L'equazione di continuità

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L'equazione di continuità"

Transcript

1 L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t ρ (t, x) 3 x 0 Risulta utile riformulare la preceente relazione calcolano la erivata temporale come limite el rapporto incrementale. ρ (t, x) 3 x lim t h 0 h Aggiungeno e sottraeno la quantità h ρ (t, x) 3 x t lim + h 0 { ρ (t + h, x) 3 x V (t+h) ρ (t + h, x) 3 x si ottiene ρ (t, x) 3 x { ρ (t + h, x) 3 x ρ (t + h, x) 3 x + h V (t+h) } ρ (t + h, x) 3 x ρ (t, x) 3 x In quest' ultima espressione si riconosce negli ultimi ue termini el membro estro la erivata parziale ella ensità i carica, mentre nei primi ue l'integrale ella ensità i carica eseguita sul ominio ato alla ierenza ei volumi V (t + h) \. ρ (t, x) 3 x lim h 0 t h \V (t+h) ρ (t + h, x) 3 x + t ρ (t, x) 3 x Nel limite i h 0 il ominio V (t + h) \ è ienticabile con la supercie boro i, e l'elemento i volume si può scrivere come 3 x v ˆn h S ove v ˆn h è lo spazio percorso alle particelle sulla supercie S ortogonalmente alla supercie stessa nel tempo h. Scriviamo unque ρ (t, x) 3 x lim t h 0 ρ (t + h, x) v ˆn h S + h ρ (t, x) v ˆn S + t ρ (t, x) 3 x } t ρ (t, x) 3 x

2 Utilizzano inne il teorema i Gauss si può trasformare il primo termine el secono membro in un integrale i volume t ρ (t, x) 3 x (ρ (t, x) v) 3 x + t ρ (t, x) 3 x Dato che la conservazione ella carica impone che t ρ (t, x) 3 x 0 e ato che il risultato eve valere per qualsiasi ominio i integrazione scelto, si ottiene l'equazione i continuità (ρv) x + t ρ 0 2 Una imostrazione un po' più formale. Una piccola premessa. Preniamo in esame un mezzo continuo, a esempio una istribuzione i carica, e ientichiamo la posizione i un punto o particella el continuo in un certo istante con la coorinata x. Al tempo t la particella si trova in posizione con velocità x x (t, x ) v t x (t, x ) v (t, x ) Supponiamo che la funzione x x (t, x ) sia invertibile (e ierenziabile), e inichiamo l'inversa come x x (t, x). Gli jacobiani i queste ue trasformazioni sono inicati con e ipenono ovviamente al tempo. Esplicitamente e J t ( x (t, x ) ) et x ( x Jt ) (t, x) et x Le escrizioni elueriana e lagrangiana. È possibile escrivere le granezze i interesse fonamentalmente secono ue approcci: in quello euleriano si ssa un punto x nello spazio e si osserva l'evoluzione ella granezza in questione, iciamo G, ovvero G E G E (t, x) Nell'approccio cosietto lagrangiano si ssa invece una particella, con coorinate iniziali x G L G L (t, x ) e si osserva l'evoluzione i G insegueno la particella nel suo cammino. Ovviamente, l'approccio lagrangiano - ssata la particella - corrispone a un approccio euleriano in cui il punto x si sposti segueno la particella stessa: G L (t, x ) G E (t, x (t, x )) () 2

3 Analogamente l'approccio euleriano - con un punto sso - corrispone a un approccio lagrangiano in cui istante per istante venga ispezionata una particella ierente, tale che in ogni istante la particella ispezionata sia nel punto x: G E (t, x) G L (t, x (t, x)) Dall' ientità () si ottiene inoltre una relazione importante t G L (t, x ) t G E (t, x (t, x )) t G E (t, x (t, x )) + x G E (t, x (t, x )) x (t, x ) t t G E (t, x (t, x )) + v x G E (t, x (t, x )) D Dt G E (t, x (t, x )) (2) La erivata D Dt G E viene etta erivata materiale o erivata lagrangiana. Nel seguito tutte le granezze i interesse (ρ,v, etc...) sono intese come euleriane. La conservazione ella carica. Ientichiamo al tempo iniziale un certo volume el continuo, che altro non è se non un insieme i punti all'istante iniziale {x }. Al tempo t i punti el volume saranno evoluti nelle posizioni {x (t, x )}: chiamiamo questo nuovo volume. Poiché la carica si conserva, si avrà, qualsiasi sia il volume, che ρ (t, x) 3 x 0 t Esegueno un cambio i variabili utilizzano la funzione x x (t, x ) si può scrivere 2 0 t ρ (t, x) 3 x t ρ (t, x (t, x )) 3 x Ora che il ominio i integrazione non ipene più al tempo iviene possibile erivare sotto il segno i integrale. 0 t ρ (t, x (t, x )) 3 x t {ρ (t, x (t, x )) } 3 x Utilizzano la (2) è possibile riscrivere la preceente come t ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x Si ricora che in un cambio i variabili x f (y) il ominio i integrazione A iviene A f (A), e unque applicano la trasformazione inversa x x (t, x) al volume si ottiene il volume 2 Si può imostrare come > 0 t, e unque 3

4 D Dt ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x 0 Come è possibile veere in appenice, la erivata temporale i vale t x v (t, x) e unque - sottointeneno gli argomenti elle funzioni - 0 D Dt ρ + ρ x v 3 x [ ] ρ + (v ) ρ + ρ x v (t, x) 3 x t ] [ t ρ + (ρv) Poiché il preceente risultato vale inipenentemente al volume scelto, si arriva irettamente all'espressione ell'equazione i continuità 3 x t ρ + (ρv) 0 Appenice: la erivata temporale el eterminante jacobiano. Calcolano esplicitamente il limite el rapporto incrementale si ottiene - ricorano che è possibile scrivere x(t+δt) x(t) x x x(t+δt) x(t) t J +δt t lim δt 0 { δt ( ) ( )} x (t + δt) x (t) x (t) lim et δt 0 x (t) x et x ( ) { ( ) } x (t) x (t + δt) et x lim et δt 0 x (t) { ( ) } x (t + δt) lim et δt 0 x (t) Ora, esplicitano le componeneti el vettore x, e sviluppanolo come funzione el tempo no al secono orine, si ha che x i (t + δt) x i (t) + δt v i (t) (3) x i (t + δt) x k (t) x i (t) x k (t) + δt v i (t) x k (t) δ ik + δt v i (t) x k (t) δ ik + δt v i (t) x i (t) δ ik ( + x v (t)) δ ik 4

5 Il eterminante ella preceente matrice vale ( ) xi (t + δt) et ( + x v (t)) x k (t) Sostitueno il risultato ottenuto nella (3) si ottiene il risultato cercato t x v (t, x) 5

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza

ondulatorio della luce; tuttavia l'ottica geometrica eç un punto di partenza O2. Introuzione all'ottica geometrica Premessa Lo stuio egli strumenti astronomici non puoç prescinere al comportamento onulatorio ella luce; tuttavia l'ottica geometrica eç un punto i partenza necessario,

Dettagli

Soluzioni Esercitazione VIII. p(t)dt = R

Soluzioni Esercitazione VIII. p(t)dt = R S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t u + perché

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO CINEMATICA DEL CORPO RIGIDO 5 Premettiamo una Definizione: si chiama atto i moto i un sistema materiale in un ato istante t, l insieme elle velocità i tutti i punti el sistema all istante t. E errato parlare

Dettagli

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 2011 Università i Siena See i Grosseto Secono Semestre 200-20 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 6 29 Aprile 20 Un ultimo punto sul capitolo 5 Risparmio Investimento in economia aperta? o, serve

Dettagli

Navigazione di Veicoli Autonomi

Navigazione di Veicoli Autonomi Luca Baglivo Navigazione i Veicoli Autonomi Pianificazione e Controllo i Traiettoria Appunti per il corso i Robotica Spaziale per Ingegneria Aerospaziale PREFAZIONE Lo scopo ella presente ispensa è quello

Dettagli

Misura e integrazione Formulario

Misura e integrazione Formulario Misura e integrazione Formulario Integrale su rettangolo 1. 2. Teorema di riduzione per un rettangolo (Fubini) Per passare dal rettangolo ad un qualsiasi dominio si definisce una nuova funzione. Integrale

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i controllo Come già etto, in generale, un sistema è solo potenzialmente in grao i soisfare gli obiettivi per i quali è stato costruito, e cioè i comportarsi nella maniera esierata. Per

Dettagli

CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONSERVAZIONE

CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONSERVAZIONE CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONERAZIONE M. Capozzi Copyright ADEPRON Tutti i Diritti Riservati - www.aepron.it CINEMATICA DEI CAMPI FLUIDI ED EQUAZIONI DI CONERAZIONE Marco CAPOZZI * *

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A

H ds = 2πRH = Ni H = Ni 2πR. N(k m 1) M = 0.05A Esercizio Un anello toroiale i piccola sezione avente raggio meio R = 0cm è fatto i ferro con permeabilità magnetica relativa = 5000. Una bobina con N = 000 spire è avvolta sulla superficie ell anello.

Dettagli

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana

Nota metodologica. Strategia di campionamento e livello di precisione dei risultati dell indagine Multiscopo Aspetti della vita quotidiana Nota metoologica I ati vengono raccolti nell ambito ell inagine campionaria sulle famiglie Aspetti ella vita quotiiana, ce fa parte i un sistema integrato i inagini sociali (Inagini Multiscopo) e è volta

Dettagli

Teorema di Sostituzione

Teorema di Sostituzione Teorema i Sostituzione Le Fiure (a) e (b) i seuito riportate, si riferiscono al Teorema i sostituzione che afferma: Una impeenza Z a percorsa a una corrente, può essere sostituita un eneratore i tensione

Dettagli

1. Richiami di probabilità

1. Richiami di probabilità 6 1. RICHIAMI DI PROBABILITÀ 1. Richiami i probabilità Forniamo un compenio elle nozioni basilari i probabilità che ci saranno utili. Per maggiori ettagli, si possono consultare i testi [Billingsley, 1995],

Dettagli

IL SISTEMA DEI PREZZI DI LEON WALRAS

IL SISTEMA DEI PREZZI DI LEON WALRAS IL SISTEMA DEI PREZZI DI LEON WALRAS E L EQUILIBRIO ECONOMICO GENERALE Sommario: 1. Introuzione 2. Il sistema ei prezzi i Walras e l equilibrio economico generale 3. Le contraizioni implicite nel sistema

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria Tributi, accertamento e giurispruenza tributaria Riflessi fiscali ella copertura elle perite nelle società in accomanita semplice i Fabio Giommoni * La copertura elle perite elle società in accomanita

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi

Capitolo 1: La sintesi del diamante a basse pressioni 1.1 Diagramma di fase del carbonio, paradosso termodinamico e ruolo dell idrogeno nella sintesi Capitolo : La sintesi el iamante a basse pressioni. Diagramma i fase el carbonio, paraosso termoinamico e ruolo ell irogeno nella sintesi el iamante a basse pressioni. Moelli i nucleazione e i crescita

Dettagli

Condizionamento, congestione e capacità economica delle strade.

Condizionamento, congestione e capacità economica delle strade. Conizionamento, congestione e capacità economica elle strae. µ 3 4 ε (-Q) m (-Q) M : Equilibrio spontaneo in corrisponenza el traffico Q : volume i traffico Q E, corrisponente alla capacità economica ella

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

Gestione economico-aziendale

Gestione economico-aziendale La valutazione i un aziena nell ipotesi i un acquisizione: un caso i applicazione el metoo ei multipli i Massimo Buongiorno * e Marco Capra ** Il presente lavoro illustra un incarico svolto nell interesse

Dettagli

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18

Nozioni generali. Tipi di cuscinetti 6. Normalizzazione ed intercambiabilità 12. Dimensioni e codifica 14. Precisione di esecuzione dei cuscinetti 18 Nozioni generali Tipi i cuscinetti 6 efinizioni 6 Vocabolario 8 Attituini 9 Normalizzazione e intercambiabilità 12 Le norme 12 Intercambiabilità 12 imensioni e coifica 14 Coifica generale 14 Coice completo

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0

ESERCIZI SVOLTI DI FLUIDODINAMICA Parte 3: Equazione di Bernoulli Versione 1.0 Moulo i Elementi i Fluioinamica Corso i Laurea in Ingegneria ei Materiali/Meccanica AA 00/005 Ing Paola CINNELLA ESERCIZI SVOLTI I FLUIOINAMICA Parte 3: Equazione i Bernoulli Versione 10 Esercizio 1 Si

Dettagli

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio

UNIVERSITA DEGLI STUDI DI BOLOGNA. FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio UNVERSA DEGL SUD D BOLOGNA FACOLA D NGEGNERA Corso i Laurea in ngegneria per l Ambiente e il erritorio CORSO D FSCA ECNCA AMBENALE Docente: Prof. Massimo Garai SSEM PER LO SFRUAMENO DELL ENERGA SOLARE

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA

Nome..Cognome. classe 5D 9 Febbraio VERIFICA di FISICA ome..cognome. classe 5D 9 Febbraio 9 VIFIC i FIIC Domana n. (punti: ) Dai la efinizione i capacità i un conensatore e ricava l espressione ella capacità i un conensatore piano i area e istanza tra le armature

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver

4. Quale delle seguenti affermazioni è corretta: Per partecipare al corso ed ottenere la qualifica di Giudice nazionale, oltre ad aver GIURIA DOMANDE DI GINNASTICA RITMICA 1 Quale elle seguenti affermazioni è corretta: Corso Giuice nazionale a. La qualifica i Giuice nazionale si ottiene partecipano a un corso inetto alla F.G.I. e superano

Dettagli

L interferenza e la natura ondulatoria della luce

L interferenza e la natura ondulatoria della luce CAPITOLO 5 L interferenza e la natura onulatoria ella luce Un serpentone lungo più i 6 mila chilometri, che corre a oltre mila anni nel cuore ella Cina. È sicuramente grazie alla sua graniosità e alla

Dettagli

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1 INDAGINE MULTISCOPO SULLA SICUREZZA DELLE DONNE STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI - INTRODUZIONE La popolazione i interesse ell inagine è costituita alle onne i età compresa

Dettagli

1. La retta IS in economia aperta

1. La retta IS in economia aperta 999, Riccaro Marselli. La riprouzione i questa ispensa, e parti i essa, per L'economia aperta Questa ispensa illustra le moifiche che è necessario apportare allo schema base IS-LM per tener conto ei legami

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 8. Rimini, 7 ottobre 2014. Il mercato dei titoli Macroeconomia Laura Vici laura.vici@unibo.it www.lauravici.com/macroeconomia LEZIONE 8 Rimini, 7 ottobre 2014 Macroeconomia 158 Il mercato ei titoli Sul mercato ei titoli si etermina il prezzo ei titoli

Dettagli

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014

PRIMA PROVA INTERMEDIA DEL MODULO DI. CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 2014 PRIMA PROVA INTERMEDIA DEL MODULO DI CORSO DI LAUREA IN INGEGNERIA ELETTRICA ED ELETTRONICA, INGEGNERIA BIOMEDICA 23 Aprile 24 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (7 punti) (a) (5 punti) Si progetti

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA

ANALISI DELLE PRESTAZIONI DI UN MANIPOLATORE PARALLELO PER IL PICK-AND-PLACE TRAMITE INDICI CINEMATICI E DINAMICI UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSIÀ DEGLI SUDI DI PADOVA FACOLÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCARONICA ESI DI LAUREA MAGISRALE ANALISI DELLE PRESAZIONI DI UN MANIPOLAORE PARALLELO PER IL PICK-AND-PLACE RAMIE INDICI

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

Viti a ricircolazione di sfere standard

Viti a ricircolazione di sfere standard Viti a ricircolazione i stanar KURODA prouce viti a ricircolazione i nelle versioni rullate stanar, rettificate stanar e rettificate secono isegno cliente; la gamma completa comprene chiocciole singole

Dettagli

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni *

La redazione del primo bilancio d esercizio successivo alla trasformazione di una società di persone in società di capitali di Fabio Giommoni * La reazione el primo bilancio esercizio successivo alla trasformazione i una società i persone in società i capitali i Fabio Giommoni * La reazione el bilancio esercizio a parte i una società i capitali

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO

CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO Giuseppe Stagnitto Erica Barzoni CALCOLO IMMEDIATO DEI GIUNTI DI BASE DI PILASTRI DI LEGNO Utilizzo i iagramma aimensionale universale 1. Ipotesi el calcolo. Calcolo analitico iretto. Esempi i calcolo

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh

Corso di Elettronica Digitale. Display decoder a 7 segmenti con le mappe di Karnaugh Corso i Elettronica Digitale Display ecoer a 7 segmenti con le mappe i Karnaugh Anrea Di Salvo A.A. 23/24 Che cos'è? Per un singolo moulo, è una rappresentazione i interi a a 9 (e eventualmente i alcuni

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

APPUNTI DI TOPOGRAFIA MODULO 5

APPUNTI DI TOPOGRAFIA MODULO 5 PPUNTI DI TOPOGRFI MODULO 5 MISUR DELLE DISTNZE E DEI DISLIVELLI PROF. SPDRO EMNUELE UNIT DIDTTIC N 1 MISUR DELLE DISTNZE http://spaaroemanueletopografia.bloog.it/ RIDUZIONE DELL DISTNZ LL SUPERFICIE DI

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo

Università degli studi di Bari A. Moro. Economia dei tributi. Anno accademico 2015/2016. Prova scritta del 13 giugno 2016 sul programma del I modulo Università eli stui i Bari A. Moro Corso i Laurea maistrale in Consulenza professionale per le aziene Economia ei tributi Anno accaemico 2015/2016 Prova scritta el 13 iuno 2016 sul proramma el I moulo

Dettagli

SOLUZIONI COMPITO del 16/01/2009 ANALISI 1 - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF. e INT. I+II - MECCANICA 11 CFU TEMA A

SOLUZIONI COMPITO del 16/01/2009 ANALISI 1 - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF. e INT. I+II - MECCANICA 11 CFU TEMA A SOLUZIONI COMPITO del 6//9 ANALISI - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF e INT I+II - MECCANICA CFU TEMA A Esercizio Chiaramente la serie proposta è una serie a termini positivi per ogni α R Osserviamo,

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA:

PROVA SCRITTA DEL MODULO DI. NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 19 febbraio 2015 NOME: COGNOME: MATRICOLA: PROVA SCRITTA DEL MODULO DI NUOVO E VECCHIO ORDINAMENTO DIDATTICO (5-7 CFU) 9 febbraio 205 NOME: COGNOME: MATRICOLA: ESERCIZIO (5-6 CFU: 0 punti; 7 CFU: 8 punti) Progettare una rete sequenziale che presenti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA

SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA SISTEMA DI SOLLEVAMENTO DEHA KKT 07-IT EDILIZIA Informazioni sul prootto Il chioo i sollevamento DEHA a testa sferica è annegato nel calcestruzzo con una guaina che viene successivamente rimossa. Il sollemento

Dettagli

I principi di conservazione

I principi di conservazione Capitolo 1 I principi i conservazione I principi i conservazione ella massa, ella quantità i moto e ell energia, sui quali si basa la meccanica ei fluii, possono ar luogo a iverse formulazioni matematiche,

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Tributi, accertamento e giurisprudenza tributaria

Tributi, accertamento e giurisprudenza tributaria La liquiazione mortis causa ella quota sociale agli erei i un socio i società i persone i Fabio Giommoni * La morte i un socio i società i persone impone generalmente la liquiazione ella quota agli erei.

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

della funzione obiettivo. Questo punto dovrebbe risultare chiaro se consideriamo una generica funzione:

della funzione obiettivo. Questo punto dovrebbe risultare chiaro se consideriamo una generica funzione: Corso di laurea in Economia e finanza CLEF) Economia pubblica ************************************************************************************ Una nota elementare sulla ottimizzazione in presenza di

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence nelle operazioni straorinarie: funzione, tipologie e moalità i esecuzione i Massimo Buongiorno e Marco Capra Il presente lavoro vuole tracciare un quaro introuttivo,

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato Caratteristice ˆ Bˆ Cˆ Dˆ 90 ˆ Bˆ Cˆ Dˆ 60 B BC CD D C BD iagonale () IL QUDRTO lato (l) Ciascuna iagonale ivie il quarato in ue triangoli rettangoli uguali i cui cateti corrisponono ai lati el quarato

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

Adempimenti e procedure

Adempimenti e procedure Aempimenti e proceure Fusioni i società: semplificazioni e aempimenti pratici i Roberto Moro Visconti * Il D.Lgs. n.123/12 (in G.U. n.180 el 3 agosto 2012) ha previsto una serie i semplificazioni proceurali

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni

Capitolo 4 Funzionamento dei gruppi elettrogeni e loro protezioni 61 Capitolo 4 Funzionamento ei gruppi elettrogeni e loro protezioni 4.1 ntrouzione Nel presente capitolo si prenono in esame le moalità i esercizio e i funzionamento ei gruppi elettrogeni nei confronti

Dettagli

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

Il problema del solido di rivoluzione, avente resistenza minima all'avanzamento, nei "Principia" di Newton. Vittorio Banfi 1

Il problema del solido di rivoluzione, avente resistenza minima all'avanzamento, nei Principia di Newton. Vittorio Banfi 1 Il problema el solio i rivoluzione, avente resistenza minima Vittorio Banfi - Introuzione Nello Scolio ella Proposizione XXXIV (Libro II ei "Philosophiae Naturalis Principia mathematica", I. Newton presenta

Dettagli

Gestione economico aziendale

Gestione economico aziendale Gestione economico azienale La ue iligence fiscale i Marco Capra e Massimo Buongiorno Con il presente lavoro inauguriamo gli approfonimenti in orine ai ifferenti aspetti ella ue iligence. Come già esposto

Dettagli

COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI

COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI 1. - Formulazione del problema Supponiamo di dover organizzare e gestire un progetto complesso, quale puó essere la costruzione di un edificio, oppure la

Dettagli

.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?EAJE?IK=JHE 1.4)11 57) *)+) +0 +5 1 +6 +446 54811 +/)61 ) +6 +446 +,111 +1+0 )64 +,111 +1+0 *1.1+1 1 2)46) )4) 75 *1.1+1 1 2)46) )4) :64) 75 *1.1+1

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) m (B) m (C) m (D) m (E) m L FORZ DI OULOM.. Date le ue cariche fisse ella figura ove = 0. e = 0.5 la posizione i euilibrio lungo l'asse i una terza carica mobile 3 = 0.0 si trova nel punto con ascissa ().7 m () 0.387 m () 0.500

Dettagli

Criteri di dimensionamento per cilindri e servocilindri

Criteri di dimensionamento per cilindri e servocilindri www.atos.com Tabella -2/I Criteri i imensionamento per cilinri e servocilinri SWC Cyliners esigner SWC è un ottimo software per la progettazione veloce e efficace ei Cilinri e Servocilinri Atos, isponibile

Dettagli

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3)

N.1 N.2. x(t) = x 0 cos(ωt); y(t) = v 0 /ω sen(ωt); (1) Q 1 Q 3 4 π ɛ 0 (2 d) 2 = Q 2 Q 3 Q 1 4 d 2 = Q 2. 4 π ɛ 0 d 2. d 2 Q 1 = 4 10 9 C (3) N. Tre particelle cariche sono poste come in gura ad una distanza d. Le cariche Q e Q 2 = 0 9 C sono tenute ferme mentre la carica Q 3, libera di muoversi, è in equilibrio. Calcolare il valore di Q Anchè

Dettagli

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT

CORDA DI METALLO UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT UN MODELLO E UN ALGORITMO PER LA SIMULAZIONE PER MODELLI FISICI DI STRUMENTI AD ARCO PREPRINT Marco Palumbi, Lorenzo Seno marco.palumbi@bigfoot.com, lorenzo.seno@bigfoot.com Centro Ricerche Musicali Via

Dettagli

SENSORI PER GRANDEZZE MECCANICHE

SENSORI PER GRANDEZZE MECCANICHE Sono utili per la misura i: SENSORI PER GRANDEZZE MECCANICHE granezze legate al moto, come posizione, spostamento, rugosità superficiale, velocità i flusso, velocità i rotazione,... granezze legate alle

Dettagli

Curve in R n. Curve parametrizzate.

Curve in R n. Curve parametrizzate. Curve in R n Generalmente ci sono ue moi per escrivere una curva in R n, ovvero è possibile scrivere un equazione parametrica o un equazione cartesiana. Esempio: una retta in R 2 può essere escritta in

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

Mi merito questa pausa

Mi merito questa pausa Mi merito questa pausa una vera tempesta ormonale che genera moifiche im- È portanti nel fisico, nella psicologia e nel metabolismo, un po come accae quano a bambine si iventa onne. Avviene intorno ai

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

Caratteristiche elettriche principali dei tessuti biologici. Dispense a cura dei Prof. P. Bernardi, S. Pisa

Caratteristiche elettriche principali dei tessuti biologici. Dispense a cura dei Prof. P. Bernardi, S. Pisa Università egli Stui i Roma La Sapienza Facoltà i Ingegneria Dipartimento i Ingegneria Elettronica orso i Strumentazione Biomeica III aratteristiche elettriche principali ei tessuti biologici Dispense

Dettagli