Pressioni nelle condotte

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Pressioni nelle condotte"

Transcript

1 10 Pressioni nelle condotte 10.1 Sovrppressioni ccidentli L e sovrppressioni ccidentli si possono verificre cus delle vrizioni del moto dell cqu nell tubzione. In questo cso si dirà che il moto non viene più in reime permnente, m che il moto è vrio. Il moto è permnente se oni punto dell condott è crtterizzto dlle crtteristiche idruliche, stbilite in bse ll portt e ll sezione, che si mntenono costnti nel tempo. Se invece il moto è vrio l velocità in oni punto non soddisf più l condizione di costnz nel tempo Pressioni vribili e velocità dell ond d urto L situzione di moto permnente si verific nell condott solo dopo un certo tempo d qundo si pone in servizio l rete cioè qundo si stbilisce l velocità di reime. Quest velocità è correlt direttmente con l curv crtteristic dell tubzione che mette in relzione l portt con il crico cui è sottopost. Il punto di intersezione dell curv crtteristic dell tubzione e quell dello strumento che f venire il moto (pomp o vlvol) permette di individure il punto di funzionmento. Se si consider l condizione in cui si h l circolzione di un dt portt e in un dto momento si verific l vrizione di qulche elemento nell rete, llor si rà nche un modific dell su curv crtteristic, vrindo nche il punto di intersezione con l curv crtteristic dell condott. Qundo l ond di pressione, che si ener nell rete ffinché si verifichi l deumento, incontr delle condizioni che sono incomptibili con quelle che si dovrebbero stbilire, llor si ener un nuov ond di pressione in senso contrrio. Quest è l condizione che si verific, d esempio, nel momento in cui si chiude un vlvol vlle di un condott funzionnte rità. L ond di pressione che si ener si prop fino l serbtoio dove l condizione di pressione è incomptibile con le condizioni fisiche di pelo libero. D ciò si prop un ltr perturbzione che su volt riunerà l vlvol e troverà condizioni incomptibili, d cui un nuov perturbzione rà oriine e così vi in successione. L soluzione di questo problem deve in reltà tenere in conto l dinmic dei mezzi elstici. In reime vribile, nel cso in cui l ond di pressione si prop nel verso contrrio ll portt. Se si h un vrizione di velocità d c 0 c 1, llor si verificherà nche un vrizione di pressione che psserà d h 0 h 0 +F che provocherà l diltzione del 139

2 Le condotte in PVC tubo che si spost con l celerità dell ond. Si può ricre mtemticmente che l sovppressione F è pri : F = (c 0 c 1 ) Fiur 10.1 Nel cso in cui l ond di pressione si spost nel verso dell portt. In questo cso l sovrppressione srà: F = (c 1 c 0 ) Queste formulzioni possono essere considerte vlide nel cso di chiusur istntne di un vlvol vlle di un condott rità Clcolo dell celerità dell perturbzione Si suppon che un liquido circoli con un velocità c 0 in reime permnente e che in un momento stbilito si produc un perturbzione che fcci vrire l velocità in c 1. Se c 1 <c 0 llor umenterà l pressione e pertnto si rà un diltzione del rio del tubo. Quest vrizione si trsmetterà con un velocità. Quest ultim si può ricre in seuito considerzioni nlitiche, ottenendo: 1 = γ ( D 1 + E m e ) E in cui E m è il modulo elstico del mterile, E è quello dell cqu (2, k/m 2 ) e γ è il peso specifico dell cqu. 140

3 Cp. 10 PRESSIONI NELLE CONDOTTE Fiur

4 Le condotte in PVC Colpo d riete Questo fenomeno è stto molto studito perché è presente in tutte le condotte in pressione in cui il reime non si costnte nel tempo. È il nome ttribuito d un fenomeno secondo il qule le vrizioni di funzionmento di un pprecchio nell rete, producono vrizioni di portt e pressione che si propno ll interno dell condott con un velocità che dipendono soltnto dll compressibilità del liquido e dll riidezz dell tubzione. L prim soluzione nlitic del problem è quell di Michud del 1878 che intuì il suo crttere oscilltorio. Lo studio viene nel cso prticolre di condott rità in cui si trov un vlvol. Il vlore dell sovrppressione, nel cso che l chiusur dell vlvol ven in tempi miori l tempo di fse (tempo in cui l perturbzione riune il serbtoio e ritorn ll vlvol), è: 2Lv H = T in cui L l lunhezz dell condott, T è il tempo di chiusur dell vlvol in secondi e v è l velocità inizile dell cqu. Nel 1890 Joukowski completò il loro di Michud, rrivndo ll espressione: H = L formul sopr scritt si riferisce d un chiusur istntne dell vlvol ed è vlid per un tempo di chiusur T < 2L/ che è il tempo che impie un ond per percorrere in ndt e ritorno l tubzione. Per T = 2L/ l formul di Michud coincide con quell di Joukowski. L prim rimne vlid per tempi di chiusur T > 2L/. Nelle tubzioni in PVC i rpporto D / e è costnte, perciò il vlore di celerità è costnte per un certo vlore di pressione. Tbell 10.1 Pressione nominle n 4 tm n 6 tm n 10 tm n 16 tm n 20 tm n 25 tm Celerità per tubzioni in PVC 240 m/s 295 m/s 380 m/s 475 m/s 530 m/s 595 m/s Nel 1903 l inener Allievi studiò il fenomeno del colpo d riete considerndo l ipotesi rele di chiusur linere dell vlvol, cioè considerndo che l chiusur dell vlvol vri linermente l sezione di pssio. L velocità di propzione dell perturbzione, secondo Allevi, è ricbile dll formul: 142

5 1 w ( 1 1 D ) = 2 ε + E e in cui: w è il peso specifico del liquido in k/m 3, è il modulo di elsticità dell cqu, E è il modulo di elsticità del mterile (per il PVC 20 C E= k/m 2 ), D è il dimetro del tubo in mm, e è lo spessore del tubo. Sostituendo ll interno dell sopr citt formul i vlori reltivi ll cqu si ottiene: = 9900 D 48,3 + k e Il vlore di k dipende dl modulo di elsticità del tubo e per il PVC riido è pri 33,33. Allievi dimostr che il fenomeno del colpo d riete si può studire un volt conosciuti due prmetri che rppresentno le crtteristiche dell tubzione e quelle dell vlvol. Per un mnovr lent cioè per T > 2L / si ritiene vlid l formul di Michud: 2Lv H = ± T mentre per T < 2L /, llor vle l formul di Allievi: H = ± Formul di Mendiluce Nelle condotte in cui è presente un pomp, esiste un formul per clcolre il tempo T intercorrente tr l interruzione di funzionmento dell pomp e l nnulmento dell velocità di circolzione dell cqu: MLv T = C + H p in cui C è un coefficiente funzione dell relzione tr prevlenz dell pomp e lunhezz L dell condott, M è un coefficiente funzione di L, v è l velocità dell cqu, H p è l prevlenz. Tbell 10.2 Cp. 10 PRESSIONI NELLE CONDOTTE n H p /L % n C 1 1 0,8 0,5 0,4 0 n L n M 2 1,75 1,5 1,25 1,15 143

6 Per L < T/2, srà vlid l formul di Michud: 2Lv H = ± T mentre per L > T/2, vle l formul di Allievi: H = ± Qundo si verific quest ultim condizione, in reltà si devono utilizzre tutte e due le formule perché esiterà un punto per cui è soddisftt l uulinz L = T/2 e d quel punto in poi srà vlid l equzione di Michud Introduzione l metodo di Bereron Questo è un metodo rfico che permette di risolvere nche i problemi più complessi di colpo d riete. Si possono clcolre in tutti i punti dell tubzione l portte e le pressioni in oni istnte. Bereron h dimostrto l relzione tr portte e pressioni: H = ± Q S in cui S è l sezione utile dell condott. Il metodo di Bereron, che or non verrà pprofondito, si pplic ipotizzndo l presenz di un osservtore interno ll condott che si muove con l velocità dell celerità dell perturbzione. Alcune considerzioni importnti si possono fre per qunto riurd l citzione, essendo quest un condizione che non si vuole si relizzi nell condott. Se ci si trov nel cso in cui: < H + J + P Dove H è l pressione sttic o l quot sttic, J è l perdit di crico totle, P è l pressione tmosferic. In questo cso non si verific l citzione e l sovrpressione mssim è quell clcolbile con l formul di Allievi. Se invece: Le condotte in PVC > H + J + P In questo cso si verific l citzione e l sovrpressione è: H mx = Y Y è un fttore compreso tr 1 e 3 e dipende dll su relzione con un ltro prmetro X. Si considerno vlide le seuenti relzioni: X + 2 Y = X X = H + J + P 144

7 Cp. 10 PRESSIONI NELLE CONDOTTE Altri metodi di clcolo Oltre i metodi di clcolo precedentemente citti, ne esistono deli ltri più complessi mtemticmente come il metodo delle crtteristiche e deli elementi finiti. Esistono prormmi commercili che permettono di eseuire le verifiche per mezzo di questi metodi L ri nelle tubzioni Un vlutzione importnte che deve essere ftt nel dimensionmento delle tubzioni è il clcolo dell ri che queste ultime possono contenere. L ri può essere introdott qundo si riempie l tubzione, qundo si vi un pomp oppure qundo si vuot l tubzione. L ri, essendo un elemento di bsso peso molecolre, si posizion sempre nelle prti lte delle condotte. Qui si può ccumulre e fr diminuire considerevolmente l sezione di pssio dell cqu e quindi l portt. Inoltre quest ri può riunere nche pressioni elevte e portre ll rottur del tubo. L pressione finle riunt dll ri dipende dl dimetro del tubo, dll velocità di circolzione dell cqu, dl volume di ri ccumulto e dll situzione dell mss d ri. Per vlutre l entità di tle sovrppressione, si utilizz l formul di Boyle Mriotte. Si consideri un volume di 100 litri, in un tubzione di 250mm di dimetro e 1000 m di lunhezz, supponendo che l pressione d un estremo dell condott si di 2 tm. Si ipotizzi inoltre che l velocità dell cqu si di 1,5 m/s. L mss d cqu srà: πd 2 Lγ P = 4 = 5001 k E quindi l eneri cinetic ssocit: E 1 c = mv 2 = 5626 k m 2 Quest eneri cinetic si trsform in loro di compressione dell ri che si trov nell tubzione secondo l lee di Boyle Miotte: PV = P V Si possono quindi uulire le espressioni del loro fornito e ssorbito: 1 P mv 2 = PVLn 2 P D cui si ottiene: P =33,3 tm Quest pressione fcilmente produrrà l rottur dell tubzione. Se l tubzione non è interrt ess esploderà, ltrimenti si verificherà un rottur del tipo rppresentto in fiur. 145

8 Le condotte in PVC Fiur 10.3 Per evitre tli inconvenienti, si dovrà cercre di eliminre l totlità dell ri l suo interno e utilizzre i mezzi necessri ffinché, un volt elimint l ri, quest non poss penetrre nuovmente. Si dovrnno quindi collocre delle vlvole di sfito nelle prti lte delle condotte in modo d evitre l presenz di ri. 146

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Da = S f + t pr * (V/3.6) t pr = * V

Da = S f + t pr * (V/3.6) t pr = * V ELEMENTI PER L PROGETTZIONE STRDLE Distnze di isibilità Distnz di visibilità per l rresto D = S f + t pr * (/3.6) t pr =.8 0.0 * s m F f R d R r R m F f R d R r R Ricordndo che le espressioni fornite per

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

Capitolo 4. Criteri di valutazione del damping

Capitolo 4. Criteri di valutazione del damping Cpitolo 4 Criteri di vlutzione del dmping L'ver lvorto sempre con formule nlitiche h permesso di studire le vrie grndezze direttmente con metodi mtemtici, piuttosto che fre ricorso criteri qulittivi bsti

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

F σ. max. min. max. med. min. Y max. a K min. K max F BW. max. Y min. K K max. Y a. min

F σ. max. min. max. med. min. Y max. a K min. K max F BW. max. Y min. K K max. Y a. min σ 2 mx min w mx BW B mx min med min K mx Y mx K min Y min t K K mx K min Y 1 σ Pur essendo i vlori di σ mx e di σ min costnti nel tempo, i vlori di K mx e K min sono crescenti, perché, con l ccumulrsi

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE Esercizio B. Anlisi del processo di fonderi Si deve fricre un getto in ghis del peso di 50 kg e densità pri 7, kg/dm. Dimensionre il dimetro del cnle di colt spendo che il dislivello fr il cino e gli ttcchi

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 858874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-2527 - ELETTRONICA 2 M-2529 - BIOFISICA APPLICATA M-2528 - INFORMATICA 2 Lezione n. 2i Derivt Integrle Numeri complessi Fsore Rppresentzione

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i!

Esercitazioni di Statistica Matematica A Lezione 6. Applicazioni della legge dei grandi numeri e della formula di Chebicev. lim i! Esercitzioni di Sttistic Mtemtic A Lezione 6 Appliczioni dell legge dei grndi numeri e dell formul di Chebicev 1.1) Si {X i } i N un successione di vribili letorie i.i.d. (indipendenti ed identicmente

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

Il moto uniformemente accelerato

Il moto uniformemente accelerato Il moto uniformemente ccelerto Viene detto uniformemente ccelerto un moto nel qule l ccelerzione rimng costnte in intensità e direzione. Alle volte esso viene distinto dl moto uniformemente vrio nel qule

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze.

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. - Misurazioni indirette - Esempi di stima di incertezze. Generlità sulle Misure di Grndezze Fisiche - Misurzioni indirette - Esempi di stim di incertezze 1 Testi consigliti Norm UNI 4546 - Misure e Misurzioni; termini e definizioni fondmentli - Milno - 1984

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

LEGGI DELLA DINAMICA

LEGGI DELLA DINAMICA 1) Nel SI l unità di misur dell forz è il Newton (N); 1 N è quell forz che: [A] pplict su un oggetto dell mss di 1 kg lo spost di 1m; [B] pplict su un oggetto che h l mss di 1g lo cceler di 1m/s 2 nell

Dettagli

11 Altoparlante magnetico

11 Altoparlante magnetico Altoprlnte mgnetico Un ltoprlnte mgnetico h un cono di mss m mntenuto in posizione d un sospensione elstic di costnte k. Il cono, nel suo spostmento, è soggetto d un ttrito viscoso, dovuto ll ccoppimento

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava:

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava: ESERCIZIO 1 Un pistr di lrghezz totle 100 mm e spessore 5 mm, con cricc centrle pssnte (ig. 1), è soggett d un orz di trzione P=50 kn. 1) Determinre le condizioni di cedimento dell pistr. ) Determinre

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

FISICA GENERALE I - A A.A Settembre 2012 Cognome Nome n. matricola

FISICA GENERALE I - A A.A Settembre 2012 Cognome Nome n. matricola FISI GENERLE I -.. 0-0 9 Settembre 0 ognome Nome n. mtricol orso di Studi Docente Voto: 9 crediti 0 crediti crediti Esercizio n. Un utomobile di mss M fren, prtire dll velocità inizile v 0, fino d rrestrsi.

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

436 Capitolo 17. Equazioni frazionarie e letterali Equazioni di grado superiore al primo riducibili al primo grado

436 Capitolo 17. Equazioni frazionarie e letterali Equazioni di grado superiore al primo riducibili al primo grado 46 Cpitolo 7 Equzioni frzionrie e letterli 74 Esercizi 74 Esercizi dei singoli prgrfi 7 - Equzioni di grdo superiore l primo riducibili l primo grdo 7 ( ) Risolvere le seguenti equzioni riconducendole

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz

A questo punto, ricordiamo le definizioni di: I) Errore assoluto nella misura yz del misurando z: Ez yz REGOLE PRATICHE PER LA VALUTAZIONE DELL INCERTEZZA NELLE MISURE INDIRETTE Ricordimo preliminrmente il concetto di misure indirette :

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Regime permanente e transitorio

Regime permanente e transitorio Regime permnente e trnsitorio Rispost trnsitori e rispost in frequenz Anlisi dell dipendenz W G Dinmic in t e in ω dei sistemi del ordine Crtterizzzione di W con dinmic dominnte del ordine Relzioni fr

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017 SIMULAZIONE DELLA II PROVA SCRITTA[ ] 0 mggio 07 Nome del cndidto _ Clsse Il cndidto risolv uno dei due problemi; il problem d correggere è il numero Problem Il direttore dello zoo di Berlino desider fr

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come

b f (x) dx -Integrali generalizzati. Si definisce l integrale generalizzato di una funzione continua f su un intervallo [a, + [ come Interli Punti principli dell lezione precedente - Problem dell misurzione delle ree. - Per un unzione continu su un intervllo [, b], deinizione di Interle () d (medinte somme ineriori e somme superiori).

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma

Principi di Ingegneria Chimica Anno Accademico Cognome Nome Matricola Firma Principi di Ingegneri Chimic Anno Accdemico - Cognome Nome Mtricol Firm Problem. Un fluido di densità e viscosità viene invito con portt volumetric l rettore con ricircolo schemtizzto in figur. Le pressioni

Dettagli

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti];

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti]; 1 Esercizio (trtto dl problem 7.5 del Mzzoldi ) Sul doppio pino inclinto ( = 0 o ) sono posizionti un disco di mss m 1 = 8 Kg e rggio R = 1 cm e un blocco di mss m = 4 Kg. I due oggetti sono collegti d

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugi Sezione di Fisic Tecnic Fisic Tecnic Ambientle Lezione del 11 mrzo 2015 Ing. Frncesco D Alessndro dlessndro.unipg@cirif.it Corso di Lure in Ingegneri Edile e Architettur

Dettagli

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012 FISIC ELL ERI CONENS Proff. P. Clvni e. Cpizzi II prov di esonero - 4 ennio 0 Esercizio. Un cristllo di Pb, l cui densità è 40 /m, h un struttur cubic fcce centrte con bse monotomic. L bnd custic, che

Dettagli

Problemi di Fisica La dinamica

Problemi di Fisica La dinamica Problemi di isic L dinmic Un corpo di mss m4 kg viene spostto con un forz costnte 13 N su un superficie priv di ttrito per un trtto s,3 m. Supponendo che il corpo inizilmente è in condizione di riposo,

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo cur di Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 pumping lemm proprietà di chiusur dei linguggio regolri notzioni sul livello degli esercizi: (*) fcile, (**) non difficile

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica Corso di lure in Mtemtic SAPIENZA Università di Rom Note del corso di Lbortorio di Progrmmzione e Clcolo: Integrzione numeric Diprtimento di Mtemtic Guido Cstelnuovo SAPIENZA Università di Rom Indice Cpitolo

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Strutture realizzative di una FdT

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Strutture realizzative di una FdT IGEGERIA E TECOLOGIE DEI SISTEMI DI COTROLLO Strutture relitive di un FdT Prof. Crlo Rossi DEIS - Università di Bologn Tel: 5 2932 emil: crossi@deis.unio.it Introduione Un sistem tempo discreto LSI è completmente

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A SISTEMI COMPLESSI

APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A SISTEMI COMPLESSI 1 APPLICAZIONI DEI CALCOLI DI EQUILIBRIO A ITEMI COMPLEI L risoluzione dei problemi inerenti gli equilibri in soluzione implic l'impostzione e risoluzione di un sistem di n equzioni in n incognite. Generlmente,

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Esercizi di Informatica Teorica Pumping lemma e proprietà di

Esercizi di Informatica Teorica Pumping lemma e proprietà di 04-pumping-lemm-regolri-01 Esercizi di Informtic Teoric Pumping lemm e proprietà di chiusur per i linguggi regolri 1 Pumping lemm per linguggi regolri richimi pumping lemm: se L è un linguggio regolre

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Università degli Studi di ssino sercitzioni di lettrotecnic: circuiti in regime stzionrio prof ntonio Mffucci Ver ottore 007 Mffucci: ircuiti in regime stzionrio ver -007 Serie, prllelo e prtitori S lcolre

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

L offerta della singola impresa: l impresa e la minimizzazione dei costi

L offerta della singola impresa: l impresa e la minimizzazione dei costi L offert dell singol impres: l impres e l minimizzzione dei costi ! Qundo l impres decide il livello di output d produrre per mssimizzre il profitto deve nche preoccuprsi che questo livello di output si

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Fisco & Contabilità La guida pratica contabile

Fisco & Contabilità La guida pratica contabile Fisco & Contbilità L guid prtic contbile N. 21 04.06.2014 Rtei e risconti Ctegori: Bilncio e contbilità Sottoctegori: Registrzioni contbili Con riferimento lle scritture di ssestmento ssume prticolre importnz

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase 1 Compito in Clsse D/PNI Liceo Scientifico Sttle G. Stmpcchi Tricse Tempo di lvoro 75 minuti Argomenti: Clcolo di determinnti del terzo ordine- Risoluzione di sistemi di equzioni di primo grdo di tre equzioni

Dettagli

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha 1 Esercizio (trtto dl problem 7.52 del Mzzoldi 2) Sul doppio pino inclinto di un ngolo sono posizionti un disco di mss m 1 e rggio R e un blocco di mss m 2. I due oggetti sono collegti d un filo inestensibile;

Dettagli

Lezione 31 - Il problema ai limiti assiale

Lezione 31 - Il problema ai limiti assiale ezione 31 - Il problem i limiti ssile [Ultim revisione: febbrio 009] In quest lezione si pplicno i risultti dell lezione precedente, clcolndo spostmenti e crtteristiche di lcune trvi d un sol cmpt soggette

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Clcolo Numerico con elementi di progrmmzione (A.A. 2014-2015) Appunti delle lezioni sull qudrtur numeric Integrzione numeric Problem: pprossimre numericmente integrli definiti I(f) = f(x) dx L intervllo

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Algoritmi e Complessità

Algoritmi e Complessità Algoritmi e Complessità Università di Cmerino Corso di Lure in Informtic (tecnologie informtiche) III periodo didttico Docente: Emnuel Merelli Emil:emnuel.merelli@unicm.it Lezione Algoritmi e Complessità

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 27 Politecnico di Torino Stbilità dell cten chius

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli