Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra"

Transcript

1 A01

2

3 Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra

4 Copyright MMXIV ARACNE editrice int.le S.r.l. via Quarto Negroni, Ariccia (RM) (06) ISBN I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento anche parziale, con qualsiasi mezzo, sono riservati per tutti i Paesi. Non sono assolutamente consentite le fotocopie senza il permesso scritto dell Editore. I edizione: settembre 2014

5 Indice Elenco delle tavole 7 Introduzione 11 1 Costruzioni con riga e compasso 13 2 Geometria analitica e Algebra lineare 29 3 Curve 47 4 Superfici 65 5 Calcolo integrale 87 Bibliografia 111 5

6

7 Elenco delle tavole Costruzione trasporto del segmento Costruzione trasporto dell angolo Costruzione retta parallela per un punto esterno Costruzione perpendicolare punto sulla retta Costruzione perpendicolare ad una retta per punto fuori della retta Costruzione somma di due punti Costruzione somma di due punti Costruzione del sottomultiplo di un punto Costruzione del prodotto di due punti Costruzione dell inverso di un punto Costruzione della bisettrice di un angolo Costruzione del prodotto per uno scalare positivo Costruzione del coniugato di un punto Costruzione del prodotto di due punti coniugati Costruzionedellaradicediunpunto Operazionitranumericomplessi Rappresentazione cartesiana dei punti complessi Rappresentazione matriciale dei punti complessi Rappresentazione in coordinate polare dei punti complessi Geometria analitica nel piano (I) Geometria analitica nel piano (II) Geometria analitica nel piano (III) Geometria analitica nel piano (IV) Geometria analitica nel piano (V) Geometria analitica nello spazio (I) Geometria analitica nello spazio (II) Geometria analitica nello spazio (III) Geometria analitica nello spazio (IV) Sistema lineare (I) Sistema lineare (II) Sistema lineare (III) x 1 ( 1 π ) x 2 : dominio e variazione di segno Calcolo limite funzione di una variabile Formula di Taylor: calcolo limiti (I) Formula di Taylor: calcolo limiti (II) Esempiorappresentazionecurvapiana

8 8 Elenco delle tavole Esempiorappresentazionecurvapiana TriedrodiFrénet Calcoli con CAS del Triedro di Frénet Trisettrice di Ippia Cissoide Concoide Spirale di Archimede Spirale logaritmica Rodonea Elicacilindrica Catenaria Curva di Béziern= log 2 (xy 1): grafico log 2 (xy 1): dominio e variazione di segno Continuità Differenziabilità (I) Differenziabilità (II) log(x 2y) x 2 +1:derivatadirezionale... + y 71 log(x y) x 2 + y 2 : dominio e variazione segno log(x y) x 2 + y 2 : rappresentazione grafico log(x y) x 2 + y 2 :calcoliconcas log(x y) x 2 + y 2 :pianotangente (x 1) 2 +2y 2 : estremi relativi e x y (x 2 2y 2 ): estremi relativi (x 2 + y 2 )e (x2 +y 2) : estremi relativi Ellissoide Paraboloide ellittico Paraboloide iperbolico Iperboloide ellittico Iperboloide iperbolico Cono Cilindro Catenoide Lunghezza curva Integrale curvilineo Calcolo con CAS pagina Coordinatebaricentro Lavoro campo di forze lungo un cammino Integrale doppio su rettangolo (I) Integrale doppio su rettangolo (II) Integrale doppio su dominio normale (I) Integrale doppio su dominio normale (II) Integrale doppio su dominio normale (III) Integrale doppio su dominio normale (IV) Calcolo volume cilindroide (I) Integrale doppio con cambiamento di variabili (I)

9 Elenco delle tavole 9 Integrale doppio con cambiamento di variabili (II) Integrale doppio con cambiamento di variabili (III) Volume cilindroide (II) Calcolo con cambiamento in coordinate polari volume cilindroide (II) Areadisuperficie(I) Calcolo con CAS in coordinate polari area di superficie (I) Calcolo con CAS in coordinate cartesiane area di superficie (I) Areadisuperficie(II) Areadisuperficie(II)

