SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto."

Transcript

1 SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di posizione impedisce al sistma materiale di assumere certe configurazioni, e quindi di compiere certi spostamenti. Consideriamo il caso più semplice di un punto vincolato. I più comuni vincoli per un punto sono: 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. 2. Punto vincolato ad una linea: il vincolo impedisce gli spostamenti in cui c è il distacco dalla linea. 3. Punto vincolato ad una superficie: il vincolo impedisce tutti gli spostamenti in cui c è il distacco dalla superficie. 4. Punto appoggiato ad una superficie: il vincolo impedisce tutti gli spostamenti in cui c è penetrazione al di sotto della superficie. I vincoli di posizione sono tradotti dal punto di vista matematico da relazioni tra le coordinate che individuanola configurazione del sistema. Queste relazioni possono essere: a) Equazioni b) Disequazioni. 1. Punto fisso P (x, y, z) 3 sono le coordinate del punto e 3 sono le equazioni. x = x 0 y = y 0. (1) z = z 0 2. Punto vincolato ad una linea di equazione paramentrica x = x (s) y = y (s), (2) z = z (s) 5 oppure di equazione ½ h (x, y, z) =0 g (x, y, z) =0. (3) 3 sono le coordinate che individuano la posizione del punto nello spazio, tra di loro esistono dei legami espressi da 2 equazioni. Basta una coordinata per individuare la posizione di P (la coordinata può anche essere di tipo non cartesiano). Ad esempio il parametro s. A tale coordinata che indichiamo con qdiamo il nome di coordinata lagrangiana.

2 6 3. Punto vincolato ad una superficie. Il vincolo impedisce tutti gli spostamenti che portano ad un distacco dalla superficie di equazione parametrica x = x (ξ,η) y = y (ξ, η) z = z (ξ,η), (4) oppure in forma implicita g (x, y, z) = 0. Abbiamo 3 coordinate cartesiane ed un vincolo. Bastano 2 coordinate per individuare la posizione di P (ad esempio ξ,η). 4. Punto appoggiato ad una superficie. La relazione che traduce il vincolo è la disequazione g (x, y, z) 0. L appoggio è verificato se vale il segno di uguaglianza; se vale il segno > il punto non è a contatto con il vincolo e deve considerarsi libero. 1), 2) e 3) sono esempi di vincoli bilateri (tradotti da equazioni). 4) è un esempio di vincolo unilatero (tradotto da una disequazione). Definizione 2 Un sistema materiale si dice soggetto a vincoli olonomi se tra le coordinate del sistema esistono dei legami (vincoli) espressi da relazioni finite (vincoli di posizione), oppure se tra le coordinate esistono legami espressi da relazioni differenziali (vincoli sulle velocità) integrabili, ovvero riducibili a forma finita (equivalenti a vincoli di posizione). Definizione 3 Un vincolo si dice anolonomo se la relazione differenziale tra le coordinate non è riducibile a forma finita. Esempio 1 (di vincolo olonomo) Rotolamento senza strisciamento di un disco su una guida fissa. Consideriamo un disco nel piano, vincolato ad appoggiarsi ad una guida rettilinea Senza ulteriori ipotesi occorrono due parametri x G e θ per individuarne la posizione. x G e θ sono le coordinate libere e sono indipendenti l una dall altra. Aggiungiamo il vincolo che il disco rotoli senza strisciare. Questo vincolo impone che i punti di contatto, diciamo A e B (cona appartenente al disco e B appartenente alla guida), abbiano la stessa velocità. Se la guida è fissa B èinquietee v B =0 = v A =0 = A è centro d istantanea rotazione.

3 La velocità del baricentro si può scriver come ³ v G = ω G A ; ω = θ k, (5) oppure come Integrando si ottiene v G = ẋ G i = θr i = ẋ G = R θ. (6) x G = Rθ + cost. (7) Esiste dunque un legame finito tra le coordinate. Quindi basta una coordinata per individuare la posizione di un disco che rotola senza strisciare su una guida fissa. Il rotoalmento senza strisciamento nello spazio non è olonomo (pr esempio, il pallone). Si osservi che se y>roccorre una nuova coordinata. Esempio 2 (di vincolo anolonomo) Disco che rotola senza strisciare su un piano fisso, mantenendo il proprio asse parallelo al piano. 4 coordinate individuano la configurazione del disco: (x, y) coordinate di G rispetto alla terna fissa e due angoli (ψ, ϕ). ψ viene detto angolo di precessione e ϕ è l angolo di rotazione propria. Il terzo angolo di Eulero (nutazione) si mantiene costante (θ = π/2), cosìcomela coordinata z di G (z = R). Sistemi olonomi e loro spostamenti possibili Definizione 4 Si chiama olonomo un sistema soggetto a vincoli olonomi. Consideriamo per semplicità un sistema costituito da N punti. La configurazione del sistema è individuata da 3N coordinate. Supponiamo che il sistema sia olonomo e che tra le coordinate esistano r relazioni (finite). Il numero di parametri indipendenti che occorrono per individuare la posizione del sistema è Indicheremo con k =3N r. (8) q 1,q 2,...,q k (9) tali parametri (coordinate libere o lagrangiane). k è il numero dei gradi di libertà del sistema, che nel caso di un sistema olonomo, coincide con il numero di parametri essenziali. Sia P i (q 1,q 2,...,q k t) (10) la posizione del punto i-esimo nel generico istante t. Il più generico spostamento infinitesimo possibile si scrive dp i = P i dq 1 + P i dq P i dq k + P i dt (11) q 1 q 2 q k t dove dq 1,dq 2,...,dq k,dt sono incrementi infinitesimi arbitrari e indipendenti tra di loro. Un sistema non soggetto esclusivamente a vincoli olonomi si chiama anolonomo. In questo caso il numero delle coordinate libere è superiore a 3N r. Si osservi che 7

4 8 1. un Corpo Rigido libero nello spazio è equivalente ad un sistema olonomo con 6 gradidilibertà(3 coordinate di un punto + 3 angoli di Eulero) 2. uncorporigidoliberonelpianoèequivalenteadunsistemaolonomocon3 gradidilibertà(2 coordinate di un punto + 1 angolo). Esempio 3 Asta incernierata (cerniera fissa) 1 grado di libertà (coordinata libera θ) x 0 = y 0 =0 (12) Esempio 4 Carrello equivalente meccanicamente al Manicotto (o perno ) rotante. E un Vincolo bilatero. Numero di gradi di libertà: 2 Esempio 5 Appoggio (Vincolo unilatero) (13) (14)

5 Esempio 6 Pattino equivalente meccanicamente ad un manicotto (Consente solo la traslazione. Toglie 2 gradi di libertà). 9 Esempio 7 Incastro Toglie all asta ogni possibilità di movimento (fissa A e impedisce la rotazione). Numero di gradi di libertà: 0 (15) (16)

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

7 Applicazioni ulteriori

7 Applicazioni ulteriori 7 Applicazioni ulteriori 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7.1.1 Analisi cinematica Si consideri la struttura in figura 7.1: i gradi di libertà sono pari a l =3n c v =3 0 3 = 0,

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione

Dettagli

Fondamenti di Meccanica Lagrangiana.

Fondamenti di Meccanica Lagrangiana. Capitolo 7 Fondamenti di Meccanica Lagrangiana. In questo capitolo ci occuperemo di introdurre la formulazione lagrangiana della meccanica classica. Ricordiamo che la presenza di reazioni vincolari di

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

Consigli di Meccanica Razionale

Consigli di Meccanica Razionale Consigli di Meccanica Razionale Enzo Tonti 3 dicembre 2009 2 Indice 1 INTRODUZIONE 7 1.1 Alcune semplici verità....................... 7 1.1.1 Forma tipica di un problema di meccanica......... 8 1.1.2

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

Cap. 1 - STRUTTURA DELLE MACCHINE

Cap. 1 - STRUTTURA DELLE MACCHINE Cap. 1 - STRUTTURA DELLE MACCHINE 1.1 Oggetto dello studio 1.2 La macchina come sistema 1.3 Studio delle macchine 1.4 Coppie cinematiche 1.5 Catene cinematiche e meccanismi Meccanica Applicata alle Macchine

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

Sistemi Meccatronici

Sistemi Meccatronici Sistemi Meccatronici Introduzione alla Dinamica e al Controllo dei Sistemi Meccanici rev. 0.9 prof. Paolo Righettini Università di Bergamo 20 novembre 2009 2 Indice 1 Modelli di sistemi meccanici 5 1.1

Dettagli

In maniera analoga si calcola, dal sistema fondamentale della dinamica ( )) Si ottiene: Mentre per quello della statica ( ) Si ottiene analogamente:

In maniera analoga si calcola, dal sistema fondamentale della dinamica ( )) Si ottiene: Mentre per quello della statica ( ) Si ottiene analogamente: Reazioni Vincolari si consideri un corpo, schematizzabile in un elemento E h, a contatto con un altro corpo S che presenta una faccia piana π. Sull'elemento agiscono le forze interne al sistema S-E h.

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Esercitazioni di Meccanica Applicata alle Macchine A cura di Andrea Bracci Marco Gabiccini Università di Pisa Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione Anno Accademico 008-009 Indice

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Orario di ricevimento: martedì h. 16:30-18:30 mercoledì h. 16:30-18:30

Orario di ricevimento: martedì h. 16:30-18:30 mercoledì h. 16:30-18:30 Corso di Laurea in Ingegneria Industriale Corso di Analisi Matematica 2 e Meccanica Razionale Lezioni del modulo di Meccanica razionale tenute da Stefano Siboni, a.a. 2010/2011 Argomenti del corso Vettori

Dettagli

6 Statica delle travi

6 Statica delle travi 6 Statica delle travi 6 Statica delle travi 6.1 Forze esterne Si consideri un generico corpo tridimensionale. possono agire i seguenti tipi di forze esterne: forze di volume b = b(x): [b] =[FL 3 ]; Si

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Moti e sistemi rigidi

Moti e sistemi rigidi Moti e sistemi rigidi Dispense per il corso di Meccanica Razionale 1 di Stefano Siboni 1. Moto rigido di un sistema di punti Sia dato un sistema S di N 2 punti materiali P i, i = 1,..., N. Per configurazione

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

LP. Lavoro e potenziale

LP. Lavoro e potenziale Lavoro e potenziale LP. Lavoro e potenziale Forza In questa sezione dobbiamo introdurre un nuovo concetto che assumiamo come primitivo dalla fisica: è il concetto di forza. Ci occuperemo anzitutto di una

Dettagli

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità:

Fig. 1. ove v è la velocità raggiunta dal punto alla quota h e g è l accelerazione di gravità: PECHE, DI DUE CICLISTI CHE PECOONO LA MEDESIMA DISCESA SENZA PEDALAE E CON BICICLETTE UGUALI, E PIU VELOCE QUELLO CHE PESA DI PIU, IN APPAENTE CONTADDIZIONE COL FATTO CHE L ACCELEAZIONE DI GAVITA E UGUALE

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

[A] vale a dire. di trascinamento coincide in questo caso (moto di traslazione) con l accelerazione del CM, risulta

[A] vale a dire. di trascinamento coincide in questo caso (moto di traslazione) con l accelerazione del CM, risulta Capitolo 13 Dinamica rotazionale 367 13.4 La seconda equazione cardinale della dinamica 1. A partire della seconda legge di Newton, si dimostra che per un qualsivoglia sistema materiale non solo per un

Dettagli

Giroscopio. Giroscopio. Fotocellule per la misura delle frequenze di nutazione e precessione. Sistema di ACQ

Giroscopio. Giroscopio. Fotocellule per la misura delle frequenze di nutazione e precessione. Sistema di ACQ Giroscopio Studio dei moti del giroscopio Studio della precessione di un giroscopio. Studio della dipendenza della frequenza di precessione dalla frequenza di rotazione e dalla distanza tra baricentro

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

CINEMATICA DEI MECCANISMI DEFINIZIONI

CINEMATICA DEI MECCANISMI DEFINIZIONI CINEMATICA APPLICATA Indice Cinematica del punto materiale Definizioni Tipologie di moto Strumenti matematici Applicazioni Cinematica del corpo rigido Definizioni Centro di istantanea rotazione Formula

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

derivando due volte rispetto al tempo:

derivando due volte rispetto al tempo: DINAMICA RELATIVA Cinematica relativa: Teorema di Galileo: derivo: utilizzando le formule di Poisson: ricaviamo che: dunque la nostra velocità assoluta risulta: Teorema di Coriolis: derivando due volte

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Condizioni di equilibrio: 2 tipi Equilibrio statico: la capacità di un segmento corporeo o del corpo nel suo insieme di mantenere una posizione

Condizioni di equilibrio: 2 tipi Equilibrio statico: la capacità di un segmento corporeo o del corpo nel suo insieme di mantenere una posizione Condizioni di equilibrio: 2 tipi Equilibrio statico: la capacità di un segmento corporeo o del corpo nel suo insieme di mantenere una posizione statica Equilibrio dinamico: la capacità di mantenere, durante

Dettagli

Composizione dell asse. geometrie di transizione

Composizione dell asse. geometrie di transizione Composizione dell asse geometrie di transizione Principali criteri di composizione dell asse La lunghezza massima dei rettifili è limitata dalla normativa ad un valore pari a 22 V p max ; le ragioni di

Dettagli

Relazione di laboratorio di fisica-chimica. Studiare il moto di un carrellino con il marcatempo

Relazione di laboratorio di fisica-chimica. Studiare il moto di un carrellino con il marcatempo Relazione di laboratorio di fisica-chimica Studiare il moto di un carrellino con il marcatempo Prima parte. Il moto rettilineo uniforme. Scopo esperimento. Verificare se un carrellino, lanciato lungo una

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Funzioni periodiche. Una funzione si dice periodica di periodo T se T > 0 è il più piccolo numero reale positivo tale che

Funzioni periodiche. Una funzione si dice periodica di periodo T se T > 0 è il più piccolo numero reale positivo tale che Funzioni periodiche Una funzione si dice periodica di periodo T se T > 0 è il più piccolo numero reale positivo tale che -T T In ogni intervallo di ampiezza pari a T il grafico di tale funzione si ripete.

Dettagli

Oscillazioni: il pendolo semplice

Oscillazioni: il pendolo semplice Oscillazioni: il pendolo semplice Consideriamo il pendolo semplice qui a fianco. La cordicella alla quale è appeso il corpo (puntiforme) di massa m si suppone inestensibile e di massa trascurabile. Per

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

TRASDUTTORI di POSIZIONE

TRASDUTTORI di POSIZIONE TRASDUTTORI di POSIZIONE Numerosi trasduttori sono stati messi a punto per il rilievo di posizione, in movimenti sia rettilinei sia rotatori. I potenziometri, rettilinei o circolari selezionano una quota

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

PRINCIPIO DEI LAVORI VIRTUALI

PRINCIPIO DEI LAVORI VIRTUALI PRINCIPIO DEI LAVORI VIRTUALI Velocità possibili e velocità virtuali Ciponiamoilproblemadideterminareequazionipuredimoto,ovveroequazioni che non introducono incognite di reazioni. Consideriamo il seguente

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle.

- Onde corpuscolari (di materia) che descrivano il comportamento ondulatorio delle particelle. Richiami di onde Durante il corso di fisica avete visto che le onde possono dividersi in - Onde meccaniche (come quelle del mare, le onde sismiche, le onde sonore) caratterizzate dalla necessità di un

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi Esercizi di Statica Corso dell A.A. 2003/2004 titolare prof. G. A. Porco acuradi Giacinto A. PORCO Giovanni FORMICA Esercizi di Statica A. G. Porco, G. Formica 1 Indice 1 Calcolo delle reazioni vincolari

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Versione 1.0-21 febbraio 2005

Versione 1.0-21 febbraio 2005 Corso di Laurea di I livello in Ingegneria Meccanica note alle lezioni di: Complementi di Meccanica Applicata alle Macchine, 3CFU Versione 1.0-21 febbraio 2005 Benedetto Allotta 1 Allotta Complementi di

Dettagli

5 10 17 26 37 2,,,,,,... 2 3 4 5 6

5 10 17 26 37 2,,,,,,... 2 3 4 5 6 MATEMATICA GENERALE 2014 - CTF Funzioni e successioni - Esercizi Docente: ALESSANDRO GAMBINI 1. a) Rappresenta mediante espressione analitica la seguente successione numerica. Motiva la tua risposta. 5

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Microeconomia, Esercitazione 1 (19/02/2015) Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Domande a risposta multipla 1) Siamo di fronte a uno shock positivo di offerta se: a) in corrispondenza

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI Indice 1 La Geometria analitica: la retta 1.1 Introduzione......................................... 1. Il piano cartesiano.....................................

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso

Dettagli