Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra"

Transcript

1 A01

2

3 Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra

4 Copyright MMXIV ARACNE editrice int.le S.r.l. via Quarto Negroni, Ariccia (RM) (06) ISBN I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento anche parziale, con qualsiasi mezzo, sono riservati per tutti i Paesi. Non sono assolutamente consentite le fotocopie senza il permesso scritto dell Editore. I edizione: settembre 2014

5 Indice Elenco delle tavole 7 Introduzione 11 1 Costruzioni con riga e compasso 13 2 Geometria analitica e Algebra lineare 29 3 Curve 47 4 Superfici 65 5 Calcolo integrale 87 Bibliografia 111 5

6

7 Elenco delle tavole Costruzione trasporto del segmento Costruzione trasporto dell angolo Costruzione retta parallela per un punto esterno Costruzione perpendicolare punto sulla retta Costruzione perpendicolare ad una retta per punto fuori della retta Costruzione somma di due punti Costruzione somma di due punti Costruzione del sottomultiplo di un punto Costruzione del prodotto di due punti Costruzione dell inverso di un punto Costruzione della bisettrice di un angolo Costruzione del prodotto per uno scalare positivo Costruzione del coniugato di un punto Costruzione del prodotto di due punti coniugati Costruzionedellaradicediunpunto Operazionitranumericomplessi Rappresentazione cartesiana dei punti complessi Rappresentazione matriciale dei punti complessi Rappresentazione in coordinate polare dei punti complessi Geometria analitica nel piano (I) Geometria analitica nel piano (II) Geometria analitica nel piano (III) Geometria analitica nel piano (IV) Geometria analitica nel piano (V) Geometria analitica nello spazio (I) Geometria analitica nello spazio (II) Geometria analitica nello spazio (III) Geometria analitica nello spazio (IV) Sistema lineare (I) Sistema lineare (II) Sistema lineare (III) x 1 ( 1 π ) x 2 : dominio e variazione di segno Calcolo limite funzione di una variabile Formula di Taylor: calcolo limiti (I) Formula di Taylor: calcolo limiti (II) Esempiorappresentazionecurvapiana

8 8 Elenco delle tavole Esempiorappresentazionecurvapiana TriedrodiFrénet Calcoli con CAS del Triedro di Frénet Trisettrice di Ippia Cissoide Concoide Spirale di Archimede Spirale logaritmica Rodonea Elicacilindrica Catenaria Curva di Béziern= log 2 (xy 1): grafico log 2 (xy 1): dominio e variazione di segno Continuità Differenziabilità (I) Differenziabilità (II) log(x 2y) x 2 +1:derivatadirezionale... + y 71 log(x y) x 2 + y 2 : dominio e variazione segno log(x y) x 2 + y 2 : rappresentazione grafico log(x y) x 2 + y 2 :calcoliconcas log(x y) x 2 + y 2 :pianotangente (x 1) 2 +2y 2 : estremi relativi e x y (x 2 2y 2 ): estremi relativi (x 2 + y 2 )e (x2 +y 2) : estremi relativi Ellissoide Paraboloide ellittico Paraboloide iperbolico Iperboloide ellittico Iperboloide iperbolico Cono Cilindro Catenoide Lunghezza curva Integrale curvilineo Calcolo con CAS pagina Coordinatebaricentro Lavoro campo di forze lungo un cammino Integrale doppio su rettangolo (I) Integrale doppio su rettangolo (II) Integrale doppio su dominio normale (I) Integrale doppio su dominio normale (II) Integrale doppio su dominio normale (III) Integrale doppio su dominio normale (IV) Calcolo volume cilindroide (I) Integrale doppio con cambiamento di variabili (I)

9 Elenco delle tavole 9 Integrale doppio con cambiamento di variabili (II) Integrale doppio con cambiamento di variabili (III) Volume cilindroide (II) Calcolo con cambiamento in coordinate polari volume cilindroide (II) Areadisuperficie(I) Calcolo con CAS in coordinate polari area di superficie (I) Calcolo con CAS in coordinate cartesiane area di superficie (I) Areadisuperficie(II) Areadisuperficie(II)

10

11 Introduzione In questo volume si sono volute raccogliere in forma autonoma buona parte delle tavole presenti in Calcolo con GeoGebra degli stessi autori (Aracne, 2014). Le tavole infatti possono essere utilizzate per un approccio all utilizzo del software in un percorso didattico di livello universitario per i primi corsi di matematica, indipendentemente dalla teoria esposta in Calcolo con GeoGebra. Questa raccolta può rappresentare uno strumento pratico per un rapido apprendimento della sintassi del software, per quel che concerne gli argomenti trattati. Consultando i siti e tube.geogebra.org si potrà poi procedere ad un utilizzo di livello superiore secondo specifiche esigenze. Nel capitolo 1 sono riportate classiche costruzioni con riga e compasso. Nel capitolo 2 si svluppano esercizi di base di geometria del piano e dello spazio e di algebra lineare. Nel capitolo 3 si presentano esempi di utilizzo del software per risolvere esercizi di base, riguardanti funzioni di una variabile e curve, e per rappresentare curve celebri. Nel capitolo 4 si presentano esempi di utilizzo del software per risolvere esercizi di base, riguardanti funzoni di due variabili, e per rappresentare superfici celebri. Nel capitolo 5 si presentano esempi di utilizzo del software per risolvere esercizi di integrazione di vario tipo. Settembre 2014 Giuseppina Anatriello 11

12

13 Costruzioni con riga e compasso 1

14 14 Tavole di Calcolo con GeoGebra Costruzione trasporto del segmento In figura è rappresentata la costruzione con riga e compasso del trasporto di un segmento su una semiretta assegnata. Tale costruzione è fondamentale per definire geometricamente la somma tra punti complessi rispetto ad un polo e e per il confronto tra i segmenti. ggb1/costruzionetrasportosegmento.ggb

15 Costruzioni con riga e compasso 15 Costruzione trasporto dell angolo In figura è rappresentata la costruzione con riga e compasso del trasporto di un angolo orientato con un lato coincidente con una semiretta assegnata. Tale costruzione è fondamentale per definire geometricamente il prodotto tra punti complessi rispetto ad un polo e a una unità e per il confronto tra gli angoli. ggb1/costruzionetrasportoangolo.ggb

16 16 Tavole di Calcolo con GeoGebra Costruzione della retta parallela per un punto esterno In figura è rappresentata la costruzione della retta parallela ad una retta data per un punto esterno. Tale costruzione è fondamentale per definire geometricamente la somma tra punti complessi rispetto ad un polo. ggb1/costruzioneparallelaperunpuntoesterno.ggb

17 Costruzioni con riga e compasso 17 Costruzione perpendicolare punto sulla retta In figura è rappresentata la costruzione della perpendicolare per un punto della retta. ggb1/costruzioneperpendicolare1.ggb

18 18 Tavole di Calcolo con GeoGebra Costruzione perpendicolare punto fuori della retta In figura è rappresentata la costruzione della perpendicolare ad una retta per un punto esterno. ggb1/costruzioneperpendicolare2.ggb

19 Costruzioni con riga e compasso 19 Costruzione somma di due punti In figura è rappresentata la costruzione del punto complesso somma di due complessi rispetto al polo O. ggb1/costruzionesommapunti.ggb

20 20 Tavole di Calcolo con GeoGebra Costruzione opposto di un punto In figura è rappresentata la costruzione del punto complesso opposto rispetto al polo O. ggb1/costruzioneopposto.ggb

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e

Dettagli

La Chimica nella Scuola. a cura di

La Chimica nella Scuola. a cura di A03 La Chimica nella Scuola a cura di Copyright MMXIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-xxxx-x

Dettagli

La Chimica nella Scuola. a cura della

La Chimica nella Scuola. a cura della A03 La Chimica nella Scuola a cura della Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-xxxx-x

Dettagli

Giuseppina Anatriello Fondamenti di Analisi matematica. Dalle funzioni elementari al calcolo differenziale

Giuseppina Anatriello Fondamenti di Analisi matematica. Dalle funzioni elementari al calcolo differenziale A01 Giuseppina Anatriello Fondamenti di Analisi matematica Dalle funzioni elementari al calcolo differenziale Copyright MMXIV ARACNE editrice int.le S.r.l. www.aracneeditrice.it info@aracneeditrice.it

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 marzo 2015 Appunti di didattica della matematica applicata

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

PIANO DI LAVORO PERSONALE

PIANO DI LAVORO PERSONALE ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi

ENCICLOPEDIA MATEMATICA. di Corrado Brogi http://spazioweb.libero.it/corradobrogi ENCICLOPEDIA MATEMATICA di Corrado Brogi http://spazioweb.libero.it/corradobrogi Prefazione A mio modesto (anzi modestissimo) parere questa enciclopedia in sette volumi è uno dei lavori più chiari e completi

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Paolo Di Sia Elementi di Didattica della matematica I. Laboratorio

Paolo Di Sia Elementi di Didattica della matematica I. Laboratorio A01 Paolo Di Sia Elementi di Didattica della matematica I Laboratorio Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06)

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II

Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II A13 Vincenzo Urciuoli Angelo Troiani Le Riserve Tecniche Life sotto Statutory Accounting Local, IAS/IFRS e in ottica Solvency II Metriche valutative a confronto Copyright MMXIV ARACNE editrice int.le

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria LICEO SCIENTIFICO STATALE CAVOUR Via delle Carine 1 - ROMA Commissione Orientamento in Uscita Comunicazione n. 2013/006 Data: 29-11-2013 OGGETTO: UNIROMA 3 TEST di valutazione Dipartimento di ingegneria

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità

Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità A09 Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità Accreditamento, certificazione ed audit clinico in strutture sanitarie e socio-sanitarie Risoluzioni test prove di esami Copyright

Dettagli

Stefano Iuliani Non tutte le vittime sono uguali

Stefano Iuliani Non tutte le vittime sono uguali DIRITTO DI STAMPA 69 DIRITTO DI STAMPA Il diritto di stampa era quello che, nell università di un tempo, veniva a meritare l elaborato scritto di uno studente, anzitutto la tesi di laurea, di cui fosse

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Antonella Laino Il monopolio naturale

Antonella Laino Il monopolio naturale A13 477 Antonella Laino Il monopolio naturale Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4809-2

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

Raffaele Fiorentino Il change management nei processi d integrazione tra aziende

Raffaele Fiorentino Il change management nei processi d integrazione tra aziende A13 Raffaele Fiorentino Il change management nei processi d integrazione tra aziende Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

LINEE GENERALI E COMPETENZE

LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata,

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Economia e Organizzazione aziendale

Economia e Organizzazione aziendale Gianpaolo Iazzolino / Piero Migliarese Economia e Organizzazione aziendale Esercizi con soluzione ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele

Dettagli

Il libro vuole invitare i giovani che ancora cercano il loro cammino ad una conoscenza più intima e approfondita della vita di padre Mario Borzaga,

Il libro vuole invitare i giovani che ancora cercano il loro cammino ad una conoscenza più intima e approfondita della vita di padre Mario Borzaga, Saggistica Aracne Il libro vuole invitare i giovani che ancora cercano il loro cammino ad una conoscenza più intima e approfondita della vita di padre Mario Borzaga, missionario Oblato di Maria Immacolata.

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

TITOLO ATTIVITA': I luoghi geometrici con il software Open source GeoGebra

TITOLO ATTIVITA': I luoghi geometrici con il software Open source GeoGebra CORSO DI FORMAZIONE PER INSEGNANTI (CORSO A ) Torino, Istituto Majorana, Via Frattini 11 Anno Scolastico 2011/2012 ALLIEVO: GIOVANNI NICCO CLASSE: A049 Matematica e Fisica TITOLO ATTIVITA': I luoghi geometrici

Dettagli

TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573

TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573 TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573 Emanuela Maria Torre STRATEGIE DI RICERCA VALUTATIVA

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. .6 esercizi 3 Esercizio 8. Stabilisci se la funzione = 4 è pari o dispari. Soluzione. Sostituiamo al posto di in f(): f( ) = ( ) 4 ( ) = 4 = f() La funzione è pari. Vedi le figure 4f e 30f..6 esercizi

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015. Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s. 2014-2015. Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: MATEMATICA Classe: 3M Contratto formativo 1. Analisi della classe Una prova d ingresso svolta all inizio

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

L iperbole: problemi ed equazioni. Bruna Cavallaro, Treccani Scuola

L iperbole: problemi ed equazioni. Bruna Cavallaro, Treccani Scuola L iperbole: problemi ed equazioni 1 Bruna Cavallaro, Treccani Scuola Tutto quello che sappiamo sull equazione cartesiana dell iperbole con centro O e fuochi sull asse x Asintoti c > a a, b, c sono legati

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria

Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria Piano di lavoro di Matematica a.s.2014/2015 classe 5^A s.i.a. Insegnante : Prof.ssa Pisu Daria Il programma che s intende svolgere si suddivide in cinque moduli : I MODULO: LE DISEQUAZIONI Obiettivi :

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013

COORDINAMENTO PER MATERIE SETTEMBRE 2013 Pagina 1 di 6 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico)

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA. CLASSI PRIME Anno scolastico 2015/2016 DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE DIDATTICO METODOLOGICA ANNUALE DI MATEMATICA CLASSI PRIME Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

PIANO DI LAVORO ANNUALE Anno Scolastico 2012/13

PIANO DI LAVORO ANNUALE Anno Scolastico 2012/13 Docente I.T.P. Materia Classi AMATA ANTONIO NESCI MATTEO TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA 1C PIANO DI LAVORO ANNUALE Anno Scolastico 2012/13 Libro di testo: L. Cremona, R. Demaldè, F.

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

I.I.S. "MARGHERITA DI SAVOIA" a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA

I.I.S. MARGHERITA DI SAVOIA a.s. 20014-2015 LICEO LINGUISTICO classe I BL Programma di MATEMATICA classe I BL Numeri naturali L insieme dei numeri naturali e le quattro operazioni aritmetiche. Le potenze. Espressioni. Divisibilità, numeri primi. M.C.D. e m.c.m. Numeri interi relativi L insieme dei

Dettagli

Fabrizio Minniti Il regime di non proliferazione nucleare

Fabrizio Minniti Il regime di non proliferazione nucleare A12 Fabrizio Minniti Il regime di non proliferazione nucleare Copyright MMXV Aracne editrice int.le S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Quarto Negroni, 15 00040 Ariccia (RM) (06) 93781065

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI ------------------------------------------- Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine) Telefono n. 0432 955214 Fax n. 0432

Dettagli

Centro Professionale Commerciale di Bellinzona Programma d istituto. Obiettivi principali: Atteggiamenti (Saper essere)

Centro Professionale Commerciale di Bellinzona Programma d istituto. Obiettivi principali: Atteggiamenti (Saper essere) Centro Professionale Commerciale di Bellinzona Programma d istituto Maturità Professionale Commerciale - MATERIA :MATEMATICA 1 anno maturità integrata Ore-lezione settimanali: 3 X 3 (Corso base) + 2,5

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerä i concetti e i metodi elementari della matematica, sia interni alla disciplina in så considerata,

Dettagli

Antonino Maria Ferro Moto perpetuo o future fonti energetiche?

Antonino Maria Ferro Moto perpetuo o future fonti energetiche? Saggistica Aracne Antonino Maria Ferro Moto perpetuo o future fonti energetiche? Copyright MMXV Aracne editrice int.le S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Quarto Negroni, 15 00040

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

Le funzionalità del tool esri/arcview. Ferdinando Di Martino Barbara Cardone Salvatore Sessa

Le funzionalità del tool esri/arcview. Ferdinando Di Martino Barbara Cardone Salvatore Sessa A08 343 Le funzionalità del tool esri/arcview Ferdinando Di Martino Barbara Cardone Salvatore Sessa Copyright MMXI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo,

Dettagli

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche

Competenze. -Saper semplificare le frazioni algebriche -Saper eseguire le operazioni con le frazioni algebriche Disciplina MATEMATICA Secondo biennio e anno conclusivo Liceo Economico sociale Classe terza Finalità Conoscenze Obiettivi minimi Finalità della matematica nel corso del secondo biennio è di proseguire

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2003/2004, prof. G. Stefani primo semiperiodo 22/9/03-8/11/03 Testo consigliato: Robert A. Adams - Calcolo differenziale 1 - Casa

Dettagli

Argomenti. Analisi Determnazione del dominio e segno di una funzione. Esercizi.

Argomenti. Analisi Determnazione del dominio e segno di una funzione. Esercizi. Argomenti Classe: 4ª D SCIENT Stampato il: 8/6/2015, 09:23 Materia: Matematica Anno scolastico: 2014/2015 Periodo dal: 15/09/2014 al: 10/06/2015 da: Mancini Legenda: assegnazioni note riservate Data Ora

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Direttore. Comitato scientifico. Università Ca Foscari di Venezia. Libera Università Internazionale degli Studi Sociali Guido Carli (LUISS) di Roma

Direttore. Comitato scientifico. Università Ca Foscari di Venezia. Libera Università Internazionale degli Studi Sociali Guido Carli (LUISS) di Roma RIFLESSI 19 Direttore Tiziana MIGLIORE Università Ca Foscari di Venezia Comitato scientifico Paolo FABBRI Libera Università Internazionale degli Studi Sociali Guido Carli (LUISS) di Roma Silvia BURINI

Dettagli

Mergers & Acquisitions

Mergers & Acquisitions A12 343 Maurizio d Albora Ezio Tartaglia M&A Mergers & Acquisitions fusioni & acquisizioni a cura dello Studio Carnelutti Napoli Copyright MMXI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Obiettivi Cognitivi OBIETTIVI MINIMI

Obiettivi Cognitivi OBIETTIVI MINIMI Docente Materia Classe Mugno Eugenio Matematica 1F Programmazione Preventiva Anno Scolastico 2012/2013 Data 25/11/2012 Obiettivi Cognitivi OBIETTIVI MINIMI conoscere il concetto di numero intero; conoscere

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT

LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT A02 059 Laura Bellia Carla Di Martino Gennaro Spada LA SIMULAZIONE ILLUMINOTECNICA CON RADIANCE MEDIANTE ECOTECT L ILLUMINAZIONE DI UNA CHIESA DI INTERESSE STORICO ARTISTICO Copyright MMX ARACNE editrice

Dettagli

Manuela Repetto Creare e condividere conoscenze in gruppo

Manuela Repetto Creare e condividere conoscenze in gruppo Manuela Repetto Creare e condividere conoscenze in gruppo Un modello per l analisi delle interazioni in rete Prefazione di Guglielmo Trentin Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica

per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica per i seguenti Licei: - SCIENTIFICO - TECNOLOGICO OSA di Matematica PRIMO BIENNIO Nucleo tematico di contenuto: Numeri e algoritmi. Gli insiemi dei numeri naturali, interi, razionali: rappresentazione,

Dettagli