ( s ) Gp ( s ) Z( s ) Fig Schema a catena aperta. + + Y ( s ) U ( s ) + M ( s ) Gc ( s ) Gp ( s ) Z( s ) + + Y ( s ) + + N( s ) H ( s ) Fig Schema a catena chiusa Con riferimento ai sistemi i Figg e 8..0, si efinisca l errore e( t ) come segue: Sistema a catena aperta e( t) = y ( t) y( t) = K u( t) y( t), (8..6) Nel ominio i s, applicano il principio i sovrapposizione egli effetti, si ha: ove: Y = Y + Y, (8..7) z Y = Z, Y = W U. L errore nel ominio i s, per la (8..6), è ato a: z u [ ] u E = K U Y = K W U Z = E + E, (8..8) u z ove W = G G è la funzione i trasferimento ingresso-uscita, e E e E ( s ) c p sono le componenti ell errore ovute all ingresso e al isturbo, rispettivamente, ate a: [ ] E = K W U, (8..9) u E = Z. (8..0) z L errore prootto alla granezza i comano è ovuto all imperfetto legame ingressouscita, al fatto cioè che la funzione i trasferimento ingresso-uscita W ( s ) è iversa a K. Infatti, usualmente, G G ( s ) risulta strettamente propria e, quini, lim W = 0. c p Conviene osservare che, al punto i vista pratico, il fatto i non potere realizzare il sistema a catena chiusa in moo tale che W = K è vantaggioso poiché il segnale u( t ), s u z

10 0 come etto, viene generato a un ispositivo reale che introuce segnali i rumore che si sovrappongono al segnale utile che si esiera generare. Conseguentemente, esistono le seguenti ue esigenze contrastanti:. quella i riprourre feelmente i segnali i comano utili;. quella i cancellare gli effetti sull uscita el rumore sovrapposto al segnale i comano utile. Al fine i soisfare con un certo margine i tolleranza le ue esigenze contrapposte, conviene scegliere la W ( s ) in moo tale che la corrisponente risposta in frequenza W ( jω ) soisfi la conizione: W ( jω) K, ω Ω u, (8..) esseno Ω u la regione ella frequenza in cui si suppone confinato il contenuto armonico el segnale i comano utile, e che il moulo ella risposta in frequenza sia riotto a zero il più rapiamente possibile all esterno i tale regione ( ω Ω ). In tale caso, infatti, enotano con u ( t) = u( t) + n ( t) l effettivo segnale i comano generato, ivi incluso il segnale i rumore nu ( t ) a esso sovrapposto, l effettiva uscita yu ( t ), nel ominio i ω, è ata a: Y ( jω) = W ( jω) U ( jω) + W ( jω) N ( jω ), u la quale mostra che el rumore sovrapposto al segnale i comano viene riprootta all uscita solamente quella parte che ha contenuto armonico all interno ella regione Ω u. L esame ella (8..0) mette in luce che il isturbo z( t ) agisce irettamente sull errore senza alcuna possibilità i contrastarlo a meno che non si procea a una sua misura. Infine, se si manifestano variazioni nei parametri ella funzione G ( s ), il comportamento el sistema potrebbe eteriorarsi poiché la conizione W ( jω) = G ( jω) G ( jω) K potrebbe non risultare più soisfatta. Sistema a catena chiusa Per il sistema a catena chiusa, si ha: u u u p c p a cui si ottiene: ( ) Y = Z + Gc Gp U H Y + N, Y = Z Gc Gp U F N + F +, (8..) ove: F = G G H. (8..3) c p Ne consegue che, in accoro con la (8..6), l errore E risulta:

11 [ ] E = K W U W Z + W N = E + E + E, (8..4) z n u z n ove le funzioni i trasferimento ingresso-uscita, W ( s ), isturbo-uscita, W ( s ) e rumoreuscita, W ( s ), sono ate a: n e le tre componenti l errore complessivo sono ate a: z Gc Gp W =, + F (8..5) Wz F (8..6) F Wn =, + F (8..7) [ ] E = K W U, (8..8) u E = W Z, (8..9) z z E = W N. (8..30) n L esame ella (8..4) mette che in un sistema a catena chiusa l errore complessivo è ato alla sovrapposizione i tre componenti, ovute alla granezza i comano, al isturbo e al rumore i misura ella granezza i uscita. Conviene esaminare in ettaglio il contributo elle tre succitate componenti. Errore ovuto alla granezza i comano Dall analisi svolta per i sistemi a catena aperta, è emerso che conviene scegliere la W ( s ) in moo tale che la corrisponente risposta in frequenza W ( jω ) soisfi la conizione: n W ( jω) K, ω Ω u, (8..3) esseno Ω u la regione ella frequenza in cui è confinato il contenuto armonico el segnale i comano utile, e che il moulo ella risposta in frequenza sia riotto a zero il più rapiamente possibile all esterno i tale regione ( ω Ωu ). Dall esame ella funzione i trasferimento W ( s ) (cfr. (8..5)) emerge che la (8..3) può essere ottenuta progettano Gc e H ( s ) in moo tale che: e scegliere H ( jω ) in moo tale che risulti: F( jω) = G ( jω) G ( jω) H ( jω), ω Ω. (8..3) c p u H ( jω), ω Ωu. (8..33) K Infatti, in tale caso, è possibile trascurare rispetto a F( jω ) nella espressione ella W ( jω ) che, pertanto, iviene:

12 Errore ovuto al isturbo Gc ( jω) Gp( jω) W ( jω) =, ω Ωu. (8..34) G ( jω) G ( jω) H ( jω) H ( jω) c p Assumeno F( jω), ω Ωu, la funzione i trasferimento isturbo-uscita soisfa la conizione W ( jω), ω Ω e, i conseguenza, le armoniche el isturbo all interno z u ella bana i frequenza utile Ω u vengono fortemente attenuate. Tuttavia, conviene osservare che, usualmente, il sistema a retroazione è strettamente proprio a catena aperta, il che implica che lim F( jω) = 0. Ne consegue che lim W ( jω) =, ω ω il che implica che eventuali armoniche el isturbo al isopra i una certa frequenza si ripercuotono sull uscita quasi per intero. Le preceenti consierazioni mostrano che il sistema a controreazione i Fig è in grao i riprourre i segnali i comano, attenuare gli effetti el rumore a essi sovrapposto e attenuare anche gli effetti i quei isturbi che hanno lo stesso contenuto armonico el segnale i comano. Nell ipotesi che il isturbo contenga armoniche a frequenza maggiore ella massima frequenza presente nel segnale utile e sufficientemente elevate, il sistema i Fig iviene inefficace per contrastare gli effetti el isturbo stesso. Se si esiera contrastare gli effetti el isturbo occorre, in tale caso, utilizzare uno schema a controreazione a ue grai i libertà, come quello illustrato nella Fig Con riferimento a tale schema, si ha che le funzioni W e W ( s ) rimangono invariate; quini, E e E ( s ) rimangono invariate, mentre l errore E ( s ) è ato a: z n ove W ( s ) ha ancora l espressione [ ] z E = K W G U, (8..35) u u u n z U ( s ) Gu ( s ) + Z( s ) M ( s ) + Y ( s ) Gc ( s ) Gp ( s ) H ( s ) Fig. 8.. Schema a catena chiusa a ue grai i libertà. Tali consierazioni mostrano che lo schema i Fig. 8.. è in grao i contrastare gli effetti egli errori ovuti al isturbo e al segnale i comano anche se tali granezze hanno contenuti armonici in bane i frequenza ifferenti. Infatti, per contrastare gli effetti el isturbo z( t ) si sceglie opportunamente la funzione F = G G H, mentre per contrastare quelli ovuti al segnale i comano basta scegliere convenientemente la funzione Gu ( s ). c p

13 3 Errore ovuto al rumore n( t ) L esame ella (8..6) mostra che nella bana i frequenze Ω u, si ha: Wn ( jω ), mentre al i fuori i Ω e al crescere i ω il moulo i tale W ( jω ) iminuisce e si ha: u n lim W ( jω) = 0. ω n Ne consegue che il sistema a controreazione è sensibile alle armoniche el rumore i misura che ricaono nel campo i frequenze Ω u, mentre attenua le armoniche a alta frequenza. Ciò costituisce un vantaggio poiché, usualmente, il rumore i misura ha un contenuto armonico confinato alle alte frequenze. Effetti elle variazioni parametriche L esame ella (8..3) mostra che nella bana i frequenze Ω u la funzione i trasferimento ingresso-uscita coincie praticamente con l inverso ella funzione i trasferimento ella linea i controreazione. Ciò significa che la controreazione attenua notevolmente gli effetti elle variazioni parametriche che si manifestano nella funzione i trasferimento ella linea i azione iretta, mentre non ha praticamente alcun effetto sulle variazioni parametriche che si manifestano nella funzione i trasferimento ella linea i controreazione. Ne consegue che gli elementi ella linea i azione iretta possono essere progettati con tolleranze maggiori i quelli ella linea i controreazione. 8.5 Analisi ello schema a retroazione per H ( s ) = Nel caso i H ( s ) =, le (8..)-(8..7) iventano: mentre l errore, per K =, iviene: ove: F = G G. (8..36) c p F W =, + F (8..37) Wz F (8..38) F Wn =, + F (8..39) ( ) E = S U Z + C N, (8..40)

14 4 S F (8..4) F C =. + F (8..4) Le funzioni S( s ) e C( s ) vengono, rispettivamente, enominate funzione i sensibilità e funzione i sensibilità complementare. Com è facile verificare, le ue funzioni sono legate fra loro alla relazione: S + C =. (8..43) Naturalmente, in tale caso, le consierazioni svolte nel paragrafo preceente sono ancora più evienti. 8.6 Impostazione ello stuio ei sistemi i controllo Nell ambito ella teoria classica, lo stuio ei sistemi i controllo viene effettuato in accoro ai criteri ella soluzione parziale e el legame iretto fra il comportamento ell intero sistema e quello elle singole parti i cui è costituito. Il criterio ella soluzione parziale consiste nell isolare e analizzare separatamente i vari aspetti el comportamento el sistema; come già osservato in preceenza, sono aspetti caratteristici el comportamento i un sistema la stabilità, il comportamento in regime permanente e il comportamento transitorio al oppio punto i vista ella prontezza i risposta e ella precisione inamica. I segnali i comano e i isturbi che si consierano nella valutazione el comportamento i un sistema sono i segnali canonici, l impulso i Dirac e i suoi integrali successivi o i segnali sinusoiali i frequenza opportuna. Il criterio el legame iretto consiste nella iniviuazione i metoi i stuio che permettono i ottenere informazioni sull intero sistema a partire a quelle sulle singole parti i cui esso è costituito.

15 5 Cap. 9 Stabilità ei sistemi i controllo a controreazione. Criterio i Nyquist Lo stuio ella stabilità ei sistemi i controllo a controreazione può essere effettuato ricorreno ai criteri algebrici i stabilità o a criteri basati sulla consierazione i funzioni associate alle singole parti i cui è costituito il sistema. Al primo gruppo appartiene il già noto criterio i Routh, mentre al secono gruppo appartiene il criterio i Nyquist che verrà illustrato nel presente capitolo. L inconveniente principale ei criteri algebrici si manifesta quano si vuole impiegarli per risolvere un problema i sintesi. In tal caso, infatti, occorre eterminare i parametri liberi el sistema controllante in moo tale che il sistema sia stabile. Utilizzano il criterio i Routh, la soluzione el problema implica quella el seguente sistema i isequazioni non lineari: 9. Criterio i Nyquist r > 0, r > 0,, r > 0. n, n, 0, Si consieri il sistema a controreazione e a ciclo unico riportato nella Fig. 8..7, che si riporta i seguito per comoità, e si ammetta che: U ( s ) U ( s ) Y ( s ) G (s) + c ( ) Y s H (s) Fig. 9.. Schema elementare a controreazione.. gli zeri ella funzione ifferenza coinciano con gli autovalori ella matrice inamica el sistema a catena chiusa;. la funzione i trasferimento a catena aperta F = G H sia propria o strettamente propria; Osservazione L ipotesi permette i valutare la stabilità interna asintotica el sistema i Fig. 9.. a partire alla islocazione egli zeri ella funzione ifferenza D = + F = + G H ; l ipotesi assicura che quest ultima funzione sia propria e quini ella forma: D = K D n i= n i= ( s z ) i ( s p ) i. (9..) Per lo stuio ella stabilità interna asintotica occorre e basta verificare che gli zeri ella funzione ifferenza D( s ) abbiano tutti parte reale negativa, in quanto essi, come etto (cfr. ipotesi ), coinciono con quelli el polinomio caratteristico relativo al sistema a retroazione. Tale verifica può essere effettuata meiante il criterio i Nyquist che si basa sul seguente principio ell argomento.

16 6 Principio ell argomento Nella ipotesi che la funzione ifferenza non abbia zeri e/o poli sull asse immaginario, la variazione i fase ξ D, ella funzione D( jω ) quano s escrive l asse immaginario a j a j, valutata positivamente in senso antiorario, è uguale a π volte la ifferenza fra il numero i poli, P, e il numero i zeri, Z, a parte reale positiva ella funzione ifferenza D( s ). In simboli, si ha: ξd, = π ( P Z). (9..) Prova. Al fine i imostrare il principio ell argomento, si consieri la Fig. 9.., ove i fattori jω zi e jω pi vengono interpretati come vettori che hanno origine nei poli o negli zeri e estremo nel punto jω. Poiché si ha (cfr. (9..)): ne consegue che: n [ ] ξ ( jω) = ψ ( ω) φ ( ω ), (9..3) D i i i= n ξ = ψ φ, (9..4) D, i, i, i= ove ψ i, e φ i, sono, rispettivamente, le variazioni i fase ei vettori jω zi e jω pi quano s escrive l asse immaginario a j a j, valutate positivamente in senso antiorario. L esame ella Fig. 9.. mostra che: ψ π per poli e zeri a parte reale negativa ( φ )= π per poli e zeri a parte reale positiva i, i, Assumeno quini che D( s ) abbia P poli e Z zeri a parte reale positiva, si ha: [ ] ξd, = ( n Z) π Ζπ ( n P) π Pπ = π ( P Z). (9..5) z i ψ ( ω ) i jω jω p i φi ( ω ) σ Fig. 9.. Interpretazione ei fattori jω zi e j pi ω. Inicano con T il numero i giri che il vettore rappresentativo ella funzione D( jω ) compie intorno all origine el piano i Nyquist ella D( jω ), si ha: ξ π T, (9..6) D, =

17 7 e quini risulta: T = P Z. (9..7) Osservazione 9.. Si noti, aesso, che P è noto poiché i poli ella D( s ) coinciono con quelli ella F( s ). Ne consegue che se si riesce a calcolare T è possibile calcolare Z con la (9..7) e quini valutare la stabilità interna asintotica el sistema a controreazione i Fig Osservazione 9..3 Aveno escluso che la funzione D( s ) abbia zeri sull asse immaginario, per la stabilità el sistema a controreazione occorre e basta che risulti Z = 0. Di conseguenza, la conizione necessaria e sufficiente i stabilità è T = P. Osservazione 9..4 Il calcolo i T può essere effettuato a partire al iagramma polare ella funzione i trasferimento a catena aperta F( jω ). Con riferimento alla Fig. 9..3, interpretano come un vettore che ha origine nel punto i coorinate (, j0), enominato punto critico, e estremità nell origine el piano i Nyquist ella F( jω ), la somma vettoriale i tale vettore e el vettore rappresentativo ella F( jω ), vettore OQ, fornisce proprio il vettore rappresentativo ella D( jω ), vettore che ha origine nel punto critico e estremità nel punto Q. Pertanto, il numero i giri che il vettore rappresentativo i D( jω ) compie intorno all origine el piano i Nyquist i D( jω ) è pari al numero i giri che il vettore rappresentativo i D( jω ) compie intorno al punto critico el piano ella F( jω ). (, j0) D( jω ) F( jω ) ω Q Im[ F( jω )] O Re[ F( jω )] Fig Determinazione el vettore rappresentativo i D( jω ) sul piano ella F( jω ). Le osservazioni 9.., 9..3 e 9..4 permettono i enunciare il seguente Criterio i Nyquist generalizzato. Criterio i Nyquist generalizzato. Sia ato un sistema lineare e stazionario, a controreazione, a ciclo unico, tale che la funzione i trasferimento a catena aperta sia propria o strettamente propria, e priva i fattori comuni a numeratore e a enominatore. Conizione necessaria e sufficiente affinché il sistema sia asintoticamente stabile internamente è che il numero i giri T che il vettore rappresentativo ella funzione D( jω ) compie attorno al punto critico el piano i Nyquist ella F( jω ), valutato positivamente in senso antiorario e per ω variabile a a +, sia pari al numero P i poli a parte reale positiva ella funzione i trasferimento a catena aperta F( s ). Osservazione 9..5 A partire alla espressione (8..3) ella funzione i trasferimento ingresso-uscita W ( s ) el sistema a controreazione i Fig. 9.., si rileva che gli zeri ella funzione ifferenza sono certamente i poli ella W ( s ). Ne consegue che il criterio i Nyquist

18 8 permette, in generale, i effettuare lo stuio ella stabilità esterna nello stato zero. L analisi preceente mette comunque in luce che è anche possibile stuiare la stabilità interna asintotica purché sia possibile accertare la completa controllabilità e la completa osservabilità ei sottosistemi sulla linea i azione iretta e su quella i controreazione. 9. Casi critici I casi critici el criterio i Nyquist hanno origine alla presenza i zeri o poli ella funzione ifferenza sull asse immaginario el piano complesso. Zeri sull asse immaginario La presenza i zeri sull asse immaginario viene immeiatamente messa in evienza al fatto che il iagramma polare ella F( jω ) passa per il punto critico. Infatti, ammesso che D( s ) abbia uno zero nel punto jω, si ha: D( j ω) = + F( j ω) = 0, (9..) a cui risulta F( j ω ) =. In tale caso, si può affermare che il sistema non è asintoticamente stabile internamente né stabile esternamente nello stato zero. Poli sull asse immaginario Il problema connesso con la presenza i poli sull asse immaginario nasce per il fatto che quano il punto s passa per uno i tali poli, a es. p, si ha una brusca variazione i fase el vettore corrisponente jω p i il cui segno è ineterminato; inoltre, il moulo ella funzione F( jω ), e quini quello ella D( jω ), tene a. Al fine i superare tale problema, si eforma l asse immaginario meiante un percorso semicircolare i raggio infinitesimo e centrato nel polo immaginario che lasci alla propria sinistra o alla propria estra il polo stesso (cfr. Fig per il caso i un polo nell origine). i b jω a σ Fig. 9.. Deformazione ell asse immaginario in prossimità i un polo nell origine. Come già osservato, quano s attraversa il polo jω il moulo tene a e il iagramma polare si spezza in ue rami, uno ei quali termina per ω = ω mentre l altro inizia a + ω = ω. Tali rami possono essere raccorati osservano che, quano s escrive uno ei ue percorsi semicircolari (a o b), l estremo el vettore rappresentativo ella funzione F( jω ) escrive tante semicirconferenze i raggio infinitamente grane quante ne inica la molteplicità el polo, in verso orario se si sceglie il percorso a o in verso antiorario se si sceglie il percorso b. Esempio 9.. Si supponga che la funzione F( s ) abbia la istribuzione poli e zeri mostrata in Fig. 9..5, cui corrispone la seguente espressione analitica nella variabile ω:

19 9 F ( jω) = K F jω jω + jω + T T. (9..) T b T jω a σ Fig. 9.. istribuzione poli-zeri i una funzione F( s ). Segueno le regole per il tracciamento el iagramma polare, si ottiene il iagramma i Fig per ω + 0, + e per ω,0. I ue tratti el iagramma polare vengono raccorati con la semicirconferenza a i raggio infinito se si sceglie il percorso a o con quella b se si sceglie il percorso b. 0 a b 0 + j Im[ F( jω )] D (jω) + Re[ F( jω )] F( jω ) Fig Diagramma completo per la valutazione ella stabilità. Punto critico a sinistra ell intersezione con il semiasse reale negativo. Come è facile verificare, sceglieno il percorso a risulta T = 0 e esseno P = 0 risulta T = P e il sistema è asintoticamente stabile internamente. Sceglieno il percorso b risulta T = e esseno P = il sistema risulta asintoticamente stabile internamente. E facile renersi conto che se il punto critico si trovasse alla estra el punto i intersezione el iagramma polare con il semiasse reale negativo, come illustrato nella Fig. 9..4, il sistema sarebbe instabile. Infatti, per quanto concerne il calcolo i T, sceglieno il percorso a si ha T =, mentre sceglieno il percorso b si ha T =. Poiché nel primo caso P = 0 (il polo nell origine viene computato come un polo a parte reale negativa), mentre nel secono caso P = (il polo nell origine viene computato come un polo a parte reale positiva), si ha in entrambi i casi T P e Z =. Ne consegue che il sistema è instabile. 9.3 Sistemi a stabilità regolare e conizionata 0 +

20 0 Dall esempio 9.. si evince che, aumentano il guaagno ella funzione i trasferimento a catena aperta, il sistema a stabile iventa instabile. Può, comunque, accaere che il passaggio alla stabilità alla instabilità si manifesti anche a seguito i riuzioni el guaagno. Con riferimento alle variazioni el guaagno, i sistemi i controllo si classificano in: sistemi a stabilità regolare sistemi a stabilità conizionata. 0 a Im[ F( jω )] b 0 + D (jω) + Re[ F( jω )] F( jω ) 0 + Fig Diagramma completo per la valutazione ella stabilità. Punto critico a estra ell intersezione con il semiasse reale negativo. I sistemi a stabilità regolare sono caratterizzati alla esistenza i un solo valore critico el guaagno k c tale che per k > kc il sistema a catena chiusa risulta instabile (IST), mentre k < k c il sistema è asintoticamente internamente stabile (S) (cfr. Fig. 9.3.). Per tali sistemi, il iagramma polare ella funzione i trasferimento a catena aperta presenta una sola intersezione con il semiasse reale negativo. S IST k c k Fig Influenza el guaagno sulla stabilità: sistemi a stabilità regolare. Nella Fig sono riportati i iagramma polari per sistemi a stabilità regolare corrisponenti a moelli stabili, instabili e al limite i stabilità (LS). Il guaagno critico è quello corrisponente al caso in cui il iagramma polare ella funzione i trasferimento a catena aperta passa per il punto critico (-, j0). S

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i ontrollo Come già etto, in generale, un sistema è solo potenialmente in grao i soisfare gli obiettivi per i quali è stato ostruito, e ioè i omportarsi nella maniera esierata. Per onseguire

Dettagli

IL SISTEMA DEI PREZZI DI LEON WALRAS

IL SISTEMA DEI PREZZI DI LEON WALRAS IL SISTEMA DEI PREZZI DI LEON WALRAS E L EQUILIBRIO ECONOMICO GENERALE Sommario: 1. Introuzione 2. Il sistema ei prezzi i Walras e l equilibrio economico generale 3. Le contraizioni implicite nel sistema

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1 INDAGINE MULTISCOPO SULLA SICUREZZA DELLE DONNE STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI - INTRODUZIONE La popolazione i interesse ell inagine è costituita alle onne i età compresa

Dettagli

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza O2. Introuzione all'ottica geometrica Premessa Lo stuio egli strumenti astronomici non puoç prescinere al comportamento onulatorio ella luce; tuttavia l'ottica geometrica eç un punto i partenza necessario,

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni 61 Capitolo 4 Funzionamento ei gruppi elettrogeni e loro protezioni 4.1 ntrouzione Nel presente capitolo si prenono in esame le moalità i esercizio e i funzionamento ei gruppi elettrogeni nei confronti

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande)

Progetto di un solaio in legno a semplice orditura (a cura di: ing. E. Grande) Progetto i un solaio in legno a semplice oritura (a cura i: ing. E. Grane) 1. PREMESSA Il presente elaborato concerne la progettazione i un solaio in legno a semplice oritura con estinazione uso i civile

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Navigazione di Veicoli Autonomi

Navigazione di Veicoli Autonomi Luca Baglivo Navigazione i Veicoli Autonomi Pianificazione e Controllo i Traiettoria Appunti per il corso i Robotica Spaziale per Ingegneria Aerospaziale PREFAZIONE Lo scopo ella presente ispensa è quello

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

SENSORI PER GRANDEZZE MECCANICHE

SENSORI PER GRANDEZZE MECCANICHE Sono utili per la misura i: SENSORI PER GRANDEZZE MECCANICHE granezze legate al moto, come posizione, spostamento, rugosità superficiale, velocità i flusso, velocità i rotazione,... granezze legate alle

Dettagli

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana Nota metoologica I ati vengono raccolti nell ambito ell inagine campionaria sulle famiglie Aspetti ella vita quotiiana, ce fa parte i un sistema integrato i inagini sociali (Inagini Multiscopo) e è volta

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Teorema di Sostituzione

Teorema di Sostituzione Teorema i Sostituzione Le Fiure (a) e (b) i seuito riportate, si riferiscono al Teorema i sostituzione che afferma: Una impeenza Z a percorsa a una corrente, può essere sostituita un eneratore i tensione

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Diodi: Complementi e applicazioni

Diodi: Complementi e applicazioni SOMMO - MMUNTÀ DSTU N UN GUNZONE PN... Esempio 1 :... - DSTUZONE D UN GUNZONE PE ECCESSO D O PE ECCESSO D V... - CONNESSONE N PEO D DUE DOD... Esempio :...3 - CONNESSONE N SEE D DUE O PÙ DOD...3 Esempio

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A Esercizio Un anello toroiale i piccola sezione avente raggio meio R = 0cm è fatto i ferro con permeabilità magnetica relativa = 5000. Una bobina con N = 000 spire è avvolta sulla superficie ell anello.

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Target standard per sensori di prossimità induttivi. Target. 1mm

Target standard per sensori di prossimità induttivi. Target. 1mm ensori i prossimità inuttivi Introuzione Principi i funzionamento ei sensori i prossimità inuttivi Bobina Oscillatore Circuito i attivazione Circuito elettrico i uscita I sensori i prossimità inuttivi

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI Università egli Stui i Paova Facoltà i Ingegneria Corso i Laurea Specialistica in Ingegneria Elettrotecnica Tesi i Laurea Specialistica: MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

Criteri di dimensionamento per cilindri e servocilindri

Criteri di dimensionamento per cilindri e servocilindri www.atos.com Tabella -2/I Criteri i imensionamento per cilinri e servocilinri SWC Cyliners esigner SWC è un ottimo software per la progettazione veloce e efficace ei Cilinri e Servocilinri Atos, isponibile

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 5

APPUNTI DI TOPOGRAFIA MODULO 5 PPUNTI DI TOPOGRFI MODULO 5 MISUR DELLE DISTNZE E DEI DISLIVELLI PROF. SPDRO EMNUELE UNIT DIDTTIC N 1 MISUR DELLE DISTNZE http://spaaroemanueletopografia.bloog.it/ RIDUZIONE DELL DISTNZ LL SUPERFICIE DI

Dettagli

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18 Nozioni generali Tipi i cuscinetti 6 efinizioni 6 Vocabolario 8 Attituini 9 Normalizzazione e intercambiabilità 12 Le norme 12 Intercambiabilità 12 imensioni e coifica 14 Coifica generale 14 Coice completo

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse ISSN 2037-2582 5 Strumenti e tecniche i Business Intelligence per valutare l attenibilità elle stime campionarie i inagini complesse Strumento i ricerca a cura i Alessanro Martini strumenti L Istituto

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi Capitolo : La sintesi el iamante a basse pressioni. Diagramma i fase el carbonio, paraosso termoinamico e ruolo ell irogeno nella sintesi el iamante a basse pressioni. Moelli i nucleazione e i crescita

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence nelle operazioni straorinarie: funzione, tipologie e moalità i esecuzione i Massimo Buongiorno e Marco Capra Il presente lavoro vuole tracciare un quaro introuttivo,

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

1. La retta IS in economia aperta

1. La retta IS in economia aperta 999, Riccaro Marselli. La riprouzione i questa ispensa, e parti i essa, per L'economia aperta Questa ispensa illustra le moifiche che è necessario apportare allo schema base IS-LM per tener conto ei legami

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

Considerazioni sulle specifiche.

Considerazioni sulle specifiche. # SINTESI PER TENTATIVI IN ω PER GLI ASSERVIMENTI # Considerazioni sulle specifiche. Come accennato in precedenza, prima di avviare la prima fase della sintesi di un sistema di asservimento, e cioe la

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli Macroeconomia Laura Vici laura.vici@unibo.it www.lauravici.com/macroeconomia LEZIONE 8 Rimini, 7 ottobre 2014 Macroeconomia 158 Il mercato ei titoli Sul mercato ei titoli si etermina il prezzo ei titoli

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI Relazione Valutazione ell apporto solio ei principali corsi acqua el golfo i Salerno Consulenti e collaboratori: Prof. Eugenio Pugliese Carratelli Prof. Enrico Foti (Univ. Catania) Prof. Vittorio Bovolin

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria La liquiazione mortis causa ella quota sociale agli erei i un socio i società i persone i Fabio Giommoni * La morte i un socio i società i persone impone generalmente la liquiazione ella quota agli erei.

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima).

Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Spiegare brevemente il principale beneficio del controllo in cascata (per sistemi a fase non minima). Il controllo in cascata si usa per migliorare la risposta al setpoint, e soprattutto al disturbo di

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

L interferenza e la natura ondulatoria della luce

L interferenza e la natura ondulatoria della luce CAPITOLO 5 L interferenza e la natura onulatoria ella luce Un serpentone lungo più i 6 mila chilometri, che corre a oltre mila anni nel cuore ella Cina. È sicuramente grazie alla sua graniosità e alla

Dettagli

Qualsiasi testo di elettronica o di sistemi dedica

Qualsiasi testo di elettronica o di sistemi dedica NOVEMBRE 2004 N. 234 IATTICA elle CIENZE 7 Il principio ella controreazione/1 In questa prima parte l Autore efinisce il concetto i controreazione, che ha un ruolo essenziale non solo in elettronica ma

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua

Servomeccanismi 1. Cassa. Albero. 1. Il motore elettrico in corrente continua Servomeccanismi 1 1. Il motore elettrico in corrente continua Descrizione fisica Il motore è contenuto in una cassa che in genere è cilindrica. Da una base del cilindro fuoriesce l albero motore; sulla

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

Gestione economico-aziendale

Gestione economico-aziendale La valutazione i un aziena nell ipotesi i un acquisizione: un caso i applicazione el metoo ei multipli i Massimo Buongiorno * e Marco Capra ** Il presente lavoro illustra un incarico svolto nell interesse

Dettagli

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa

UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa UNIT 8 Soluzione del problema di controllo con Modelli Poveri 3 - Sintesi per tentativi degli asservimenti nel dominio della variabile complessa Corso di Controlli Automatici Prof. Tommaso Leo Indice UNIT

Dettagli

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio SCHEDA DI APPROONDIMENTO Prove i laoratorio PROVE DI RESISTENZA A TRAZIONE Le prove i resistenza a trazione sono essenziali per valutare le caratteristiche fonamentali e il comportamento el materiale sia

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio UNVERSA DEGL SUD D BOLOGNA FACOLA D NGEGNERA Corso i Laurea in ngegneria per l Ambiente e il erritorio CORSO D FSCA ECNCA AMBENALE Docente: Prof. Massimo Garai SSEM PER LO SFRUAMENO DELL ENERGA SOLARE

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSIÀ DEGLI SUDI DI PADOVA FACOLÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCARONICA ESI DI LAUREA MAGISRALE ANALISI DELLE PRESAZIONI DI UN MANIPOLAORE PARALLELO PER IL PICK-AND-PLACE RAMIE INDICI

Dettagli

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI Ultimo aggiornamento 30/04/013 DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI 1-1 Ultimo aggiornamento 30/04/013 INDICE 1. Introuzione al corso...1-4. Le fale acquifere...-6.1. Legge i Darcy...-7.. Fale

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

APPENDICE TECNICA. 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione dei cuscinetti volventi - Pag.3

APPENDICE TECNICA. 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione dei cuscinetti volventi - Pag.3 1 APPENDICE TECNICA 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione ei cuscinetti volventi Pag.3 2. APPELLATIVO DEI CUSCINETTI VOLVENTI 2.1 Sigle ei cuscinetti volventi Pag.4 2.2 Schermi e anelli

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria Tributi, accertamento e giurispruenza tributaria Riflessi fiscali ella copertura elle perite nelle società in accomanita semplice i Fabio Giommoni * La copertura elle perite elle società in accomanita

Dettagli

SPECIALE STRESS LAVORO-CORRELATO

SPECIALE STRESS LAVORO-CORRELATO SPECIALE STRESS LAVORO-CORRELATO MINI GUIDA ALLA VALUTAZIONE E GESTIONE DEL RISCHIO Ambiente & Sicurezza sul Lavoro Pubblicazione iscritta al N. 485/85 el 29-10-1985 el Registro ella Stampa presso il Tribunale

Dettagli

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni *

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni * La reazione el primo bilancio esercizio successivo alla trasformazione i una società i persone in società i capitali i Fabio Giommoni * La reazione el bilancio esercizio a parte i una società i capitali

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011 Università i Siena See i Grosseto Secono Semestre 200-20 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 20 Un ultimo punto sul capitolo 5 Risparmio Investimento in economia aperta? o, serve

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA.

IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. CORSO DI CHIMICA E PROPEDEUTICA BIOCHIMICA FACOLTA DI MEDICINA E CHIRURGIA. IL MODELLO DI MICHAELIS E MENTEN PER LA CINETICA ENZIMATICA. Un enzima è una proteina capace di catalizzare una specifica reazione

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver GIURIA DOMANDE DI GINNASTICA RITMICA 1 Quale elle seguenti affermazioni è corretta: Corso Giuice nazionale a. La qualifica i Giuice nazionale si ottiene partecipano a un corso inetto alla F.G.I. e superano

Dettagli