10

11 Introduzione In questo volume si sono volute raccogliere in forma autonoma buona parte delle tavole presenti in Calcolo con GeoGebra degli stessi autori (Aracne, 2014). Le tavole infatti possono essere utilizzate per un approccio all utilizzo del software in un percorso didattico di livello universitario per i primi corsi di matematica, indipendentemente dalla teoria esposta in Calcolo con GeoGebra. Questa raccolta può rappresentare uno strumento pratico per un rapido apprendimento della sintassi del software, per quel che concerne gli argomenti trattati. Consultando i siti e tube.geogebra.org si potrà poi procedere ad un utilizzo di livello superiore secondo specifiche esigenze. Nel capitolo 1 sono riportate classiche costruzioni con riga e compasso. Nel capitolo 2 si svluppano esercizi di base di geometria del piano e dello spazio e di algebra lineare. Nel capitolo 3 si presentano esempi di utilizzo del software per risolvere esercizi di base, riguardanti funzioni di una variabile e curve, e per rappresentare curve celebri. Nel capitolo 4 si presentano esempi di utilizzo del software per risolvere esercizi di base, riguardanti funzoni di due variabili, e per rappresentare superfici celebri. Nel capitolo 5 si presentano esempi di utilizzo del software per risolvere esercizi di integrazione di vario tipo. Settembre 2014 Giuseppina Anatriello 11

12

13 Costruzioni con riga e compasso 1

14 14 Tavole di Calcolo con GeoGebra Costruzione trasporto del segmento In figura è rappresentata la costruzione con riga e compasso del trasporto di un segmento su una semiretta assegnata. Tale costruzione è fondamentale per definire geometricamente la somma tra punti complessi rispetto ad un polo e e per il confronto tra i segmenti. ggb1/costruzionetrasportosegmento.ggb

15 Costruzioni con riga e compasso 15 Costruzione trasporto dell angolo In figura è rappresentata la costruzione con riga e compasso del trasporto di un angolo orientato con un lato coincidente con una semiretta assegnata. Tale costruzione è fondamentale per definire geometricamente il prodotto tra punti complessi rispetto ad un polo e a una unità e per il confronto tra gli angoli. ggb1/costruzionetrasportoangolo.ggb

16 16 Tavole di Calcolo con GeoGebra Costruzione della retta parallela per un punto esterno In figura è rappresentata la costruzione della retta parallela ad una retta data per un punto esterno. Tale costruzione è fondamentale per definire geometricamente la somma tra punti complessi rispetto ad un polo. ggb1/costruzioneparallelaperunpuntoesterno.ggb

17 Costruzioni con riga e compasso 17 Costruzione perpendicolare punto sulla retta In figura è rappresentata la costruzione della perpendicolare per un punto della retta. ggb1/costruzioneperpendicolare1.ggb

18 18 Tavole di Calcolo con GeoGebra Costruzione perpendicolare punto fuori della retta In figura è rappresentata la costruzione della perpendicolare ad una retta per un punto esterno. ggb1/costruzioneperpendicolare2.ggb

19 Costruzioni con riga e compasso 19 Costruzione somma di due punti In figura è rappresentata la costruzione del punto complesso somma di due complessi rispetto al polo O. ggb1/costruzionesommapunti.ggb

20 20 Tavole di Calcolo con GeoGebra Costruzione opposto di un punto In figura è rappresentata la costruzione del punto complesso opposto rispetto al polo O. ggb1/costruzioneopposto.ggb

La Chimica nella Scuola. a cura della

La Chimica nella Scuola. a cura della A03 La Chimica nella Scuola a cura della Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-xxxx-x

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 marzo 2015 Appunti di didattica della matematica applicata

Dettagli

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi ENCICLOPEDIA MATEMATICA di Corrado Brogi http://spazioweb.libero.it/corradobrogi Prefazione A mio modesto (anzi modestissimo) parere questa enciclopedia in sette volumi è uno dei lavori più chiari e completi

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II

Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II A13 Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II Metriche valutative a confronto Copyright MMXIV ARACNE editrice int.le

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria LICEO SCIENTIFICO STATALE CAVOUR Via delle Carine 1 - ROMA Commissione Orientamento in Uscita Comunicazione n. 2013/006 Data: 29-11-2013 OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

Economia e Organizzazione aziendale

Economia e Organizzazione aziendale Gianpaolo Iazzolino / Piero Migliarese Economia e Organizzazione aziendale Esercizi con soluzione ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Antonella Laino Il monopolio naturale

Antonella Laino Il monopolio naturale A13 477 Antonella Laino Il monopolio naturale Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4809-2

Dettagli

Antonino Maria Ferro Moto perpetuo o future fonti energetiche?

Antonino Maria Ferro Moto perpetuo o future fonti energetiche? Saggistica Aracne Antonino Maria Ferro Moto perpetuo o future fonti energetiche? Copyright MMXV Aracne editrice int.le S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Quarto Negroni, 15 00040

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

Le strategie competitive dell azienda nei mercati finanziari

Le strategie competitive dell azienda nei mercati finanziari Michele Galeotti Le strategie competitive dell azienda nei mercati finanziari ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Mergers & Acquisitions

Mergers & Acquisitions A12 343 Maurizio d Albora Ezio Tartaglia M&A Mergers & Acquisitions fusioni & acquisizioni a cura dello Studio Carnelutti Napoli Copyright MMXI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE

MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE MATEMATICA PRIMO BIENNIO LICEO DELLE SCIENZE UMANE Profilo generale e competenze Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015. Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s. 2014-2015. Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: MATEMATICA Classe: 3M Contratto formativo 1. Analisi della classe Una prova d ingresso svolta all inizio

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI 7 Direttore Beatrice VENTURI Università degli Studi di Cagliari Comitato scientifico Umberto NERI University of

Dettagli

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan

Spline Nurbs. IUAV Disegno Digitale. Camillo Trevisan Spline Nurbs IUAV Disegno Digitale Camillo Trevisan Spline e Nurbs Negli anni 70 e 80 del secolo scorso nelle aziende si è iniziata a sentire l esigenza di concentrare in un unica rappresentazione gestita

Dettagli

Raffaele Fiorentino Il change management nei processi d integrazione tra aziende

Raffaele Fiorentino Il change management nei processi d integrazione tra aziende A13 Raffaele Fiorentino Il change management nei processi d integrazione tra aziende Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

Manuela Massari Deborah Mola Valeria Roncone Il crowdfunding, i finanziamenti viaggiano in rete. Un modo innovativo per finanziare progetti e imprese

Manuela Massari Deborah Mola Valeria Roncone Il crowdfunding, i finanziamenti viaggiano in rete. Un modo innovativo per finanziare progetti e imprese A13 Manuela Massari Deborah Mola Valeria Roncone Il crowdfunding, i finanziamenti viaggiano in rete Un modo innovativo per finanziare progetti e imprese Copyright MMXIV Aracne editrice int.le S.r.l. www.aracneeditrice.it

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

Liceo Scientifico G. Galilei Macerata

Liceo Scientifico G. Galilei Macerata Classe 3 Sez D Materia : Matematica Docente: Angelini Antonella Liceo Scientifico G. Galilei Macerata Anno Scolastico 2009-2010 Contratto Formativo Individuale 1.ANALISI DELLA CLASSE: Conoscenze Competenze

Dettagli

la squadratura del foglio Copia.notebook September 21, 2012

la squadratura del foglio Copia.notebook September 21, 2012 la squadratura del foglio cancellare il cerchio di costruzione e lasciare tutti i punti individuati per ricavare la squadratura del foglio e la sua divisione in 4 parti uguali 1 la squadratura del foglio

Dettagli

ECONOMIA E GESTIONE DELLE IMPRESE

ECONOMIA E GESTIONE DELLE IMPRESE ECONOMIA E GESTIONE DELLE IMPRESE 6 Direttore Roberto Chionne Professore ordinario di Economia e Gestione delle Imprese Facoltà di Lingua e Cultura Italiana Università per Stranieri di Perugia Comitato

Dettagli

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 5 2 Funzioni da

Dettagli

Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio

Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio Ministero della Pubblica Istruzione Ufficio Scolastico Regionale per il Lazio LICEO SCIENTIFICO STATALE GIUSEPPE PEANO 00142 Roma - Via Francesco Morandini, 38 - XIX Distretto DIPARTIMENTO di MATEMATICA,

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

GeoGebra vers.5 - vista Grafici 3D

GeoGebra vers.5 - vista Grafici 3D GeoGebra vers.5 - vista Grafici 3D Marzo 2015 (manuale on-line, con aggiunte a cura di L. Tomasi) Questo articolo si riferisce a un componente della interfaccia utente di GeoGebra. Viste Menu Vista Algebra

Dettagli

Andrea Quintiliani L impresa di assicurazione

Andrea Quintiliani L impresa di assicurazione A13 Andrea Quintiliani L impresa di assicurazione Profili di rischio e di solvibilità Prefazione di Antonio Minguzzi Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it

Dettagli

Teoria dei Fenomeni Aleatori 1

Teoria dei Fenomeni Aleatori 1 Integrale Doppio Sia g( x,y ) una funzione continua nel piano ( x,y ) o D è un dominio sul piano ( x,y ) o P è una sua partizione che ricopre il dominio D: ( ) P D D... D... = 1,1 1,2 i,j, con Di,j = ΔxiΔ

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Enrico Fontana. L Health Technology Assessment applicato ai Sistemi informativi. Prefazione di Massimiliano Manzetti. Presentazione di Nicola Rosso

Enrico Fontana. L Health Technology Assessment applicato ai Sistemi informativi. Prefazione di Massimiliano Manzetti. Presentazione di Nicola Rosso A09 Enrico Fontana L Health Technology Assessment applicato ai Sistemi informativi Prefazione di Massimiliano Manzetti Presentazione di Nicola Rosso Copyright MMXV ARACNE editrice int.le S.r.l. www.aracneeditrice.it

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Simulazione di prova d Esame di Stato

Simulazione di prova d Esame di Stato 1 Simulazione di prova d Esame di Stato Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario Nome Cognome Classe Data / / Problema 1 Sia y = f(x) una funzione reale di variabile

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

EDA QUADERNI DI ARCHITETTURA

EDA QUADERNI DI ARCHITETTURA EDA QUADERNI DI ARCHITETTURA 1 Direttore Olimpia NIGLIO Kyoto University Comitato scientifico Rubén HERNÁNDEZ MOLINA Universidad Nacional de Colombia Taisuke KURODA Kanto Gakuin University Alberto PARDUCCI

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Manuela Repetto Creare e condividere conoscenze in gruppo

Manuela Repetto Creare e condividere conoscenze in gruppo Manuela Repetto Creare e condividere conoscenze in gruppo Un modello per l analisi delle interazioni in rete Prefazione di Guglielmo Trentin Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it

Dettagli

SALUS COLLANA DI SCIENZE DELLA SALUTE

SALUS COLLANA DI SCIENZE DELLA SALUTE SALUS COLLANA DI SCIENZE DELLA SALUTE 8 Direttore Rossana ALLONI Università Campus Bio Medico di Roma Comitato scientifico Paola BINETTI Università Campus Bio Medico di Roma Laura DE GARA Università Campus

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria

Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria Il programma che s intende svolgere si suddivide in cinque moduli : I MODULO: LE DISEQUAZIONI Obiettivi :

Dettagli

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto

2. Giovedì 5/03/2015, 11 13. ore: 2(4) Spazi vettoriali euclidei. Vettori nello spazio fisico: Prodotto scalare e prodotto Registro delle lezioni di MECCANICA 1 Corso di Laurea in Matematica 8 CFU - A.A. 2014/2015 docente: Francesco Demontis ultimo aggiornamento: 21 maggio 2015 1. Lunedì 2/03/2015, 11 13. ore: 2(2) Presentazione

Dettagli

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio»

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014 Problemi di Matematica Giovanni Romano Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014: ciclo formativo di orientamento alle prove di ammissione ai

Dettagli

Obiettivi Cognitivi OBIETTIVI MINIMI

Obiettivi Cognitivi OBIETTIVI MINIMI Docente Materia Classe Mugno Eugenio Matematica 1F Programmazione Preventiva Anno Scolastico 2012/2013 Data 25/11/2012 Obiettivi Cognitivi OBIETTIVI MINIMI conoscere il concetto di numero intero; conoscere

Dettagli

Il caso del Passante di Mestre

Il caso del Passante di Mestre A13 Luciano Bologna Schemi interpretativi per calmierare l entropia nel sistema di realizzazione delle opere pubbliche alla luce delle odierne tendenze di esternalizzazione Il caso del Passante di Mestre

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 25 febbraio 2015 Appunti di didattica della Matematica

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

www.geogebra.org/cms/

www.geogebra.org/cms/ I primi elementi 1. GEOGEBRA Geogebra eá un software di matematica dinamica prodotto da un gruppo diretto da Markus Hohenwarter in cui geometria e algebra condividono lo stesso ambiente di lavoro. La versione

Dettagli

DADU - Dipartimento di Architettura, Urbanistica, e Design UNISS - Università degli Studi di Sassari Il presente volume racconta l esperienza

DADU - Dipartimento di Architettura, Urbanistica, e Design UNISS - Università degli Studi di Sassari Il presente volume racconta l esperienza DADU - Dipartimento di Architettura, Urbanistica, e Design UNISS - Università degli Studi di Sassari Il presente volume racconta l esperienza didattica di tre laboratori di progettazione degli anni accademici

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Matematica si parte!

Matematica si parte! Matematica si parte! Yves Biollay, Amel Chaabouni, Joachim Stubbe Matematica si parte! Nozioni di base ed esercizi per il primo anno di Ingegneria A cura di Alfio Quarteroni Yves Biollay Amel Chaabouni

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

TITOLO ATTIVITA': I luoghi geometrici con il software Open source GeoGebra

TITOLO ATTIVITA': I luoghi geometrici con il software Open source GeoGebra CORSO DI FORMAZIONE PER INSEGNANTI (CORSO A ) Torino, Istituto Majorana, Via Frattini 11 Anno Scolastico 2011/2012 ALLIEVO: GIOVANNI NICCO CLASSE: A049 Matematica e Fisica TITOLO ATTIVITA': I luoghi geometrici

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

FILOSOFIA DELLA SCIENZA CERVELLO, COMPORTAMENTO, SOCIETÀ

FILOSOFIA DELLA SCIENZA CERVELLO, COMPORTAMENTO, SOCIETÀ FILOSOFIA DELLA SCIENZA CERVELLO, COMPORTAMENTO, SOCIETÀ 1 Direttore Silvano TAGLIAGAMBE Università degli Studi di Sassari Comitato scientifico Giovanni BIGGIO Università degli Studi di Cagliari Francesco

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Claudio Colombo Gli interessi nei contratti bancari

Claudio Colombo Gli interessi nei contratti bancari A12 Claudio Colombo Gli interessi nei contratti bancari Copyright MMXIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA LICEO SCIENTIFICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco

Dettagli

MATEMATICHE ELEMENTARI. Algebra

MATEMATICHE ELEMENTARI. Algebra Programmi degli insegnamenti industriali e professionali per gli istituti tecnici e le scuole speciali dipendenti dal Ministero di Agricoltura, Industria e Commercio approvati con regio decreto 14 agosto

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1 Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 venerdì 8 maggio 9 Questi esercizi sono proposti come preparazione

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

CLASSE 1 E Prof. Ssa: Georgia Angelini

CLASSE 1 E Prof. Ssa: Georgia Angelini Scuola secondaria di 2 Grado Liceo Artistico A.S. 2012 2013 CLASSE 1 E Prof. Ssa: Georgia Angelini PROGRAMMAZIONE CONSUNTIVA DISCIPLINE GEOMETRICHE La classe è composta da alunni che hanno dimostrano una

Dettagli

Antonio De Blasiis Il rilievo del degrado ambientale. Metodi ingegneristici

Antonio De Blasiis Il rilievo del degrado ambientale. Metodi ingegneristici A09 162 Antonio De Blasiis Il rilievo del degrado ambientale Metodi ingegneristici Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli