dell affidabilità strutturale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "dell affidabilità strutturale"

Transcript

1 Metodiprobabilisticiper per lavalutazione dell affidabilità strutturale Obiettivo dell esercitazione: acquisire le conoscenze necessarie per applicare i metodi probabilistici (livello III, II e semi probabilistico) ai problemi di affidabilità strutturale (condizioni di stato limite SLU e SLE). Sulla base delle nozioni acquisite, è possibile rispondere alle seguenti domande: come si definisce la funzione di stato limite per condizioni SLU e SLE? come si calcola co a la probabilità pobab àdi insuccesso con imetodi eod di livello eoiii (integrazione diretta e metodo Monte Carlo)? come si stima l indice di affidabilità mediante il metodo FORM? quali sono le differenze tra i metodi MVFOSM e AFOSM (metodi probabilistici di livello II)? 1

2 La funzione di stato limite In ambito strutturale, il concetto di stato limite legato ad uno specifico requisito è interpretabile come uno stato della struttura, raggiunto il quale, essa non è in grado di soddisfare il requisito. er un dato requisito di stato limite, si definiscono un dominio di insuccesso (nel quale il requisito non è soddisfatto) e un dominio di successo (nel quale il requisito è soddisfatto); il confine tra i due domini è detto stato limite. La funzione di stato limite permette di esprimere analiticamente la condizione di stato limite. Questa funzione dipende, d in generale, da unvettore di n variabili aleatorie. 2

3 Esempi 1) Condizione di stato limite ultimo (SLU) per sforzo normale di un asta tesa (asta 2 3) di una struttura reticolare. Dati : grandezze deterministiche: L=2 m A 2 3 =1742mm 2 α=8 1 α L 2 L 3 L 4 L 5 grandezze aleatorie: : N(22, 4.4) kn f y : N(265, 18) N/mm 2 3

4 SLU per l asta lasta 2 3: essa si rompe se lo sforzo normale N S,2 3 dovuto ai carichi supera lo sforzo normale resistente N R,2 3 : 3 N S, 2 3 = 2 tg( α ) N = R, 2 3 A2 3 f y er questo problema, la funzione di stato limite dipende dalle 2 variabili aleatorie e f y : y g(,f y )=N R,2 3 N S,2 3 =A 2 3 f y 3/(2tg(α)) 4

5 Rappresentazione grafica condizione di g(,f y ) = 0 stato limite dominio i di insuccesso g(,f y ) < 0 dominio di successo g(,f y ) > 0 5

6 2) Condizione di stato limite di esercizio (SLE) di deformazione di una trave in calcestruzzo armato. q Dati : grandezze deterministiche: L=6 m grandezze aleatorie: q: N(12, 2.4) kn/m EI: N(12160, 610) knm 2 6

7 SLE di deformazione: la funzionalità della struttura viene meno se la freccia v in mezzeria supera il valore limite L/250: v = ql EI 4 v q er questo problema, la funzione di stato limite dipende dalle 2 variabili aleatorie q e EI: g(q,ei) = L/250 v = L/250 5qL 4 /(384EI) 7

8 Rappresentazione grafica condizione di g(q,ei) = 0 stato limite dominio di insuccesso g(q,ei) < 0 dominio di successo g(q,ei) > 0 8

9 Metodi probabilistici di livello III La verifica dell affidabilità strutturale consiste nel verificare che i i,target probabilità di insuccesso (il termine vale sia per le condizioni SLU sia per le SLE) La probabilità di insuccesso i è definita dal seguente integrale: i = [ g( ) ] = 1 2,..., n 0, f ( x1, x2,..., xn ) dx1dx2 D i... dx n dominio nel quale g(x) 0 9

10 La probabilità di insuccesso i può essere calcolata mediante: integrazione diretta (analitica / numerica); metodo Monte Carlo. 1) Integrazione diretta: Condizione di stato limite ultimo (SLU): = i f ( x1, x2,..., xn) dx1dx2... dxn D i ( R S ) = = f R, S ( r, s) dr ds = D i R = g R ( 1, 2,..., m ) S = gs ( m+, m+ 2,..., 1 n ) 10

11 Il calcolo di i è facile se R ed S sono indipendenti oppure R ed S sono a distribuzione normale. Se R ed S sono indipendenti si effettua un integrazione per strisce orizzontali o verticali = R S R S ) dr r Strisce orizzontali: f ( r ) f ( s ) ds dr = f ( r ) [ 1 F ( r ] i ) D i 11

12 Strisce verticali: + + s i f S ( s) f R ( r) dr ds = f S ( s) FR ( s) = ds D i 12

13 Se R ed S sono a distribuzione normale, si definisce = R S: Se R ed S sono a distribuzione normale, si definisce R S: ( ) N σ ; 2 2 σ σ σ + = S R = S R σ σ σ + = L b bili à ò i l d S R Laprobabilità i può essere stimata nel seguente modo: ( ) ( ) = Φ = = = i S R 0 ( ) ( ) Φ i S R σ σ σ 0 CDF distribuzione N(0,1) 13

14 Condizione di stato limite diesercizio (SLE): i [ g ] = 1, 2,..., n) 0 = ( f ( x1, x2,..., xn ) dx1dx2... dxn D i In generale, la funzione di stato limite con riferimento agli SLE, è scritta nel modo seguente: g( 1, 2,, n ) = valore limite E( 1, 2,, n ) Effetto dll delle azioni iapplicate: es. spostamento verticale La difficoltà del calcolo di i dall espressione di g( 1, 2,, n ). dipende, di volta in volta, 14

15 2) Metodo Monte Carlo: Il metodo Monte Carlo permette di stimare la i mediante N simulazioni. Il metodo prevede i seguenti passi: a) definizione della funzione di stato limite g( 1, 2,, n )e caratterizzazione delle variabili aleatorie ( 1, 2,, n ) mediante distribuzione, valore medio, varianza ed eventuali correlazioni tra variabili; b) esecuzione di un ciclo di N simulazioni. In ogni simulazione: si genera un valore casuale per ognuna delle variabili aleatorie ( 1, 2,, n ); si valuta la funzione di stato limite con i valori casuali appena generati. Se g(x 1,x 2,,x n ) 0, ci si trova nel dominio di insuccesso o sulla superficie di stato limite. Se g(x 1,x 2,,x n ) > 0, si è nel dominio di successo. 15

16 c) concluso il ciclo di simulazioni, si stima la probabilità i utilizzando la definizione frequentista di probabilità di un evento: i = N N i numero di casi sfavorevoli (g 0) numero totale di simulazioni 16

17 Metodi probabilistici di livello II La verifica dell affidabilità strutturale consiste nel verificare che β i β i,target Il metodo più semplice (e più utilizzato) è il metodo FORM, che presenta due varianti: MVFOSM AFOSM 17

18 1) Metodo MVFOSM L indice di affidabilità β è dfii definito come il rapporto tra valore medio e deviazione standard della funzione di stato limite. β = σ dove: = g(, 2,..., 1 n Mediante uno sviluppo in serie di Taylor troncato ai termini del primo ordine è possibile ottenere delle approssimazioni di e σ : g,,..., σ 2 n ( 1 2 n n i= 1 j= 1 g i g j cov ) (, ) i j ) 18

19 2) Metodo AFOSM L indice di affidabilità b è dfii definito come la minima i distanza tra la funzione di stato limite e l origine dello spazio delle variabilialeatorie a distribuzione normalestandard N(0,1). La soluzione del problema mediante il metodo AFOSM richiede quattro passi: a) si scrive l espressione della funzione di stato limite g( 1, 2,, n ) per il problema inesame; b) si trasformano le variabili aleatorie ( 1, 2,, n ) in variabili aleatorie indipendenti a distribuzione normale standard ( 1, 2,, n ); 19

20 c) si scrive l espressione della funzione di stato limite g( 1, 2,, n ) in funzione delle variabili ( 1, 2,, n ); d) si calcola l indice di affidabilità β come distanza della superficie di stato limite (g( 1, 2,, n )=0) dall origine dello spazio ( 1, 2,, n ). 20

21 Metodo semi probabilistico La verifica dell affidabilità strutturale consiste nel verificare che: SLU: R d S d SLE: E d valore limite 21

Verifica di sicurezza di un capannone industriale in acciaio

Verifica di sicurezza di un capannone industriale in acciaio Verifica di sicurezza di un capannone industriale in acciaio 1 Elementi strutturali Travi principali reticolari (capriate); travi secondarie (arcarecci); pilastri; controventi di falda; controventi longitudinali

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

IL PROBLEMA DELLA SICUREZZA STRUTTURALE

IL PROBLEMA DELLA SICUREZZA STRUTTURALE LEZIONI N 2, 3, 4 IL PROBLEMA DELLA SICUREZZA STRUTTURALE Il problema della sicurezza è da sempre l argomento centrale della ingegneria delle strutture. Comunque per giungere ad una valutazione quantitativa

Dettagli

Procedure per la progettazione!

Procedure per la progettazione! Procedure per la progettazione! A. Prodotto in vetro prodotto per costruzioni (vetro piano, stratificato, temprato, ecc.) requisiti e conformità normativa proprietà e caratteristiche è marchio CE B. Elemento

Dettagli

Flessione orizzontale

Flessione orizzontale Flessione orizzontale Presso-flessione fuori piano Presso-flessione fuori piano Funzione dei rinforzi FRP nel piano trasmissione di sforzi di trazione all interno di singoli elementi strutturali o tra

Dettagli

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO 1 LEZIONE COSTRUZIONI IN CEMENTO ARMATO ARGOMENTI 1. Introduzione Presentazione del corso 2.

Dettagli

Ing. Simone Giovannetti

Ing. Simone Giovannetti Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Ing. Simone Giovannetti Firenze, 29 Maggio 2012 1 Incertezza di Misura (1/3) La necessità di misurare nasce dall esigenza

Dettagli

Lezione. Progetto di Strutture

Lezione. Progetto di Strutture Lezione Progetto di Strutture Impostazione della carpenteria Impostazione della carpenteria Definizione dell orditura dei solai e della posizione di travi e pilastri ( La struttura deve essere in grado

Dettagli

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI SOMMARIO 1. VERIFICA DELLA PASSERELLA DI ACCESSO AL TEATRO - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1.1 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI travi secondarie

Dettagli

IL METODO DEGLI STATI LIMITE Esempi di verifica

IL METODO DEGLI STATI LIMITE Esempi di verifica Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 374/003) POTENZA, 004 IL METODO DEGLI STATI LIMITE Esempi di verifica Dott. Ing.. Marco VONA DiSGG, Università di Basilicata

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

Valore caratteristico EC7

Valore caratteristico EC7 Procedura da adottare - Azioni (E) Valore caratteristico EC7 Per le combinazioni delle azioni si rimanda a quanto detto ampiamente in precedenza. Resistenze (Rd) del sistema geotecnico Il valore di progetto

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012

PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Cognome e nome PROVA DI AMMISSIONE ALLA LAUREA MAGISTRALE IN INGEGNERIA CIVILE A.A. 2011/2012 Si ricorda al candidato di rispondere alle domande di Idraulica, Scienza delle costruzioni e Tecnica delle

Dettagli

Lezione 10:!Verifiche e!!!! disegni costruttivi

Lezione 10:!Verifiche e!!!! disegni costruttivi Modulo 4:"" " Progetto di un edificio " " " " monopiano ad uso " " " " industriale in zona sismica Lezione 10:!Verifiche e!!!! disegni costruttivi LʼAquila 4 giugno 2010 Ing. Oreste Mammana o.mammana@unina.it

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

Istruzioni per la Progettazione, l Esecuzione ed il Controllo delle Strutture di Legno,

Istruzioni per la Progettazione, l Esecuzione ed il Controllo delle Strutture di Legno, Come indicato al Par. 4.4.14 del D.M. 14/01/2008, VERIFICA DI RESISTENZA AL FUOCO ELEMENTI LIGNEI Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1995-1-2, utilizzando i

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

COMPORTAMENTO AL FUOCO DEI SISTEMI STRUTTURALI LA VERIFICA AL FUOCO SECONDO GLI EUROCODICI E D.M. 14-09 09-2005 LA VERIFICA DI SISTEMA

COMPORTAMENTO AL FUOCO DEI SISTEMI STRUTTURALI LA VERIFICA AL FUOCO SECONDO GLI EUROCODICI E D.M. 14-09 09-2005 LA VERIFICA DI SISTEMA Roma - 22 Maggio 2007 I nuovo approccio prestazionale della resistenza al fuoco delle strutture nella sicurezza antincendi COMPORTAMENTO AL FUOCO DEI SISTEMI STRUTTURALI LA VERIFICA AL FUOCO SECONDO GLI

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

PROVE DI CARICO + INDAGINI DEI MATERIALI Edificio Comunale via Trento n 2 Limbiate (MI)

PROVE DI CARICO + INDAGINI DEI MATERIALI Edificio Comunale via Trento n 2 Limbiate (MI) PROVE DI CARICO + INDAGINI DEI MATERIALI Edificio Comunale via Trento n 2 Limbiate (MI) PROVA n 8597+98+99+8600+01+02/MI 27+28+29 aprile 2009 Committente: Progettista D.L.: Relatore : Comune di Limbiate

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi

Edifici antisismici in calcestruzzo armato. Aurelio Ghersi Incontro di aggiornamento Edifici antisismici in calcestruzzo armato Aspetti strutturali e geotecnici secondo le NTC08 1 Esame visivo della struttura Orizzonte Hotel, Acireale 16-17 dicembre 2010 Aurelio

Dettagli

SOLAI SOLAI RIFERIMENTO NORMATIVA D.M. 14.02.1992 CAPITOLO 7 Art.7.0 CLASSIFICAZIONE SOLAI PIENI IN C.A. o C.A.P. PER QUESTO TIPO DI STRUTTURE VALGONO TOTALMENTE LE INDICAZIONI STRUTTURALI E DI CALCOLO

Dettagli

approfondimento LE COPERTURE lezione di

approfondimento LE COPERTURE lezione di lezione di approfondimento LE COPERTURE Le coperture possono essere realizzate come i solai eventualmente inclinati o come strutture più complesse. Tali strutture rappresentano gli elementi strutturali

Dettagli

RELAZIONE DI CALCOLO

RELAZIONE DI CALCOLO Istituto Scolastico Barbarigo Castello 6432/A Venezia Installazione di piattaforma elevatrice Progetto esecutivo per strutture di fondazione RELAZIONE DI CALCOLO Committente Provincia di Venezia Dipartimento

Dettagli

Analisi di pareti murarie ai macroelementi

Analisi di pareti murarie ai macroelementi UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA EDILE (CLASSE DELLE LAUREE IN SCIENZE DELL ARCHITETTURA E DELL INGEGNERIA EDILE N. 4 ) DIPARTIMENTO DI INGEGNERAI

Dettagli

acciaio nelle condizioni di esercizio

acciaio nelle condizioni di esercizio Analii di affidabilità di una truttura in acciaio nelle condizioni di eercizio v Dati: 6 m : N(9.5, 1) kn/m : N(3.6, 1.) kn/m : N(10000, 800) N/mm a trave è cotituita da un profilato IP 70. a funzionalità

Dettagli

SPERIMENTAZIONE DEI MATERIALI E DELLE STRUTTURE IL MONITORAGGIO DELLE STRUTTURE DELL INGEGNERIA CIVILE LE PROVE DI CARICO STATICO CASI DI STUDIO

SPERIMENTAZIONE DEI MATERIALI E DELLE STRUTTURE IL MONITORAGGIO DELLE STRUTTURE DELL INGEGNERIA CIVILE LE PROVE DI CARICO STATICO CASI DI STUDIO SPERIMENTAZIONE DEI MATERIALI E DELLE STRUTTURE IL MONITORAGGIO DELLE STRUTTURE DELL INGEGNERIA CIVILE LE PROVE DI CARICO STATICO Paolo Panzeri MILANO - maggio 2007 a.a. 2006-07 Eseguite sulle strutture

Dettagli

SETTI O PARETI IN C.A.

SETTI O PARETI IN C.A. SETTI O PARETI IN C.A. Parete Pareti accoppiate SETTI O PARETI IN C.A. Na 20% Fh i i h i Na/M tot >=0.2 SETTI O PARETI IN C.A. IL FATTORE DI STRUTTURA VERIFICHE SETTI O PARETI IN C.A. SOLLECITAZIONI -FLESSIONE

Dettagli

4 Azioni sulle costruzioni

4 Azioni sulle costruzioni 4 Azioni sulle costruzioni Classificazione delle azioni 1/2 Si definisce azione ogni causa o insieme di cause capace di indurre stati limite in una struttura. Si definisce sollecitazione ogni effetto interno

Dettagli

PERT e CPM Cenni storici

PERT e CPM Cenni storici CPM e PERT PERT e CPM Le tecniche CPM (Critical Path Method) e PERT (Program Evaluation and Review Technique) consentono lo sviluppo del programma di un progetto attraverso la programmazione delle attività

Dettagli

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management

Dettagli

Pali di fondazione. modulo B Le fondazioni. La portata dei pali

Pali di fondazione. modulo B Le fondazioni. La portata dei pali 1 Pali di fondazione La portata dei pali Nel caso dei pali di punta soggetti a sforzi assiali, cioè realizzati in terreni incoerenti e infissi in terreno profondo compatto, il carico ammissibile P su ogni

Dettagli

Esempi guidati. Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi:

Esempi guidati. Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi: Capitolo 4 Esempi guidati Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi: Analisi di una sezione rettangolare in c.a. soggetta

Dettagli

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni

CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO. NORMATIVA UTILIZZATA: D.M. 14/01/2008 Norme Tecniche per le costruzioni GENERALITA COMUNE DI PREDOSA Provincia di Alessandria CONSOLIDAMENTO PONTE E DIFESA SPONDA DESTRA TORRENTE STANAVAZZO ZONA SISMICA: Zona 3 ai sensi dell OPCM 3274/2003 NORMATIVA UTILIZZATA: D.M. 14/01/2008

Dettagli

Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N

Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N Affidabilità nel tempo tasso di guasto 1 N=numero componenti N s (t)=numero componenti sopravvissuti al tempo t N f (t)=numero componenti rotti al tempo t N ( ) ( ) s t N f t R( t) = = 1! N N dr( t) 1

Dettagli

Prima esercitazione progettuale Progetto di un solaio laterocementizio

Prima esercitazione progettuale Progetto di un solaio laterocementizio Prima esercitazione proettuale Proetto di un solaio laterocementizio 1 Combinazioni di carico per l analisi delle sollecitazioni... 2 1.1 Combinazioni di carico...2 1.1.1 Combinazioni di carico per il

Dettagli

1 RELAZIONE TECNICA GENERALE... 1 1.1 PREMESSA... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO... 1

1 RELAZIONE TECNICA GENERALE... 1 1.1 PREMESSA... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO... 1 Sommario 1 RELAZIONE TECNICA GENERALE.... 1 1.1 PREMESSA.... 1 1.2 NORMATIVA TECNICA DI RIFERIMENTO.... 1 1.3 VITA NOMINALE, CLASSE D USO, PERIODO DI RIFERIMENTO.... 1 1.4 METODO DI VERIFICA.... 1 2 RELAZIONE

Dettagli

Scopo del presente manuale è di fornire elementi di validazione degli algoritmi di calcolo utilizzati dal Programma.

Scopo del presente manuale è di fornire elementi di validazione degli algoritmi di calcolo utilizzati dal Programma. 0 CRITERI E RISULTATI DI VALIDAZIONE Scopo del presente manuale è di fornire elementi di validazione degli algoritmi di calcolo utilizzati dal Programma. Esso intende garantire e rispondere alla necessità

Dettagli

Verifica di una struttura esistente

Verifica di una struttura esistente Il metodo agli Stati Limite per la verifica delle strutture in c.a. Giovanni A. Plizzari Università di Bergamo Paolo Riva Università di Brescia Corso Pandini Bergamo, 14-15 Novembre, 2003 Verifica di una

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Le travi reticolari sono strutture formate da aste rettilinee, mutuamente collegate

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a.

Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. Progetto agli stati limite di un edificio con struttura mista, muratura e c.a. 1 Caso studio Si vogliono eseguire degli interventi di ristrutturazione di un edificio esistente adibito a civile abitazione

Dettagli

Verifiche di sicurezza di una costruzione 1/2

Verifiche di sicurezza di una costruzione 1/2 Verifiche di sicurezza di una costruzione 1/2 Le costruzioni devono soddisfare opportuni requisiti di sicurezza nei confronti della loro capacità portante Capacità portante Attitudine di una struttura

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

Indice. L impostazione del calcolo strutturale, 1. Il cemento armato: metodo alle tensioni ammissibili, 21. modulo A. modulo B1

Indice. L impostazione del calcolo strutturale, 1. Il cemento armato: metodo alle tensioni ammissibili, 21. modulo A. modulo B1 III Indice modulo A L impostazione del calcolo strutturale, 1 Unità 1. Le basi del progetto e i metodi di calcolo, 2 1. La modellazione, 3 2. Le azioni sulle costruzioni, 4 Periodo di ritorno, 4 Vita nominale

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN. PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l.

PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN. PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l. Università degli Studi di Catania LABORATORIO UFFICIALE PROVE MATERIALI PROVE SUL NODO CON PROTOTIPI DI TRAVE MISTA PAN PRODOTTI DALLA DITTA TECNOPAN ENGINEERING S.r.l. RELAZIONE DELLO STUDIO TECNICO DELLA

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Lezione Le incertezze nel calcolo strutturale

Lezione Le incertezze nel calcolo strutturale Lezione Le incertezze nel calcolo strutturale Sommario Le strutture reali Le incertezze nei materiali L approccio probabilistico Le strutture reali Le strutture reali Le strutture reali Fasi costruttive

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria.

Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. Politecnico di Torino Calcolo di edificio con struttura prefabbricata situato in zona sismica di I categoria. III parte Pag. 1 Le componenti dell azione sismica devono essere considerate come agenti simultaneamente,

Dettagli

CALCOLO DEL NUOVO PONTE

CALCOLO DEL NUOVO PONTE CALCOLO DEL NUOVO PONTE CARATTERISTICHE DEI MATERIALI I materiali utilizzati sono: - Calcestruzzo Rck450 = 2500 Kg/m 3 Resistenza di esercizio a flessione: f cd = 0,44*45 = 19,8 N/mm 2 = 198 Kg/cm 2 -

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET LA COSTRUZIONE DI UN BUDGET Prof. Francesco Albergo Docente di PIANIFICAZIONE E CONTROLLO Corso di Laurea in Economia Aziendale Curriculum in Gestione Aziendale Organizzata UNIVERSITA degli Studi di Bari

Dettagli

PROVE DI CARICO PASSERELLE CICLO-PEDONALI PASTRENGO E RIVOLI VERONESE (VR)

PROVE DI CARICO PASSERELLE CICLO-PEDONALI PASTRENGO E RIVOLI VERONESE (VR) PROVE DI CARICO PASSERELLE CICLO-PEDONALI PASTRENGO E RIVOLI VERONESE (VR) PROVE N 3720-3721/VR 15-16 giugno 2010 Committente: Provincia di Verona Collaudatore: dott. ing. Luciano Ortolani Relatore: geom.

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. RICCARDO

Dettagli

Commessa N. VALCOSS Foglio 1 di 9 Rev A. Titolo commessa. Redatto da PTY/AAT Data Gennaio 2006

Commessa N. VALCOSS Foglio 1 di 9 Rev A. Titolo commessa. Redatto da PTY/AAT Data Gennaio 2006 Commessa N. VALCOSS Foglio di 9 Rev A P.O.Box 000, FI-0044 VTT Tel. + 58 0 7 Fax + 58 0 7 700 Esempio di progetto Travatura reticolare Redatto da PTY/AAT Data Gennaio 006 RFCS Verificato da MAP Data Febbraio

Dettagli

STRUTTURE IN ACCIAIO

STRUTTURE IN ACCIAIO Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì STRUTTURE IN ACCIAIO D. M. 14/01/2008 NTC2008 - EUROCODICE 3 EC3 AGGIORNAMENTO 12/02/2014 Corso di PROGETTAZIONE,

Dettagli

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN)

ANALISI STRUTTURALE DELLA TRAVE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) ANALISI STRUTTURALE DELLA TRAE PORTA-PARANCO IN ACCIAIO (sala C LNGS - INFN) SALA C SALA A SALA B Ing. FRANCESCO POTENZA Ing. UBERTO DI SABATINO 1 1. PREESSA La presente relazione illustra i risultati

Dettagli

VERIFICA OPERE IN C.A. CORPO "A"

VERIFICA OPERE IN C.A. CORPO A VERIFICA OPERE IN C.A. CORPO "A" 1 VERIFICA PIASTRA FONDALE...3 VERIFICA RESTANTI OPERE IN C.A...9 VERIFICHE SLE...11 2 VERIFICA PIASTRA FONDALE Verifica a flessione Stati limiti La piastra fondale presenta

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

1 PREMESSA. Normativa di riferimento

1 PREMESSA. Normativa di riferimento 1 PREMESSA EDILFERRO TRAVEST è coinvolto da alcuni anni nel settore del fotovoltaico,occupandosi della realizzazione di sistemi di fissaggio per pannelli solari e fotovoltaici. Nel campo ormai saturo della

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

Curva di isteresi per carico concentrato. Prove di carico e indagini sui materiali Edificio Comunale, via Trento n 2, Limbiate (MI) pag.

Curva di isteresi per carico concentrato. Prove di carico e indagini sui materiali Edificio Comunale, via Trento n 2, Limbiate (MI) pag. Forza kn Curva di isteresi per carico concentrato ALLEGATO PROVA MI 8599/0 30 Area di carico 17,94 kn * mm Area di isteresi 1,86 kn * mm Salita Discesa 25 Area di isteresi/area di carico 10,37 % 20 15

Dettagli

1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1).

1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1). .5. ISTOGRAMMA 7.5 Istogramma A partire dalle considerazioni svolte nel paragrafo precedente, posto x m = min(x,,x N e x M = max(x,,x N, possiamo ottenere una stima della densità di probabilità p (x suddividendo

Dettagli

PROVE DI CARICO MEDIANTE CONTENITORI E SERBATOI AD ACQUA

PROVE DI CARICO MEDIANTE CONTENITORI E SERBATOI AD ACQUA PROVE DI CARICO PREMESSA La presente sezione illustra lo svolgimento delle seguenti prove: prove di carico mediante contenitori e serbatoi ad acqua prove di carico mediante martinetti idraulici prove di

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

RELAZIONE STRUTTURALE

RELAZIONE STRUTTURALE RELAZIONE STRUTTURALE DESCRIZIONE DELL OPERA. Si prevede di realizzare una passerella pedonale in acciaio per l accesso secondario alla grotta. La struttura è costituita da due travi parallele in acciaio

Dettagli

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9

INDICE 1. INTRODUZIONE... 2 2. NORMATIVA... 8 3. MATERIALI... 8 4. DEFINIZIONE DEI CARICHI... 9 5. CRITERI DI VERIFICA... 9 R4M engineering INDICE 1. INTRODUZIONE... 2 1.1. CHIUSURA DEL FORO SCALA A CHIOCCIOLA ESISTENTE... 4 1.2. CHIUSURA CAVEDI IMPIANTISTICI ESISTENTI... 5 1.3. AMPLIAMENTO DELLA VASCA... 6 1.4. ORDITURA PORTANTE

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

1.1 DESCRIZIONE DELLA METODOLOGIA DI PROVA CON CARICHI CONCENTRATI

1.1 DESCRIZIONE DELLA METODOLOGIA DI PROVA CON CARICHI CONCENTRATI 1 PROVE DI CARICO 1.1 DESCRIZIONE DELLA METODOLOGIA DI PROVA CON CARICHI CONCENTRATI 1.1.1 L attrezzatura Le prove di carico sono eseguite utilizzando l apparecchiatura denominata Collaudatore GS progettata

Dettagli

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta ESERCIZI SVOLTI Costruire la frontiera del dominio di resistenza della sezione rettangolare di mm con armatura simmetrica A s,tot + 6, copriferro mm, impiegando calcestruzzo classe C /. Resistenza di calcolo

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-3-2012

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

6. Analisi statica lineare: esempio di calcolo

6. Analisi statica lineare: esempio di calcolo 6. Analisi statica lineare: esempio di calcolo Si supponga di volere determinare lo schema di carico per il calcolo all SLV delle sollecitazioni in direzione del telaio riportato nella Pfigura 1, con ordinata

Dettagli

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i.

LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA PROGETTO ESECUTIVO. Sez III Art. 33 DPR 5 Ottobre 2010 N. 207 e s.m.i. Ingegnere BIAGIO D AMATO E03b Via I.Lodato, 9 84025 Eboli (SA) tel 339.2183301 fax 0828.330614 biagiodamato@tiscali.it LAVORI DI ADEGUAMENTO NORMATIVO E DI EFFICIENZA ENERGETICA Liceo Scientifico Statale

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE CORSO DI LAUREA IN INGEGNERIA EDILE TECNICA E SICUREZZA DEI CANTIERI TECNICHE DI PROGRAMMAZIONE Nicola Marotta La programmazione nel cantiere edile La programmazione dei lavori all interno di un cantiere

Dettagli

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO.. E. Cosenza NORME TECNICHE Costruzioni di calcestruzzo Edoardo Cosenza Dipartimento di Ingegneria Strutturale Università di Napoli Federico II 4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

DIMENSIONAMENTO DI UN PILASTRO

DIMENSIONAMENTO DI UN PILASTRO DIMENSIONAMENTO DI UN PILASTRO Si dimensioni un pilastro nelle tre diverse tecnologie: legno, acciaio e cemento armato. Osservando una generica pianta di carpenteria, il pilastro centrale sarà quello maggiormente

Dettagli

Realizzazione di copertura telescopica

Realizzazione di copertura telescopica Realizzazione di copertura telescopica Relazione di calcolo Progetto ed esecuzione dell opera : Lynx s.r.l. Responsabile di Progetto e verifica : ing. Abilitato Committente : sig. Bianco Bianchi 1 INDICE

Dettagli

McGraw-Hill. Tutti i diritti riservati

McGraw-Hill. Tutti i diritti riservati Copyright 004 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a Mosca 1931 Problema 1. Arco Trave di copertura Tirante bielle Membrana di copertura Fig. P1.1 Analizzare il sistema in

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

11 Teorema dei lavori virtuali

11 Teorema dei lavori virtuali Teorema dei lavori virtuali Teorema dei lavori virtuali Si consideri una trave ad asse rettilineo figura.). Per essa si definisce sistema carichi sollecitazioni CS) l insieme di tutte le grandezze di tipo

Dettagli

Lezione 1. Obiettivi prestazionali e normativa vigente. Laboratorio progettuale (Tecnica delle Costruzioni)

Lezione 1. Obiettivi prestazionali e normativa vigente. Laboratorio progettuale (Tecnica delle Costruzioni) Lezione 1 Obiettivi prestazionali e normativa vigente Laboratorio progettuale (Tecnica delle Costruzioni) Obiettivi prestazionali Obiettivi progettuali Sono definiti dall associazione associazione tra

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli