L'equazione di continuità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L'equazione di continuità"

Transcript

1 L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t ρ (t, x) 3 x 0 Risulta utile riformulare la preceente relazione calcolano la erivata temporale come limite el rapporto incrementale. ρ (t, x) 3 x lim t h 0 h Aggiungeno e sottraeno la quantità h ρ (t, x) 3 x t lim + h 0 { ρ (t + h, x) 3 x V (t+h) ρ (t + h, x) 3 x si ottiene ρ (t, x) 3 x { ρ (t + h, x) 3 x ρ (t + h, x) 3 x + h V (t+h) } ρ (t + h, x) 3 x ρ (t, x) 3 x In quest' ultima espressione si riconosce negli ultimi ue termini el membro estro la erivata parziale ella ensità i carica, mentre nei primi ue l'integrale ella ensità i carica eseguita sul ominio ato alla ierenza ei volumi V (t + h) \. ρ (t, x) 3 x lim h 0 t h \V (t+h) ρ (t + h, x) 3 x + t ρ (t, x) 3 x Nel limite i h 0 il ominio V (t + h) \ è ienticabile con la supercie boro i, e l'elemento i volume si può scrivere come 3 x v ˆn h S ove v ˆn h è lo spazio percorso alle particelle sulla supercie S ortogonalmente alla supercie stessa nel tempo h. Scriviamo unque ρ (t, x) 3 x lim t h 0 ρ (t + h, x) v ˆn h S + h ρ (t, x) v ˆn S + t ρ (t, x) 3 x } t ρ (t, x) 3 x

2 Utilizzano inne il teorema i Gauss si può trasformare il primo termine el secono membro in un integrale i volume t ρ (t, x) 3 x (ρ (t, x) v) 3 x + t ρ (t, x) 3 x Dato che la conservazione ella carica impone che t ρ (t, x) 3 x 0 e ato che il risultato eve valere per qualsiasi ominio i integrazione scelto, si ottiene l'equazione i continuità (ρv) x + t ρ 0 2 Una imostrazione un po' più formale. Una piccola premessa. Preniamo in esame un mezzo continuo, a esempio una istribuzione i carica, e ientichiamo la posizione i un punto o particella el continuo in un certo istante con la coorinata x. Al tempo t la particella si trova in posizione con velocità x x (t, x ) v t x (t, x ) v (t, x ) Supponiamo che la funzione x x (t, x ) sia invertibile (e ierenziabile), e inichiamo l'inversa come x x (t, x). Gli jacobiani i queste ue trasformazioni sono inicati con e ipenono ovviamente al tempo. Esplicitamente e J t ( x (t, x ) ) et x ( x Jt ) (t, x) et x Le escrizioni elueriana e lagrangiana. È possibile escrivere le granezze i interesse fonamentalmente secono ue approcci: in quello euleriano si ssa un punto x nello spazio e si osserva l'evoluzione ella granezza in questione, iciamo G, ovvero G E G E (t, x) Nell'approccio cosietto lagrangiano si ssa invece una particella, con coorinate iniziali x G L G L (t, x ) e si osserva l'evoluzione i G insegueno la particella nel suo cammino. Ovviamente, l'approccio lagrangiano - ssata la particella - corrispone a un approccio euleriano in cui il punto x si sposti segueno la particella stessa: G L (t, x ) G E (t, x (t, x )) () 2

3 Analogamente l'approccio euleriano - con un punto sso - corrispone a un approccio lagrangiano in cui istante per istante venga ispezionata una particella ierente, tale che in ogni istante la particella ispezionata sia nel punto x: G E (t, x) G L (t, x (t, x)) Dall' ientità () si ottiene inoltre una relazione importante t G L (t, x ) t G E (t, x (t, x )) t G E (t, x (t, x )) + x G E (t, x (t, x )) x (t, x ) t t G E (t, x (t, x )) + v x G E (t, x (t, x )) D Dt G E (t, x (t, x )) (2) La erivata D Dt G E viene etta erivata materiale o erivata lagrangiana. Nel seguito tutte le granezze i interesse (ρ,v, etc...) sono intese come euleriane. La conservazione ella carica. Ientichiamo al tempo iniziale un certo volume el continuo, che altro non è se non un insieme i punti all'istante iniziale {x }. Al tempo t i punti el volume saranno evoluti nelle posizioni {x (t, x )}: chiamiamo questo nuovo volume. Poiché la carica si conserva, si avrà, qualsiasi sia il volume, che ρ (t, x) 3 x 0 t Esegueno un cambio i variabili utilizzano la funzione x x (t, x ) si può scrivere 2 0 t ρ (t, x) 3 x t ρ (t, x (t, x )) 3 x Ora che il ominio i integrazione non ipene più al tempo iviene possibile erivare sotto il segno i integrale. 0 t ρ (t, x (t, x )) 3 x t {ρ (t, x (t, x )) } 3 x Utilizzano la (2) è possibile riscrivere la preceente come t ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x Si ricora che in un cambio i variabili x f (y) il ominio i integrazione A iviene A f (A), e unque applicano la trasformazione inversa x x (t, x) al volume si ottiene il volume 2 Si può imostrare come > 0 t, e unque 3

4 D Dt ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x 0 Come è possibile veere in appenice, la erivata temporale i vale t x v (t, x) e unque - sottointeneno gli argomenti elle funzioni - 0 D Dt ρ + ρ x v 3 x [ ] ρ + (v ) ρ + ρ x v (t, x) 3 x t ] [ t ρ + (ρv) Poiché il preceente risultato vale inipenentemente al volume scelto, si arriva irettamente all'espressione ell'equazione i continuità 3 x t ρ + (ρv) 0 Appenice: la erivata temporale el eterminante jacobiano. Calcolano esplicitamente il limite el rapporto incrementale si ottiene - ricorano che è possibile scrivere x(t+δt) x(t) x x x(t+δt) x(t) t J +δt t lim δt 0 { δt ( ) ( )} x (t + δt) x (t) x (t) lim et δt 0 x (t) x et x ( ) { ( ) } x (t) x (t + δt) et x lim et δt 0 x (t) { ( ) } x (t + δt) lim et δt 0 x (t) Ora, esplicitano le componeneti el vettore x, e sviluppanolo come funzione el tempo no al secono orine, si ha che x i (t + δt) x i (t) + δt v i (t) (3) x i (t + δt) x k (t) x i (t) x k (t) + δt v i (t) x k (t) δ ik + δt v i (t) x k (t) δ ik + δt v i (t) x i (t) δ ik ( + x v (t)) δ ik 4

5 Il eterminante ella preceente matrice vale ( ) xi (t + δt) et ( + x v (t)) x k (t) Sostitueno il risultato ottenuto nella (3) si ottiene il risultato cercato t x v (t, x) 5

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

Soluzioni Esercitazione VIII. p(t)dt = R

Soluzioni Esercitazione VIII. p(t)dt = R S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t u + perché

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i controllo Come già etto, in generale, un sistema è solo potenzialmente in grao i soisfare gli obiettivi per i quali è stato costruito, e cioè i comportarsi nella maniera esierata. Per

Dettagli

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana Nota metoologica I ati vengono raccolti nell ambito ell inagine campionaria sulle famiglie Aspetti ella vita quotiiana, ce fa parte i un sistema integrato i inagini sociali (Inagini Multiscopo) e è volta

Dettagli

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi Capitolo : La sintesi el iamante a basse pressioni. Diagramma i fase el carbonio, paraosso termoinamico e ruolo ell irogeno nella sintesi el iamante a basse pressioni. Moelli i nucleazione e i crescita

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria Tributi, accertamento e giurispruenza tributaria Riflessi fiscali ella copertura elle perite nelle società in accomanita semplice i Fabio Giommoni * La copertura elle perite elle società in accomanita

Dettagli

L interferenza e la natura ondulatoria della luce

L interferenza e la natura ondulatoria della luce CAPITOLO 5 L interferenza e la natura onulatoria ella luce Un serpentone lungo più i 6 mila chilometri, che corre a oltre mila anni nel cuore ella Cina. È sicuramente grazie alla sua graniosità e alla

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 5

APPUNTI DI TOPOGRAFIA MODULO 5 PPUNTI DI TOPOGRFI MODULO 5 MISUR DELLE DISTNZE E DEI DISLIVELLI PROF. SPDRO EMNUELE UNIT DIDTTIC N 1 MISUR DELLE DISTNZE http://spaaroemanueletopografia.bloog.it/ RIDUZIONE DELL DISTNZ LL SUPERFICIE DI

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria La liquiazione mortis causa ella quota sociale agli erei i un socio i società i persone i Fabio Giommoni * La morte i un socio i società i persone impone generalmente la liquiazione ella quota agli erei.

Dettagli

1. La retta IS in economia aperta

1. La retta IS in economia aperta 999, Riccaro Marselli. La riprouzione i questa ispensa, e parti i essa, per L'economia aperta Questa ispensa illustra le moifiche che è necessario apportare allo schema base IS-LM per tener conto ei legami

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli Macroeconomia Laura Vici laura.vici@unibo.it www.lauravici.com/macroeconomia LEZIONE 8 Rimini, 7 ottobre 2014 Macroeconomia 158 Il mercato ei titoli Sul mercato ei titoli si etermina il prezzo ei titoli

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence nelle operazioni straorinarie: funzione, tipologie e moalità i esecuzione i Massimo Buongiorno e Marco Capra Il presente lavoro vuole tracciare un quaro introuttivo,

Dettagli

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni *

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni * La reazione el primo bilancio esercizio successivo alla trasformazione i una società i persone in società i capitali i Fabio Giommoni * La reazione el bilancio esercizio a parte i una società i capitali

Dettagli

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni 61 Capitolo 4 Funzionamento ei gruppi elettrogeni e loro protezioni 4.1 ntrouzione Nel presente capitolo si prenono in esame le moalità i esercizio e i funzionamento ei gruppi elettrogeni nei confronti

Dettagli

Condizionamento, congestione e capacità economica delle strade.

Condizionamento, congestione e capacità economica delle strade. Conizionamento, congestione e capacità economica elle strae. µ 3 4 ε (-Q) m (-Q) M : Equilibrio spontaneo in corrisponenza el traffico Q : volume i traffico Q E, corrisponente alla capacità economica ella

Dettagli

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT Marco Palumbi, Lorenzo Seno marco.palumbi@bigfoot.com, lorenzo.seno@bigfoot.com Centro Ricerche Musicali Via

Dettagli

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA Informazioni sul prootto Il chioo i sollevamento DEHA a testa sferica è annegato nel calcestruzzo con una guaina che viene successivamente rimossa. Il sollemento

Dettagli

Viti a ricircolazione di sfere standard

Viti a ricircolazione di sfere standard Viti a ricircolazione i stanar KURODA prouce viti a ricircolazione i nelle versioni rullate stanar, rettificate stanar e rettificate secono isegno cliente; la gamma completa comprene chiocciole singole

Dettagli

Mi merito questa pausa

Mi merito questa pausa Mi merito questa pausa una vera tempesta ormonale che genera moifiche im- È portanti nel fisico, nella psicologia e nel metabolismo, un po come accae quano a bambine si iventa onne. Avviene intorno ai

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence fiscale i Marco Capra e Massimo Buongiorno Con il presente lavoro inauguriamo gli approfonimenti in orine ai ifferenti aspetti ella ue iligence. Come già esposto

Dettagli

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI

DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI Ultimo aggiornamento 30/04/013 DISPENSE DEL CORSO DI IDRAULICA DEI MEZZI POROSI 1-1 Ultimo aggiornamento 30/04/013 INDICE 1. Introuzione al corso...1-4. Le fale acquifere...-6.1. Legge i Darcy...-7.. Fale

Dettagli

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI

PROVINCIA DI SALERNO ASSESSORATO ALLE POLITICHE AMBIENTALI Relazione Valutazione ell apporto solio ei principali corsi acqua el golfo i Salerno Consulenti e collaboratori: Prof. Eugenio Pugliese Carratelli Prof. Enrico Foti (Univ. Catania) Prof. Vittorio Bovolin

Dettagli

Lavoro e Tecnostress la sindrome della generazione always on

Lavoro e Tecnostress la sindrome della generazione always on obiettivo. Tuttavia, a ispetto i una (ipotetica) migliore prouttività, la continua reperibilità el lavoratore e la conseguente sua impossibilità a sottrarsi ai contatti lo pongono nella conizione i non

Dettagli

Misura e integrazione Formulario

Misura e integrazione Formulario Misura e integrazione Formulario Integrale su rettangolo 1. 2. Teorema di riduzione per un rettangolo (Fubini) Per passare dal rettangolo ad un qualsiasi dominio si definisce una nuova funzione. Integrale

Dettagli

Qualsiasi testo di elettronica o di sistemi dedica

Qualsiasi testo di elettronica o di sistemi dedica NOVEMBRE 2004 N. 234 IATTICA elle CIENZE 7 Il principio ella controreazione/1 In questa prima parte l Autore efinisce il concetto i controreazione, che ha un ruolo essenziale non solo in elettronica ma

Dettagli

.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?EAJE?IK=JHE 1.4)11 57) *)+) +0 +5 1 +6 +446 54811 +/)61 ) +6 +446 +,111 +1+0 )64 +,111 +1+0 *1.1+1 1 2)46) )4) 75 *1.1+1 1 2)46) )4) :64) 75 *1.1+1

Dettagli

Target standard per sensori di prossimità induttivi. Target. 1mm

Target standard per sensori di prossimità induttivi. Target. 1mm ensori i prossimità inuttivi Introuzione Principi i funzionamento ei sensori i prossimità inuttivi Bobina Oscillatore Circuito i attivazione Circuito elettrico i uscita I sensori i prossimità inuttivi

Dettagli

Formule specifiche per la determinazione dellavviamento nei trasferimenti dazienda di Stefano Chirichigno e Vittoria Segre

Formule specifiche per la determinazione dellavviamento nei trasferimenti dazienda di Stefano Chirichigno e Vittoria Segre Formule specifiche per la eterminazione ellavviamento nei trasferimenti aziena i Stefano Chirichigno e Vittoria Segre Lavviamento ha sempre costituito una fonte i controversie tra orientamento giurispruenziale,

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse

strumenti Strumenti e tecniche di Business Intelligence per valutare l attendibilità delle stime campionarie di indagini complesse ISSN 2037-2582 5 Strumenti e tecniche i Business Intelligence per valutare l attenibilità elle stime campionarie i inagini complesse Strumento i ricerca a cura i Alessanro Martini strumenti L Istituto

Dettagli

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato:

Computer Graphics. Riccardo Berta. Appunti per un corso. Libro consigliato: Computer Graphics Riccaro Berta Appunti per un corso Libro consigliato: Donal Hearn M. auline Baer, Computer Graphics - C Version, rentice Hall, Secon Eition,, 997 rimitive Grafiche...4 Linee...4 Algoritmo

Dettagli

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio

PROVE DI RESISTENZA A TORSIONE PROVE DI RESILIENZA CHARPY PROVE DI RESISTENZA A TAGLIO SCHEDA DI APPROFONDIMENTO. Prove di laboratorio SCHEDA DI APPROONDIMENTO Prove i laoratorio PROVE DI RESISTENZA A TRAZIONE Le prove i resistenza a trazione sono essenziali per valutare le caratteristiche fonamentali e il comportamento el materiale sia

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh Corso i Elettronica Digitale Display ecoer a 7 segmenti con le mappe i Karnaugh Anrea Di Salvo A.A. 23/24 Che cos'è? Per un singolo moulo, è una rappresentazione i interi a a 9 (e eventualmente i alcuni

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE

INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE MOD. ISTAT/IMF-10/C.09 SISTEMA STATISTICO NAZIONALE ISTITUTO NAZIONALE DI STATISTICA INDAGINE STATISTICA MULTISCOPO SULLE FAMIGLIE 1 2 Provincia... Comune... Sezione i Censimento... (a cura el Comune)

Dettagli

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO

Corso di Fondazioni - D2180 Esempi di Calcolo FONDAZIONE A PLINTO QUADRATO Corso i Fonazioni - D80 FONDAZIONE A PLINTO QUADRATO L'esempio i calcolo riguara una onazione supericiale a plinto quarato, soggetta a ue ierenti conigurazioni i carico: A) CARICO CENTRATO: N850 KN B)

Dettagli

STRUTTURE DI SEDE CENTRALE. Interventi di razionalizzazione e ristrutturazione e situazione attuale

STRUTTURE DI SEDE CENTRALE. Interventi di razionalizzazione e ristrutturazione e situazione attuale STRUTTUR DI SD CNTRAL *** Interventi i razionalizzazione e ristrutturazione e situazione attuale Incontro con le OO.SS. Torino, 6 maggio 2005 Piano 2003-2005 Interventi: Integrazione i Carine Finanziaria

Dettagli

Cuscinetti a rullini CG 101

Cuscinetti a rullini CG 101 uscinetti a rullini Linear an Motion Solutions G 11 USINETTI A RULLINI atalogo Generale Principali unità i misura Granezze UNITÀ S.I. Multipli o sottomultipli enominazione simbolo enominazione simbolo

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte Gestione ell Inventaio. Politiche i gestione elle scote.. Moelli singolo punto, singolo pootto, omana eteministica costante Gli appovvigionamenti sono peioici e l obiettivo è minimizzae il costo meio nel

Dettagli

La Rivista delle Operazioni

La Rivista delle Operazioni elle razioni Mensile i approfonimento eicato alla gestione straorinaria i imprese e società aprile 2013 DIRITTOESOCIETÀ Societàaresponsabilitàlimitata(Srl),societàaresponsabilitàlimitata semplificata(srls),societàaresponsabilitàlimitataa

Dettagli

APPENDICE TECNICA. 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione dei cuscinetti volventi - Pag.3

APPENDICE TECNICA. 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione dei cuscinetti volventi - Pag.3 1 APPENDICE TECNICA 1. SUDDIVISIONE DEI CUSCINETTI VOLVENTI 1.1 Denominazione ei cuscinetti volventi Pag.3 2. APPELLATIVO DEI CUSCINETTI VOLVENTI 2.1 Sigle ei cuscinetti volventi Pag.4 2.2 Schermi e anelli

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Abstract: the article, after a brief mention of

Abstract: the article, after a brief mention of Giuseppe Sofia Ministero ello Sviluppo Economico - Comunicazioni Ispettorato Territoriale Calabria giuseppe.sofia@comunicazioni.it NOTE RADIOPROPAGAZIONE DI UN SEGNALE DVB-T IN UHF. ASPETTI TEORICI E PRATICI

Dettagli

MODELLO 730/2015 redditi 2014 dichiarazione semplificata dei contribuenti che si avvalgono dellʼassistenza fiscale

MODELLO 730/2015 redditi 2014 dichiarazione semplificata dei contribuenti che si avvalgono dellʼassistenza fiscale WWW.BRUNOWEB.IT CANCELLA ATI MOELLO 0/0 redditi 0 dichiarazione semplificata dei contribuenti che si avvalgono dellʼassistenza fiscale genzia ntrate CONTRIBUENTE Gli importi devono essere indicati in unità

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse

Lezione 9. Equilibrio del mercato finanziario e tasso d interesse Lezione 9. Equilibrio el mercato finanziario e tao interee Ipotei: Il itema finanziario: la truttura ei mercati (a) eite un unico mercato ei titoli (); (b) la anca centrale crea ecluivamente attravero

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

QUESITI DI PSICOLOGIA

QUESITI DI PSICOLOGIA QUESITI DI PSICOLOGIA appunti 23 TEST DI VERIFICA 1 Che osa si intene on il onetto i atteniilità? a L effiaia he un test ha nel preveere i renimenti i un soggetto nelle ailità speifihe misurate Il grao

Dettagli

Abstract tratto da www.darioflaccovio.it - Tutti i diritti riservati

Abstract tratto da www.darioflaccovio.it - Tutti i diritti riservati Dario Curlante Progettare strutture in legno lamellare AGGIORNATO AL NUOVO EC5 UNI EN 1995-1-1:014 Dario Flaccovio Eitore Dario Curlante ISBN 9788857903736 014 by Dario Flaccovio Eitore s.r.l. - tel. 0916700686

Dettagli

La matematica di Piero della Francesca

La matematica di Piero della Francesca La matematica i Piero ella Francesca i Enrico Gamba Vico Montebelli Pierluigi Piccinetti F R A S T O R I A E M E M O R I A onsierano l opera i Piero ella Francesca nel suo complesso, è naturale chieersi

Dettagli

Sistemi di fissaggio Knauf 07/2011. Sistemi di fissagio Knauf. Fissaggio semplice di carichi perpendicolari

Sistemi di fissaggio Knauf 07/2011. Sistemi di fissagio Knauf. Fissaggio semplice di carichi perpendicolari Sistemi i fissaggio Knauf 07/2011 Sistemi i fissagio Knauf Fissaggio sempice i carichi perpenicoari Cucine Forster Sistemi i fissaggio Knauf quari e scaffai Questo opuscoo iustra come fissare iversi carichi

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Orbite preliminari di asteroidi e satelliti artificiali

Orbite preliminari di asteroidi e satelliti artificiali Orbite preliminari di asteroidi e satelliti artificiali Davide Farnocchia Università degli Studi di Pisa Facoltà di SMFN Corso di Laurea in Matematica Anno Accademico 27-28 Contenuti Metodi a tre osservazioni

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

Il riassorbimento osseo perimplantare nella tecnica postestrattiva

Il riassorbimento osseo perimplantare nella tecnica postestrattiva Il riassorbimento osseo perimplantare nella tecnica postestrattiva Luca Fumagalli, nrea Parenti, Matteo Capelli, Francesco Zuffetti, Fabio Galli, Silvio Taschieri, Massimo Del Fabbro, Tiziano Testori.

Dettagli

Termometri a capillare Conformi a DIN 16206 Riempimento di azoto Opzione: Contatti

Termometri a capillare Conformi a DIN 16206 Riempimento di azoto Opzione: Contatti Termometri a capillare Conformi a DIN 16206 Riempimento i azoto Opzione: Contatti Misurare Monitorare Analizzare Sistema i misura rispettoso ell'ambiente con riempimento non tossico in azoto Tempo i risposta

Dettagli

Le equazioni di Hamilton e lo spazio delle fasi

Le equazioni di Hamilton e lo spazio delle fasi Capitolo 2 Le equazioni di Hamilton e lo spazio delle fasi 2.1 Introduzione Con il passaggio dalle equazioni di Newton (1687) a quelle di Lagrange (1787), abbiamo già ottenuto un progresso considerevole,

Dettagli

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle Nota metooogica sua strategia i campionamento e sistema nazionae i vautazione ee competenze per e cassi secona e quinta e primo cico ea scuoa primaria Stefano Faorsi. Obiettivi I Sistema Nazionae i Vautazione

Dettagli

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto

Fondamenti di Automatica. Modellistica dei sistemi dinamici a tempo discreto Fondamenti di Automatica Modellistica dei sistemi dinamici a tempo discreto Sistemi dinamici a tempo discreto I sistemi dinamici a tempo discreto sono sistemi in cui tutte le grandezze variabili sono funzioni

Dettagli

Cap. 4 Mercati finanziari

Cap. 4 Mercati finanziari Cap. 4 ercati finanziari Tao interee (i): importante per invetimenti e celte i conumo intertemporali. Noi iamo intereati principalmente ai primi. Come i etermina i? Attori: Banca Centrale (BC), banche,

Dettagli

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali Lezione n. Stati limite nel cemento armato Stato limite ultimo per tenioni normali Determinazione elle configurazioni i rottura per la ezione Una volta introotti i legami cotitutivi, è poibile eterminare

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Swisscodes 2003 Corso di postformazione SUP

Swisscodes 2003 Corso di postformazione SUP Swisscoes 2003 Corso i postformazione SUP SIA 267 Geotecnica Basi e concetto i imensionamento 23/01/2014 Corso i applicazione ella norma SIA 267 - Geotecnica 1 Basi e concetti i imensionamento 1. Introuzione,

Dettagli

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15 Corso i Economia el Lavoro Daniele Checchi Blanchar-Amighini-Giavazzi cap.4 anno 2014-15 I MERCATI FINANZIARI Esise una grane varieà i aivià finanziarie. Il risparmiaore eve scegliere in quali forme eenere

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo

Catalogo isoweld Il sistema di fissaggio ad induzione. Nuovo Catalogo isowel Il sistema i fissaggio a inuzione Nuovo isowel l innovativo sistema i fissaggio a inuzione i SFS intec Il nuovo sistema isowel TM i SFS intec è un sistema i fissaggio a inuzione innovativo

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

Equazioni fondamentali (nel dominio dei tempi)

Equazioni fondamentali (nel dominio dei tempi) Equazioni fondamentali (nel dominio dei tempi) Equazioni di Maxwell: b e = - t d h = j + t d = ρ b = 0 j = j + j c Eq. di continuità: Legge del trasporto: ρ j+ = 0 jc = σ e t i Relazioni i costitutive

Dettagli

Conveyor Components. Componenti per nastri trasportatori

Conveyor Components. Componenti per nastri trasportatori Componenti per nastri trasportatori L'AZIENDA Marbett inizia la sua attivita' nel 198 come terzista specializzato nella progettazione, ingegnerizzazione e prouzione i parti in resina termoplastica e stampi.

Dettagli

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC)

sistema Sistema di tubazioni preisolate per il district heating & cooling (DHC) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) sistema Sistema i tubazioni preisolate per il istrict heating & cooling (DH) Introuzione 2 Vantaggi i posa (easy installation)

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Il controllo del dolore e non farmacologico

Il controllo del dolore e non farmacologico DICEMBRE 2013 L evoluzione storica Il controllo el olore e non farmacologico i la filosofia Cure Palliative I bisogni el Paziente f.moggia.valenti Bologna, 20 aprile 2013.valenti L Organizzazione Moniale

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

PROPRIETÀ DEI CIRCUITI DI RESISTORI

PROPRIETÀ DEI CIRCUITI DI RESISTORI CAPITOLO 5 PROPRIETÀ DEI CIRCUITI DI RESISTORI Nel presente Capitolo, verrà introdotto il concetto di equivalenza tra bipoli statici e verranno enunciati e dimostrati alcuni teoremi (proprietà) generali

Dettagli

Puntare tutto sul verde

Puntare tutto sul verde Puntare tutto sul vere i stima che siano il 5% ella S popolazione italiana, forse i più. Sicuramente è in crescita il numero i persone in Italia che optano per stili alimentari alternativi : vegetariani,

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Sicc Spa - V.le Porta Po 89 z.i. 45100 Rovigo Italy Tel. +39.0425.403111 r.a. Fax +39.0425.403177 www.siccspa.it - info@siccspa.it CT.

Sicc Spa - V.le Porta Po 89 z.i. 45100 Rovigo Italy Tel. +39.0425.403111 r.a. Fax +39.0425.403177 www.siccspa.it - info@siccspa.it CT. Sicc Spa - V.le Porta Po 89 z.i. 45100 Rovigo Italy Tel. +39.0425.403111 r.a. Fax +39.0425.403177 www.siccspa.it - info@siccspa.it CT. 02-11 Catalogo Tecnico termo energie alternative acqua aria Costruire

Dettagli

Appunti di Calcolo finanziario. Mauro Pagliacci

Appunti di Calcolo finanziario. Mauro Pagliacci Appunti di Calcolo finanziario Mauro Pagliacci c Draft date 4 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati per le applicazioni

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli