L'equazione di continuità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L'equazione di continuità"

Transcript

1 L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t ρ (t, x) 3 x 0 Risulta utile riformulare la preceente relazione calcolano la erivata temporale come limite el rapporto incrementale. ρ (t, x) 3 x lim t h 0 h Aggiungeno e sottraeno la quantità h ρ (t, x) 3 x t lim + h 0 { ρ (t + h, x) 3 x V (t+h) ρ (t + h, x) 3 x si ottiene ρ (t, x) 3 x { ρ (t + h, x) 3 x ρ (t + h, x) 3 x + h V (t+h) } ρ (t + h, x) 3 x ρ (t, x) 3 x In quest' ultima espressione si riconosce negli ultimi ue termini el membro estro la erivata parziale ella ensità i carica, mentre nei primi ue l'integrale ella ensità i carica eseguita sul ominio ato alla ierenza ei volumi V (t + h) \. ρ (t, x) 3 x lim h 0 t h \V (t+h) ρ (t + h, x) 3 x + t ρ (t, x) 3 x Nel limite i h 0 il ominio V (t + h) \ è ienticabile con la supercie boro i, e l'elemento i volume si può scrivere come 3 x v ˆn h S ove v ˆn h è lo spazio percorso alle particelle sulla supercie S ortogonalmente alla supercie stessa nel tempo h. Scriviamo unque ρ (t, x) 3 x lim t h 0 ρ (t + h, x) v ˆn h S + h ρ (t, x) v ˆn S + t ρ (t, x) 3 x } t ρ (t, x) 3 x

2 Utilizzano inne il teorema i Gauss si può trasformare il primo termine el secono membro in un integrale i volume t ρ (t, x) 3 x (ρ (t, x) v) 3 x + t ρ (t, x) 3 x Dato che la conservazione ella carica impone che t ρ (t, x) 3 x 0 e ato che il risultato eve valere per qualsiasi ominio i integrazione scelto, si ottiene l'equazione i continuità (ρv) x + t ρ 0 2 Una imostrazione un po' più formale. Una piccola premessa. Preniamo in esame un mezzo continuo, a esempio una istribuzione i carica, e ientichiamo la posizione i un punto o particella el continuo in un certo istante con la coorinata x. Al tempo t la particella si trova in posizione con velocità x x (t, x ) v t x (t, x ) v (t, x ) Supponiamo che la funzione x x (t, x ) sia invertibile (e ierenziabile), e inichiamo l'inversa come x x (t, x). Gli jacobiani i queste ue trasformazioni sono inicati con e ipenono ovviamente al tempo. Esplicitamente e J t ( x (t, x ) ) et x ( x Jt ) (t, x) et x Le escrizioni elueriana e lagrangiana. È possibile escrivere le granezze i interesse fonamentalmente secono ue approcci: in quello euleriano si ssa un punto x nello spazio e si osserva l'evoluzione ella granezza in questione, iciamo G, ovvero G E G E (t, x) Nell'approccio cosietto lagrangiano si ssa invece una particella, con coorinate iniziali x G L G L (t, x ) e si osserva l'evoluzione i G insegueno la particella nel suo cammino. Ovviamente, l'approccio lagrangiano - ssata la particella - corrispone a un approccio euleriano in cui il punto x si sposti segueno la particella stessa: G L (t, x ) G E (t, x (t, x )) () 2

3 Analogamente l'approccio euleriano - con un punto sso - corrispone a un approccio lagrangiano in cui istante per istante venga ispezionata una particella ierente, tale che in ogni istante la particella ispezionata sia nel punto x: G E (t, x) G L (t, x (t, x)) Dall' ientità () si ottiene inoltre una relazione importante t G L (t, x ) t G E (t, x (t, x )) t G E (t, x (t, x )) + x G E (t, x (t, x )) x (t, x ) t t G E (t, x (t, x )) + v x G E (t, x (t, x )) D Dt G E (t, x (t, x )) (2) La erivata D Dt G E viene etta erivata materiale o erivata lagrangiana. Nel seguito tutte le granezze i interesse (ρ,v, etc...) sono intese come euleriane. La conservazione ella carica. Ientichiamo al tempo iniziale un certo volume el continuo, che altro non è se non un insieme i punti all'istante iniziale {x }. Al tempo t i punti el volume saranno evoluti nelle posizioni {x (t, x )}: chiamiamo questo nuovo volume. Poiché la carica si conserva, si avrà, qualsiasi sia il volume, che ρ (t, x) 3 x 0 t Esegueno un cambio i variabili utilizzano la funzione x x (t, x ) si può scrivere 2 0 t ρ (t, x) 3 x t ρ (t, x (t, x )) 3 x Ora che il ominio i integrazione non ipene più al tempo iviene possibile erivare sotto il segno i integrale. 0 t ρ (t, x (t, x )) 3 x t {ρ (t, x (t, x )) } 3 x Utilizzano la (2) è possibile riscrivere la preceente come t ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x Si ricora che in un cambio i variabili x f (y) il ominio i integrazione A iviene A f (A), e unque applicano la trasformazione inversa x x (t, x) al volume si ottiene il volume 2 Si può imostrare come > 0 t, e unque 3

4 D Dt ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x 0 Come è possibile veere in appenice, la erivata temporale i vale t x v (t, x) e unque - sottointeneno gli argomenti elle funzioni - 0 D Dt ρ + ρ x v 3 x [ ] ρ + (v ) ρ + ρ x v (t, x) 3 x t ] [ t ρ + (ρv) Poiché il preceente risultato vale inipenentemente al volume scelto, si arriva irettamente all'espressione ell'equazione i continuità 3 x t ρ + (ρv) 0 Appenice: la erivata temporale el eterminante jacobiano. Calcolano esplicitamente il limite el rapporto incrementale si ottiene - ricorano che è possibile scrivere x(t+δt) x(t) x x x(t+δt) x(t) t J +δt t lim δt 0 { δt ( ) ( )} x (t + δt) x (t) x (t) lim et δt 0 x (t) x et x ( ) { ( ) } x (t) x (t + δt) et x lim et δt 0 x (t) { ( ) } x (t + δt) lim et δt 0 x (t) Ora, esplicitano le componeneti el vettore x, e sviluppanolo come funzione el tempo no al secono orine, si ha che x i (t + δt) x i (t) + δt v i (t) (3) x i (t + δt) x k (t) x i (t) x k (t) + δt v i (t) x k (t) δ ik + δt v i (t) x k (t) δ ik + δt v i (t) x i (t) δ ik ( + x v (t)) δ ik 4

5 Il eterminante ella preceente matrice vale ( ) xi (t + δt) et ( + x v (t)) x k (t) Sostitueno il risultato ottenuto nella (3) si ottiene il risultato cercato t x v (t, x) 5

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza O2. Introuzione all'ottica geometrica Premessa Lo stuio egli strumenti astronomici non puoç prescinere al comportamento onulatorio ella luce; tuttavia l'ottica geometrica eç un punto i partenza necessario,

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

Soluzioni Esercitazione VIII. p(t)dt = R

Soluzioni Esercitazione VIII. p(t)dt = R S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t u + perché

Dettagli

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

Navigazione di Veicoli Autonomi

Navigazione di Veicoli Autonomi Luca Baglivo Navigazione i Veicoli Autonomi Pianificazione e Controllo i Traiettoria Appunti per il corso i Robotica Spaziale per Ingegneria Aerospaziale PREFAZIONE Lo scopo ella presente ispensa è quello

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011 Università i Siena See i Grosseto Secono Semestre 200-20 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 20 Un ultimo punto sul capitolo 5 Risparmio Investimento in economia aperta? o, serve

Dettagli

IL SISTEMA DEI PREZZI DI LEON WALRAS

IL SISTEMA DEI PREZZI DI LEON WALRAS IL SISTEMA DEI PREZZI DI LEON WALRAS E L EQUILIBRIO ECONOMICO GENERALE Sommario: 1. Introuzione 2. Il sistema ei prezzi i Walras e l equilibrio economico generale 3. Le contraizioni implicite nel sistema

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i controllo Come già etto, in generale, un sistema è solo potenzialmente in grao i soisfare gli obiettivi per i quali è stato costruito, e cioè i comportarsi nella maniera esierata. Per

Dettagli

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana Nota metoologica I ati vengono raccolti nell ambito ell inagine campionaria sulle famiglie Aspetti ella vita quotiiana, ce fa parte i un sistema integrato i inagini sociali (Inagini Multiscopo) e è volta

Dettagli

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi Capitolo : La sintesi el iamante a basse pressioni. Diagramma i fase el carbonio, paraosso termoinamico e ruolo ell irogeno nella sintesi el iamante a basse pressioni. Moelli i nucleazione e i crescita

Dettagli

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A Esercizio Un anello toroiale i piccola sezione avente raggio meio R = 0cm è fatto i ferro con permeabilità magnetica relativa = 5000. Una bobina con N = 000 spire è avvolta sulla superficie ell anello.

Dettagli

1. Richiami di probabilità

1. Richiami di probabilità 6 1. RICHIAMI DI PROBABILITÀ 1. Richiami i probabilità Forniamo un compenio elle nozioni basilari i probabilità che ci saranno utili. Per maggiori ettagli, si possono consultare i testi [Billingsley, 1995],

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria Tributi, accertamento e giurispruenza tributaria Riflessi fiscali ella copertura elle perite nelle società in accomanita semplice i Fabio Giommoni * La copertura elle perite elle società in accomanita

Dettagli

Gestione economico-aziendale

Gestione economico-aziendale La valutazione i un aziena nell ipotesi i un acquisizione: un caso i applicazione el metoo ei multipli i Massimo Buongiorno * e Marco Capra ** Il presente lavoro illustra un incarico svolto nell interesse

Dettagli

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18 Nozioni generali Tipi i cuscinetti 6 efinizioni 6 Vocabolario 8 Attituini 9 Normalizzazione e intercambiabilità 12 Le norme 12 Intercambiabilità 12 imensioni e coifica 14 Coifica generale 14 Coice completo

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 5

APPUNTI DI TOPOGRAFIA MODULO 5 PPUNTI DI TOPOGRFI MODULO 5 MISUR DELLE DISTNZE E DEI DISLIVELLI PROF. SPDRO EMNUELE UNIT DIDTTIC N 1 MISUR DELLE DISTNZE http://spaaroemanueletopografia.bloog.it/ RIDUZIONE DELL DISTNZ LL SUPERFICIE DI

Dettagli

L interferenza e la natura ondulatoria della luce

L interferenza e la natura ondulatoria della luce CAPITOLO 5 L interferenza e la natura onulatoria ella luce Un serpentone lungo più i 6 mila chilometri, che corre a oltre mila anni nel cuore ella Cina. È sicuramente grazie alla sua graniosità e alla

Dettagli

Teorema di Sostituzione

Teorema di Sostituzione Teorema i Sostituzione Le Fiure (a) e (b) i seuito riportate, si riferiscono al Teorema i sostituzione che afferma: Una impeenza Z a percorsa a una corrente, può essere sostituita un eneratore i tensione

Dettagli

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio UNVERSA DEGL SUD D BOLOGNA FACOLA D NGEGNERA Corso i Laurea in ngegneria per l Ambiente e il erritorio CORSO D FSCA ECNCA AMBENALE Docente: Prof. Massimo Garai SSEM PER LO SFRUAMENO DELL ENERGA SOLARE

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria La liquiazione mortis causa ella quota sociale agli erei i un socio i società i persone i Fabio Giommoni * La morte i un socio i società i persone impone generalmente la liquiazione ella quota agli erei.

Dettagli

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSIÀ DEGLI SUDI DI PADOVA FACOLÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCARONICA ESI DI LAUREA MAGISRALE ANALISI DELLE PRESAZIONI DI UN MANIPOLAORE PARALLELO PER IL PICK-AND-PLACE RAMIE INDICI

Dettagli

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1 INDAGINE MULTISCOPO SULLA SICUREZZA DELLE DONNE STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI - INTRODUZIONE La popolazione i interesse ell inagine è costituita alle onne i età compresa

Dettagli

1. La retta IS in economia aperta

1. La retta IS in economia aperta 999, Riccaro Marselli. La riprouzione i questa ispensa, e parti i essa, per L'economia aperta Questa ispensa illustra le moifiche che è necessario apportare allo schema base IS-LM per tener conto ei legami

Dettagli

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni *

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni * La reazione el primo bilancio esercizio successivo alla trasformazione i una società i persone in società i capitali i Fabio Giommoni * La reazione el bilancio esercizio a parte i una società i capitali

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli Macroeconomia Laura Vici laura.vici@unibo.it www.lauravici.com/macroeconomia LEZIONE 8 Rimini, 7 ottobre 2014 Macroeconomia 158 Il mercato ei titoli Sul mercato ei titoli si etermina il prezzo ei titoli

Dettagli

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni 61 Capitolo 4 Funzionamento ei gruppi elettrogeni e loro protezioni 4.1 ntrouzione Nel presente capitolo si prenono in esame le moalità i esercizio e i funzionamento ei gruppi elettrogeni nei confronti

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence nelle operazioni straorinarie: funzione, tipologie e moalità i esecuzione i Massimo Buongiorno e Marco Capra Il presente lavoro vuole tracciare un quaro introuttivo,

Dettagli

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo Università eli stui i Bari A. Moro Corso i Laurea maistrale in Consulenza professionale per le aziene Economia ei tributi Anno accaemico 2015/2016 Prova scritta el 13 iuno 2016 sul proramma el I moulo

Dettagli

Condizionamento, congestione e capacità economica delle strade.

Condizionamento, congestione e capacità economica delle strade. Conizionamento, congestione e capacità economica elle strae. µ 3 4 ε (-Q) m (-Q) M : Equilibrio spontaneo in corrisponenza el traffico Q : volume i traffico Q E, corrisponente alla capacità economica ella

Dettagli

Misura e integrazione Formulario

Misura e integrazione Formulario Misura e integrazione Formulario Integrale su rettangolo 1. 2. Teorema di riduzione per un rettangolo (Fubini) Per passare dal rettangolo ad un qualsiasi dominio si definisce una nuova funzione. Integrale

Dettagli

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA Informazioni sul prootto Il chioo i sollevamento DEHA a testa sferica è annegato nel calcestruzzo con una guaina che viene successivamente rimossa. Il sollemento

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT Marco Palumbi, Lorenzo Seno marco.palumbi@bigfoot.com, lorenzo.seno@bigfoot.com Centro Ricerche Musicali Via

Dettagli

Adempimenti e procedure

Adempimenti e procedure Aempimenti e proceure Fusioni i società: semplificazioni e aempimenti pratici i Roberto Moro Visconti * Il D.Lgs. n.123/12 (in G.U. n.180 el 3 agosto 2012) ha previsto una serie i semplificazioni proceurali

Dettagli

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI Ultimo aggiornamento 30/04/013 DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI 1-1 Ultimo aggiornamento 30/04/013 INDICE 1. Introuzione al corso...1-4. Le fale acquifere...-6.1. Legge i Darcy...-7.. Fale

Dettagli

Viti a ricircolazione di sfere standard

Viti a ricircolazione di sfere standard Viti a ricircolazione i stanar KURODA prouce viti a ricircolazione i nelle versioni rullate stanar, rettificate stanar e rettificate secono isegno cliente; la gamma completa comprene chiocciole singole

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

Mi merito questa pausa

Mi merito questa pausa Mi merito questa pausa una vera tempesta ormonale che genera moifiche im- È portanti nel fisico, nella psicologia e nel metabolismo, un po come accae quano a bambine si iventa onne. Avviene intorno ai

Dettagli

SENSORI PER GRANDEZZE MECCANICHE

SENSORI PER GRANDEZZE MECCANICHE Sono utili per la misura i: SENSORI PER GRANDEZZE MECCANICHE granezze legate al moto, come posizione, spostamento, rugosità superficiale, velocità i flusso, velocità i rotazione,... granezze legate alle

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence fiscale i Marco Capra e Massimo Buongiorno Con il presente lavoro inauguriamo gli approfonimenti in orine ai ifferenti aspetti ella ue iligence. Come già esposto

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver GIURIA DOMANDE DI GINNASTICA RITMICA 1 Quale elle seguenti affermazioni è corretta: Corso Giuice nazionale a. La qualifica i Giuice nazionale si ottiene partecipano a un corso inetto alla F.G.I. e superano

Dettagli

SPECIALE STRESS LAVORO-CORRELATO

SPECIALE STRESS LAVORO-CORRELATO SPECIALE STRESS LAVORO-CORRELATO MINI GUIDA ALLA VALUTAZIONE E GESTIONE DEL RISCHIO Ambiente & Sicurezza sul Lavoro Pubblicazione iscritta al N. 485/85 el 29-10-1985 el Registro ella Stampa presso il Tribunale

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI Relazione Valutazione ell apporto solio ei principali corsi acqua el golfo i Salerno Consulenti e collaboratori: Prof. Eugenio Pugliese Carratelli Prof. Enrico Foti (Univ. Catania) Prof. Vittorio Bovolin

Dettagli

.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?EAJE?IK=JHE 1.4)11 57) *)+) +0 +5 1 +6 +446 54811 +/)61 ) +6 +446 +,111 +1+0 )64 +,111 +1+0 *1.1+1 1 2)46) )4) 75 *1.1+1 1 2)46) )4) :64) 75 *1.1+1

Dettagli

Lavoro e Tecnostress la sindrome della generazione always on

Lavoro e Tecnostress la sindrome della generazione always on obiettivo. Tuttavia, a ispetto i una (ipotetica) migliore prouttività, la continua reperibilità el lavoratore e la conseguente sua impossibilità a sottrarsi ai contatti lo pongono nella conizione i non

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

Qualsiasi testo di elettronica o di sistemi dedica

Qualsiasi testo di elettronica o di sistemi dedica NOVEMBRE 2004 N. 234 IATTICA elle CIENZE 7 Il principio ella controreazione/1 In questa prima parte l Autore efinisce il concetto i controreazione, che ha un ruolo essenziale non solo in elettronica ma

Dettagli

Criteri di dimensionamento per cilindri e servocilindri

Criteri di dimensionamento per cilindri e servocilindri www.atos.com Tabella -2/I Criteri i imensionamento per cilinri e servocilinri SWC Cyliners esigner SWC è un ottimo software per la progettazione veloce e efficace ei Cilinri e Servocilinri Atos, isponibile

Dettagli

Target standard per sensori di prossimità induttivi. Target. 1mm

Target standard per sensori di prossimità induttivi. Target. 1mm ensori i prossimità inuttivi Introuzione Principi i funzionamento ei sensori i prossimità inuttivi Bobina Oscillatore Circuito i attivazione Circuito elettrico i uscita I sensori i prossimità inuttivi

Dettagli

Formule specifiche per la determinazione dellavviamento nei trasferimenti dazienda di Stefano Chirichigno e Vittoria Segre

Formule specifiche per la determinazione dellavviamento nei trasferimenti dazienda di Stefano Chirichigno e Vittoria Segre Formule specifiche per la eterminazione ellavviamento nei trasferimenti aziena i Stefano Chirichigno e Vittoria Segre Lavviamento ha sempre costituito una fonte i controversie tra orientamento giurispruenziale,

Dettagli

Linea sistemi di tubazioni/ linea raccorderia Acciaio

Linea sistemi di tubazioni/ linea raccorderia Acciaio Prestabo IT / Catalogo 0 Con riserva i moifiche. Linea sistemi i tubazioni/ linea raccoreria Acciaio F Sistema a pressare con raccori a pressare e tubi i acciaio al carbonio non legato.0308 (E3), secono

Dettagli

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh Corso i Elettronica Digitale Display ecoer a 7 segmenti con le mappe i Karnaugh Anrea Di Salvo A.A. 23/24 Che cos'è? Per un singolo moulo, è una rappresentazione i interi a a 9 (e eventualmente i alcuni

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio SCHEDA DI APPROONDIMENTO Prove i laoratorio PROVE DI RESISTENZA A TRAZIONE Le prove i resistenza a trazione sono essenziali per valutare le caratteristiche fonamentali e il comportamento el materiale sia

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato:

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato: Computer Graphics Riccaro Berta Appunti per un corso Libro consigliato: Donal Hearn M. auline Baer, Computer Graphics - C Version, rentice Hall, Secon Eition,, 997 rimitive Grafiche...4 Linee...4 Algoritmo

Dettagli

Codice [m 3 /h] DN [mm] H7200W630-S7 630 200 GV12-24-SR-T GV12-230-3-T H7250W1000-S7 1000 250 GV12-24-SR-T GV12-230-3-T

Codice [m 3 /h] DN [mm] H7200W630-S7 630 200 GV12-24-SR-T GV12-230-3-T H7250W1000-S7 1000 250 GV12-24-SR-T GV12-230-3-T Schea ecnica 7..W..S7 Valvole a globo 3-vie N 200 / N 250 con flange PN 16 Per circuiti iraulici chiusi a acqua frea e acqua cala a bassa temperatura Per la regolazione moulante ella portata in sistemi

Dettagli

Diodi: Complementi e applicazioni

Diodi: Complementi e applicazioni SOMMO - MMUNTÀ DSTU N UN GUNZONE PN... Esempio 1 :... - DSTUZONE D UN GUNZONE PE ECCESSO D O PE ECCESSO D V... - CONNESSONE N PEO D DUE DOD... Esempio :...3 - CONNESSONE N SEE D DUE O PÙ DOD...3 Esempio

Dettagli

Le nuove normative: Eurocodice 5 ed Ordinanza 3274

Le nuove normative: Eurocodice 5 ed Ordinanza 3274 STRATEX s.p.a., Sutrio, Uine Orine egli Architetti Pianificatori Paesaggisti Conservatori ella Provincia i Verona Verona, 9 Settembre 006 Corte Molon, sala convegni Convegno IL LEGNO LAMELLARE Creatività

Dettagli

Determinazione della quota sul livello del mare del monte Etna

Determinazione della quota sul livello del mare del monte Etna Deterinazione ella quota sul livello el are el onte Etna a.s. 998/999 classe 5 oorinatore: Prof.. Epainona Preessa Per ottenere una isura i tutto rispetto, ci siao avvalsi ella consulenza e ella collaborazione

Dettagli

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI Università egli Stui i Paova Facoltà i Ingegneria Corso i Laurea Specialistica in Ingegneria Elettrotecnica Tesi i Laurea Specialistica: MICRO-RETI DI DISTRIBUZIONE: CONTROLLO E MODELLI DELLE SORGENTI

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

I L T E M A. Il diabete

I L T E M A. Il diabete Il iabete nell anziano Anche sopra i 70-75 anni il iabete va trattato per riurre i rischi cariovascolari e i complicanze. Ma la terapia ieale va aeguata alla conizione reale in cui il paziente si trova

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE

INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE MOD. ISTAT/IMF-10/C.09 SISTEMA STATISTICO NAZIONALE ISTITUTO NAZIONALE DI STATISTICA INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE 1 2 Provincia... Comune... Sezione i Censimento... (a cura el Comune)

Dettagli

La Rivista delle Operazioni

La Rivista delle Operazioni elle razioni Mensile i approfonimento eicato alla gestione straorinaria i imprese e società aprile 2013 DIRITTOESOCIETÀ Societàaresponsabilitàlimitata(Srl),societàaresponsabilitàlimitata semplificata(srls),societàaresponsabilitàlimitataa

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Lezione n. 9 del 28 marzo 2012

Lezione n. 9 del 28 marzo 2012 Alessanro Manolini Diartimento i Ingegneria Civile Corso i OPERE DI SOSTEGNO A.A. 0-0 Muro a mensola Muro a gravità Terre rinforzate Paratia Gabbionate Crib wall Lezione n. 9 el 8 marzo 0 Paratie i sostegno:

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse ISSN 2037-2582 5 Strumenti e tecniche i Business Intelligence per valutare l attenibilità elle stime campionarie i inagini complesse Strumento i ricerca a cura i Alessanro Martini strumenti L Istituto

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Particelle e Interazioni Fondamentali

Particelle e Interazioni Fondamentali Sylvie Braibant Giorgio Giacomelli Marizio Sprio Particelle e Interazioni Fonamentali Problemi e solzioni i problemi scelti Ottobre 2009 Springer 2 Avvertenza In qesto ocmento troverete proposti na serie

Dettagli

Fisica II. 14 Esercitazioni

Fisica II. 14 Esercitazioni Esercizi svolti Esercizio 141 La lunghezza 'ona in aria ella luce gialla el soio è λ 0 = 589nm eterminare: a) la sua frequenza f; b) la sua lunghezza 'ona λ in un vetro il cui inice i rifrazione è n =

Dettagli

Decine di pagine web, di indirizzi Internet,

Decine di pagine web, di indirizzi Internet, UE lontana e banche iffienti, ma serve imparare I piccoli e mei imprenitori i settore lamentano le ifficoltà che si incontrano sulla straa sia ei finanziamenti comunitari sia i quelli bancari. Gli esperti

Dettagli

BASI LAVASTOVIGLIE H80 P60

BASI LAVASTOVIGLIE H80 P60 Sommario SOMMARIO BASI LAVASTOVIGLIE H80 P60........................................................ 2 BASI LAVASTOVIGLIE H80 P80........................................................ 3 PENSILE H64 profondità

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

A B B GIUNTI FLESSIBILI A LAMELLE. Introduzione

A B B GIUNTI FLESSIBILI A LAMELLE. Introduzione GIUNTI FLSSIBILI A LALL Introuzione Negli ultimi anni la crescente utilizzazione (anche e soprattutto per alte velocità e grani potenze) el giunto a lamelle imostra che la relativa limitata capacità i

Dettagli

5 Geberit Silent-db20

5 Geberit Silent-db20 5 Geberit Silent-b20 5.1 Sistema............................................ 144 5.1.1 Descrizione el sistema............................... 144 5.1.2 Dati tecnici............................................

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO Corso i Fonazioni - D80 FONDAZIONE A PLINTO QUADRATO L'esempio i calcolo riguara una onazione supericiale a plinto quarato, soggetta a ue ierenti conigurazioni i carico: A) CARICO CENTRATO: N850 KN B)

Dettagli

Appunti di Teoria delle Distribuzioni Limite

Appunti di Teoria delle Distribuzioni Limite Aunti i eoria elle Distribuzioni Limite Diego Lubian 3 marzo 999 Le iotesi el moello lineare classico con errori normali ci ermettono i ottenere risultati sulla istribuzione i alcune statistiche i interesse:

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Orbite preliminari di asteroidi e satelliti artificiali

Orbite preliminari di asteroidi e satelliti artificiali Orbite preliminari di asteroidi e satelliti artificiali Davide Farnocchia Università degli Studi di Pisa Facoltà di SMFN Corso di Laurea in Matematica Anno Accademico 27-28 Contenuti Metodi a tre osservazioni

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli