dell affidabilità strutturale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "dell affidabilità strutturale"

Transcript

1 Metodiprobabilisticiper per lavalutazione dell affidabilità strutturale Obiettivo dell esercitazione: acquisire le conoscenze necessarie per applicare i metodi probabilistici (livello III, II e semi probabilistico) ai problemi di affidabilità strutturale (condizioni di stato limite SLU e SLE). Sulla base delle nozioni acquisite, è possibile rispondere alle seguenti domande: come si definisce la funzione di stato limite per condizioni SLU e SLE? come si calcola co a la probabilità pobab àdi insuccesso con imetodi eod di livello eoiii (integrazione diretta e metodo Monte Carlo)? come si stima l indice di affidabilità mediante il metodo FORM? quali sono le differenze tra i metodi MVFOSM e AFOSM (metodi probabilistici di livello II)? 1

2 La funzione di stato limite In ambito strutturale, il concetto di stato limite legato ad uno specifico requisito è interpretabile come uno stato della struttura, raggiunto il quale, essa non è in grado di soddisfare il requisito. er un dato requisito di stato limite, si definiscono un dominio di insuccesso (nel quale il requisito non è soddisfatto) e un dominio di successo (nel quale il requisito è soddisfatto); il confine tra i due domini è detto stato limite. La funzione di stato limite permette di esprimere analiticamente la condizione di stato limite. Questa funzione dipende, d in generale, da unvettore di n variabili aleatorie. 2

3 Esempi 1) Condizione di stato limite ultimo (SLU) per sforzo normale di un asta tesa (asta 2 3) di una struttura reticolare. Dati : grandezze deterministiche: L=2 m A 2 3 =1742mm 2 α=8 1 α L 2 L 3 L 4 L 5 grandezze aleatorie: : N(22, 4.4) kn f y : N(265, 18) N/mm 2 3

4 SLU per l asta lasta 2 3: essa si rompe se lo sforzo normale N S,2 3 dovuto ai carichi supera lo sforzo normale resistente N R,2 3 : 3 N S, 2 3 = 2 tg( α ) N = R, 2 3 A2 3 f y er questo problema, la funzione di stato limite dipende dalle 2 variabili aleatorie e f y : y g(,f y )=N R,2 3 N S,2 3 =A 2 3 f y 3/(2tg(α)) 4

5 Rappresentazione grafica condizione di g(,f y ) = 0 stato limite dominio i di insuccesso g(,f y ) < 0 dominio di successo g(,f y ) > 0 5

6 2) Condizione di stato limite di esercizio (SLE) di deformazione di una trave in calcestruzzo armato. q Dati : grandezze deterministiche: L=6 m grandezze aleatorie: q: N(12, 2.4) kn/m EI: N(12160, 610) knm 2 6

7 SLE di deformazione: la funzionalità della struttura viene meno se la freccia v in mezzeria supera il valore limite L/250: v = ql EI 4 v q er questo problema, la funzione di stato limite dipende dalle 2 variabili aleatorie q e EI: g(q,ei) = L/250 v = L/250 5qL 4 /(384EI) 7

8 Rappresentazione grafica condizione di g(q,ei) = 0 stato limite dominio di insuccesso g(q,ei) < 0 dominio di successo g(q,ei) > 0 8

9 Metodi probabilistici di livello III La verifica dell affidabilità strutturale consiste nel verificare che i i,target probabilità di insuccesso (il termine vale sia per le condizioni SLU sia per le SLE) La probabilità di insuccesso i è definita dal seguente integrale: i = [ g( ) ] = 1 2,..., n 0, f ( x1, x2,..., xn ) dx1dx2 D i... dx n dominio nel quale g(x) 0 9

10 La probabilità di insuccesso i può essere calcolata mediante: integrazione diretta (analitica / numerica); metodo Monte Carlo. 1) Integrazione diretta: Condizione di stato limite ultimo (SLU): = i f ( x1, x2,..., xn) dx1dx2... dxn D i ( R S ) = = f R, S ( r, s) dr ds = D i R = g R ( 1, 2,..., m ) S = gs ( m+, m+ 2,..., 1 n ) 10

11 Il calcolo di i è facile se R ed S sono indipendenti oppure R ed S sono a distribuzione normale. Se R ed S sono indipendenti si effettua un integrazione per strisce orizzontali o verticali = R S R S ) dr r Strisce orizzontali: f ( r ) f ( s ) ds dr = f ( r ) [ 1 F ( r ] i ) D i 11

12 Strisce verticali: + + s i f S ( s) f R ( r) dr ds = f S ( s) FR ( s) = ds D i 12

13 Se R ed S sono a distribuzione normale, si definisce = R S: Se R ed S sono a distribuzione normale, si definisce R S: ( ) N σ ; 2 2 σ σ σ + = S R = S R σ σ σ + = L b bili à ò i l d S R Laprobabilità i può essere stimata nel seguente modo: ( ) ( ) = Φ = = = i S R 0 ( ) ( ) Φ i S R σ σ σ 0 CDF distribuzione N(0,1) 13

14 Condizione di stato limite diesercizio (SLE): i [ g ] = 1, 2,..., n) 0 = ( f ( x1, x2,..., xn ) dx1dx2... dxn D i In generale, la funzione di stato limite con riferimento agli SLE, è scritta nel modo seguente: g( 1, 2,, n ) = valore limite E( 1, 2,, n ) Effetto dll delle azioni iapplicate: es. spostamento verticale La difficoltà del calcolo di i dall espressione di g( 1, 2,, n ). dipende, di volta in volta, 14

15 2) Metodo Monte Carlo: Il metodo Monte Carlo permette di stimare la i mediante N simulazioni. Il metodo prevede i seguenti passi: a) definizione della funzione di stato limite g( 1, 2,, n )e caratterizzazione delle variabili aleatorie ( 1, 2,, n ) mediante distribuzione, valore medio, varianza ed eventuali correlazioni tra variabili; b) esecuzione di un ciclo di N simulazioni. In ogni simulazione: si genera un valore casuale per ognuna delle variabili aleatorie ( 1, 2,, n ); si valuta la funzione di stato limite con i valori casuali appena generati. Se g(x 1,x 2,,x n ) 0, ci si trova nel dominio di insuccesso o sulla superficie di stato limite. Se g(x 1,x 2,,x n ) > 0, si è nel dominio di successo. 15

16 c) concluso il ciclo di simulazioni, si stima la probabilità i utilizzando la definizione frequentista di probabilità di un evento: i = N N i numero di casi sfavorevoli (g 0) numero totale di simulazioni 16

17 Metodi probabilistici di livello II La verifica dell affidabilità strutturale consiste nel verificare che β i β i,target Il metodo più semplice (e più utilizzato) è il metodo FORM, che presenta due varianti: MVFOSM AFOSM 17

18 1) Metodo MVFOSM L indice di affidabilità β è dfii definito come il rapporto tra valore medio e deviazione standard della funzione di stato limite. β = σ dove: = g(, 2,..., 1 n Mediante uno sviluppo in serie di Taylor troncato ai termini del primo ordine è possibile ottenere delle approssimazioni di e σ : g,,..., σ 2 n ( 1 2 n n i= 1 j= 1 g i g j cov ) (, ) i j ) 18

19 2) Metodo AFOSM L indice di affidabilità b è dfii definito come la minima i distanza tra la funzione di stato limite e l origine dello spazio delle variabilialeatorie a distribuzione normalestandard N(0,1). La soluzione del problema mediante il metodo AFOSM richiede quattro passi: a) si scrive l espressione della funzione di stato limite g( 1, 2,, n ) per il problema inesame; b) si trasformano le variabili aleatorie ( 1, 2,, n ) in variabili aleatorie indipendenti a distribuzione normale standard ( 1, 2,, n ); 19

20 c) si scrive l espressione della funzione di stato limite g( 1, 2,, n ) in funzione delle variabili ( 1, 2,, n ); d) si calcola l indice di affidabilità β come distanza della superficie di stato limite (g( 1, 2,, n )=0) dall origine dello spazio ( 1, 2,, n ). 20

21 Metodo semi probabilistico La verifica dell affidabilità strutturale consiste nel verificare che: SLU: R d S d SLE: E d valore limite 21

Riferimenti Iconografici

Riferimenti Iconografici Corso di Aggiornamento per Geometri su Problematiche Strutturali Calcolo agli Stati Limite Aspetti Generali 18 novembre 005 Dr. Daniele Zonta Dipartimento di Ingegneria Meccanica e Strutturale Università

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Valore caratteristico EC7

Valore caratteristico EC7 Procedura da adottare - Azioni (E) Valore caratteristico EC7 Per le combinazioni delle azioni si rimanda a quanto detto ampiamente in precedenza. Resistenze (Rd) del sistema geotecnico Il valore di progetto

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

PRESCRIZIONI ANTISISMICHE E CRITERI DI CALCOLO: Interazione tra strutture e tamponamenti

PRESCRIZIONI ANTISISMICHE E CRITERI DI CALCOLO: Interazione tra strutture e tamponamenti Convegno CRITICITÀ DELLA PROGETTAZIONE TERMICA E ACUSTICA DEGLI EDIFICI IN RAPPORTO ALLE PRESCRIZIONI STRUTTURALI ANTISISMICHE Saie 2009, Sala Topazio, Sabato 31 ottobre ore 9.00 PRESCRIZIONI ANTISISMICHE

Dettagli

4 CAPITOLO 4. STRUTTURA ESISTENTE A TELAIO IN CA

4 CAPITOLO 4. STRUTTURA ESISTENTE A TELAIO IN CA 123 4 CAPITOLO 4. STRUTTURA ESISTENTE A TELAIO IN CA Il presente esempio è finalizzato a guidare il progettista alla compilazione del SI-ERC per un edificio con struttura a telaio in CA per il quale è

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Calcolo semplificato agli stati limite

Calcolo semplificato agli stati limite CARLO SIGMUND Calcolo semplificato agli stati limite PER STRUTTURE IN CEMENTO ARMATO ACCIAIO LEGNO MURATURA @ SERVIZI GRATUITI ON LINE Questo libro dispone dei seguenti servizi gratuiti disponibili on

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

LE CAPRIATE Sviluppo delle strutture lignee di copertura

LE CAPRIATE Sviluppo delle strutture lignee di copertura LE CAPRIATE Sviluppo delle strutture lignee di copertura Premessa Fra le strutture di legno, le capriate reticolari costituiscono un tipo di costruzione diffuso che sfruttano pienamente i vantaggi potenziali

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO.. E. Cosenza NORME TECNICHE Costruzioni di calcestruzzo Edoardo Cosenza Dipartimento di Ingegneria Strutturale Università di Napoli Federico II 4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A.

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. 10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. Il capitolo fa riferimento alla versione definitiva dell'eurocodice 2, parte 1.1, UNI EN 1992-1-1, recepito e reso applicabile in Italia dal DM del

Dettagli

Valutazione della capacità sismica delle strutture in acciaio mediante la metodologia del Robustness Based Design

Valutazione della capacità sismica delle strutture in acciaio mediante la metodologia del Robustness Based Design UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA STRUTTURALE CATTEDRA DI TECNICA DELLE COSTRUZIONI I RELATORE: TESI DI LAUREA Valutazione della capacità sismica

Dettagli

Edifici in muratura in zona sismica

Edifici in muratura in zona sismica Collegio dei Geometri e dei Geometri Laureati Reggio Emilia - 26 novembre 2010 Edifici in muratura in zona sismica Dott. Ing. Nicola GAMBETTI, Libero Professionista EDIFICI IN MURATURA IN ZONA SISMICA

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio. Carichi unitari delle sezioni e verifica di massima Una volta definito lo spessore, si possono calcolare i carichi unitari (k/m ) Solaio del piano tipo Solaio di copertura Solaio torrino scala Sbalzo piano

Dettagli

Sommario. vengono riconosciuti. duttili. In. pareti, solai. applicazioni

Sommario. vengono riconosciuti. duttili. In. pareti, solai. applicazioni APPLICAZIONI INNOVATIVE CON MICROCA ALCESTRUZZI DUTTILI PER RINFORZII ED ADEGUAMENTI SISMICI Dario Rosignoli Stefano Maringoni Tecnochem Italiana S.p.A. Sommario Con gli acronimi HPFRC High Performancee

Dettagli

Università degli Studi della Basilicata Facoltà di Ingegneria. Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO

Università degli Studi della Basilicata Facoltà di Ingegneria. Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo

Dettagli

Istruzioni per la Valutazione Affidabilistica della Sicurezza Sismica di Edifici Esistenti

Istruzioni per la Valutazione Affidabilistica della Sicurezza Sismica di Edifici Esistenti CNR Commissione di studio per la predisposizione e l analisi di norme tecniche relative alle costruzioni CONSIGLIO NAZIONALE DELLE RICERCHE COMMISSIONE DI STUDIO PER LA PREDISPOSIZIONE E L'ANALISI DI NORME

Dettagli

CAPI P T I O T L O O 1. OGGETTO

CAPI P T I O T L O O 1. OGGETTO CAPITOLO 1. OGGETTO 2 CAPITOLO 1 1. OGGETTO Le presenti Norme tecniche per le costruzioni definiscono i principi per il progetto, l esecuzione e il collaudo delle costruzioni, nei riguardi delle prestazioni

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO

SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO SPETTRO DI RISPOSTA ELASTICO SPETTRO DI PROGETTO 1 (Ridis. con modifiche da M. De Stefano, 2009) 2 3 Concetto di duttilità 4 5 6 7 E necessario avere i valori di q dallo strutturista ( ma anche qo). Per

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

2.2.8 Spettri di progetto

2.2.8 Spettri di progetto 2.2.8 Spettri di progetto Passando alla fase progettuale si dà per scontato che per gli Stati Limite Ultimi (SLV e SLC) la struttura vada largamente in campo plastico. Si devono quindi utilizzare metodi

Dettagli

PROGETTAZIONE PER AZIONI SISMICHE

PROGETTAZIONE PER AZIONI SISMICHE CAPITOLO 7. 7. PROGETTAZIONE PER AZIONI SISMICHE BOZZA DI LAVORO Ottobre 2014 278 [BOZZA DI LAVORO OTTOBRE 2014] CAPITOLO 7 Il presente capitolo disciplina la progettazione e la costruzione delle nuove

Dettagli

Costruzioni in c.a. Progettazione e adeguamento delle strutture

Costruzioni in c.a. Progettazione e adeguamento delle strutture Corso di formazione in INGEGNERIA SISMICA Verres, 11 Novembre 16 Dicembre, 2011 Costruzioni in c.a. Progettazione e adeguamento delle strutture Alessandro P. Fantilli alessandro.fantilli@polito.it Verres,

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

COMPLESSO xxxxxxxxxxx

COMPLESSO xxxxxxxxxxx PROVE DI CARICO SU PALI E INDAGINI SIT COMPLESSO xxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx PROVE N 131/132/133/134/135 /FI 8, 9, 10, 11 Giugno 2009 Committente: Direttore Lavori: Relatore: xxxxxxxxxxxxxxxx

Dettagli

- Seminario tecnico -

- Seminario tecnico - Con il contributo di Presentano: - Seminario tecnico - prevenzione delle cadute dall alto con dispositivi di ancoraggio «linee vita» Orario: dalle 16,00 alle 18,00 presso GENIOMECCANICA SA, Via Essagra

Dettagli

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 1. Descrizione della struttura portante Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 terrazzamenti delimitati da preesistenti muri di sostegno. L edificio è suddiviso

Dettagli

Seminario Tecnico Piacenza 31/01/2013

Seminario Tecnico Piacenza 31/01/2013 Seminario Tecnico Piacenza 31/01/2013 Misure di prevenzione e protezione collettive e individuali in riferimento al rischio di caduta dall alto nei cantieri edili A cura dei Tec. Prev. Mara Italia, Marco

Dettagli

Montaggio su tetto piano

Montaggio su tetto piano Montaggio su tetto piano Avvertenze generali Con la crescente diffusione dei sistemi fotovoltaici, oltre a dimensioni elettriche, durata, tempi di garanzia ecc., anche i dettagli di montaggio assumono

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Testo integrato dell Allegato 2 Edifici all Ordinanza 3274 come modificato dall OPCM 3431 del 3/5/05

Testo integrato dell Allegato 2 Edifici all Ordinanza 3274 come modificato dall OPCM 3431 del 3/5/05 NORME TECNICHE PER IL PROGETTO, LA VALUTAZIONE E L ADEGUAMENTO SISMICO DEGLI EDIFICI 1 OGGETTO DELLE NORME...7 2 REQUISITI DI SICUREZZA E CRITERI DI VERIFICA...8 2.1 SICUREZZA NEI CONFRONTI DELLA STABILITÀ

Dettagli

Verifica sismica di dighe a gravità in calcestruzzo

Verifica sismica di dighe a gravità in calcestruzzo Verifica sismica di dighe a gravità in calcestruzzo Keywords: dighe a gravità in calcestruzzo, verifica sismica, metodi semplificati, programmi di calcolo. Autore: L. Furgoni, Relatore: Prof. C. Nuti,

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

PROGETTO DI EDIFICI CON ISOLAMENTO SISMICO

PROGETTO DI EDIFICI CON ISOLAMENTO SISMICO COLLANA DI MANUALI DI PROGETTAZIONE ANTISISMICA VOLUME 5 PROGETTO DI EDIFICI CON ISOLAMENTO SISMICO M. Dolce, D. Cardone, F. C. Ponzo, A. Di Cesare INDICE CAPITOLO 1: Introduzione all isolamento sismico

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Ordine degli Ingegneri della Provincia di Pistoia

Ordine degli Ingegneri della Provincia di Pistoia Ordine degli Ingegneri della Provincia di Pistoia Corso di aggiornamento professionale Progettazione di strutture in legno massiccio e lamellare secondo le NTC 2008 Pistoia, 16-29 ottobre e 5-12 novembre

Dettagli

7 PROGETTAZIONE PER AZIONI SISMICHE

7 PROGETTAZIONE PER AZIONI SISMICHE 7 PROGETTAZIONE PER AZIONI SISMICHE Il presente capitolo disciplina la progettazione e la costruzione delle nuove opere soggette anche all azione sismica. Le sue indicazioni sono da considerare aggiuntive

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

1. LA SICUREZZA STRUTTURALE IN SITUAZIONI D INCENDIO I. Definizioni II. Obiettivi

1. LA SICUREZZA STRUTTURALE IN SITUAZIONI D INCENDIO I. Definizioni II. Obiettivi Ing. Antonino Gerardi 1 1. LA SICUREZZA STRUTTURALE IN SITUAZIONI D INCENDIO I. Definizioni II. Obiettivi 2. QUADRO NORMATIVO NAZIONALE I. Settori di regolamentazione II. Livelli di prestazione III. Criteri

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Valutazione della vulnerabilità e interventi per le costruzioni ad uso produttivo in zona sismica

Valutazione della vulnerabilità e interventi per le costruzioni ad uso produttivo in zona sismica Valutazione della vulnerabilità e interventi per le costruzioni ad uso produttivo in zona sismica 1 Ambito operativo e inquadramento normativo Tenuto conto del rilevante impatto che gli eventi sismici,

Dettagli

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max.

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max. Rexroth Pneumatics 1 Pressione di esercizio min/max 2 bar / 8 bar Temperatura ambiente min./max. -10 C / +60 C Fluido Aria compressa Dimensione max. particella 5 µm contenuto di olio dell aria compressa

Dettagli

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato Corso di aggiornamento professionale Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato 7 maggio 7 giugno 2013 Aula Magna Seminario Vescovile Via Puccini, 36 - Pistoia

Dettagli

PROGETTAZIONE DI STRUTTURE IN ACCIAIO: ESEMPI DI CALCOLO Strutture a telaio Strutture a controventi eccentrici

PROGETTAZIONE DI STRUTTURE IN ACCIAIO: ESEMPI DI CALCOLO Strutture a telaio Strutture a controventi eccentrici CORSO DI AGGIORNAMENTO PROFESSIONALE La progettazione strutturale in zona sismica Il nuovo quadro normativo Comune di Castellammare di Stabia - Scuola Media Statale Luigi Denza - dal 27/02/2007 al 10/05/2007-

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

Progetto di un edificio in muratura con alcuni elementi portanti in c.a. per civile abitazione

Progetto di un edificio in muratura con alcuni elementi portanti in c.a. per civile abitazione DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI TRENTO CORSO DI AGGIORNAMENTO PER GEOMETRI SU PROBLEMATICHE STRUTTURALI Verona, Novembre Dicembre 2005

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Progettazione sismica di edifici prefabbricati in c.a. Aspetti normativi ed esempio applicativo

Progettazione sismica di edifici prefabbricati in c.a. Aspetti normativi ed esempio applicativo UNIVERSITÀ DEGLI STUDI DI BERGAMO ORDINE INGG. BERGAMO Pagina i/53 LE NORME TECNICHE PER LE COSTRUZIONI - D.M. 14 Gennaio 2008 AZIONE SISMICA E PROGETTAZIONE PER AZIONI SISMICHE Progettazione sismica di

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

Nei casi in cui si consideri significativa l interazione tra il terreno

Nei casi in cui si consideri significativa l interazione tra il terreno 6.4.3 FONDAZIONI SU PALI Il progetto di una fondazione su pali deve comprendere la scelta del tipo di palo e delle relative tecnologie e modalità di esecuzione, il dimensionamento i dei pali e delle relative

Dettagli

Long Carbon Europe Sections and Merchant Bars. Trave Angelina TM. Perfetta combinazione di forza, leggerezza e trasparenza

Long Carbon Europe Sections and Merchant Bars. Trave Angelina TM. Perfetta combinazione di forza, leggerezza e trasparenza Long Carbon Europe Sections and Merchant Bars Trave Angelina TM Perfetta combinazione di forza, leggerezza e trasparenza Trave Angelina TM Un idea brillante, applicata ad un prodotto industriale Slanciata,

Dettagli

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI Le lavorazioni oggetto della presente relazione sono rappresentate dalla demolizione di n 14 edifici costruiti tra gli anni 1978 ed il 1980

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

MODELLI MATEMATICI: I TANTI VOLTI DELLA REALT A 1 Introduzione La nozione di modello risale al sec. VI a.c. quando Pitagora tento di denire la struttura dell'universo attraverso l'analisi di numeri che

Dettagli

Costruzioni in legno: nuove prospettive

Costruzioni in legno: nuove prospettive Costruzioni in legno: nuove prospettive STRUZION Il legno come materiale da costruzione: origini e declino Il legno, grazie alla sua diffusione e alle sue proprietà, ha rappresentato per millenni il materiale

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

SCHEDA RIEPILOGATIVA INTERVENTO OPCM n. 3779 e 3790

SCHEDA RIEPILOGATIVA INTERVENTO OPCM n. 3779 e 3790 SCHEDARIEPILOGATIVAINTERVENTO OPCMn.3779e3790 A)Caratteristicheedificio Esitodiagibilità: B-C (OPCM 3779) E (OPCM 3790) Superficielordacomplessivacoperta( 1 ) mqnum.dipiani Num.UnitàImmobiliaritotali B)Contributorichiestoaisensidi

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Giovanni Metelli Università degli Studi di Brescia

Giovanni Metelli Università degli Studi di Brescia PROGETTARE LE STRUTTURE IN LEGNO Giovanni Metelli Università degli Studi di Brescia gmetelli@ing.unibs.it a.a. 2011-12 1 1. LEGNO: Caratteristiche fisiche e meccaniche del materiale 2. Legno e materiali

Dettagli

LINEE GUIDA PER MODALITÀ DI INDAGINE SULLE STRUTTURE E SUI TERRENI PER I PROGETTI DI RIPARAZIONE, MIGLIORAMENTO E RICOSTRUZIONE DI EDIFICI INAGIBILI

LINEE GUIDA PER MODALITÀ DI INDAGINE SULLE STRUTTURE E SUI TERRENI PER I PROGETTI DI RIPARAZIONE, MIGLIORAMENTO E RICOSTRUZIONE DI EDIFICI INAGIBILI Dipartimento Protezione Civile ReLUIS AGI ALGI ALIG LINEE GUIDA PER MODALITÀ DI INDAGINE SULLE STRUTTURE E SUI TERRENI PER I PROGETTI DI RIPARAZIONE, MIGLIORAMENTO E RICOSTRUZIONE DI EDIFICI INAGIBILI

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

strutture legate non autoportanti

strutture legate non autoportanti Il comportamento sotto sisma delle strutture metalliche dedicate a vano corsa ascensore, legate ad edifici esistenti: problemi e soluzioni. - 1 a parte - abstract Le strutture metalliche che costituiscono

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Premessa. 11100 Aosta (Ao) 2/A, via Promis telefono +39 0165272866 telefax +39 0165272840

Premessa. 11100 Aosta (Ao) 2/A, via Promis telefono +39 0165272866 telefax +39 0165272840 Assessorat des Ouvrages Publics de la protection des sols et du logement public Assessorato Opere Pubbliche, Difesa del Suolo e Edilizia Residenziale Pubblica Premessa Le fondamentali indicazioni riportate

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso.

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso. 2. I difetti nei cristalli In un cristallo perfetto (o ideale) tutti gli atomi occuperebbero le corrette posizioni reticolari nella struttura cristallina. Un tale cristallo perfetto potrebbe esistere,

Dettagli

I LAVORI IN QUOTA. Expo Edilizia - Roma, 14 novembre 2008. I Dispositivi di Protezione Individuale. Problematiche e soluzioni

I LAVORI IN QUOTA. Expo Edilizia - Roma, 14 novembre 2008. I Dispositivi di Protezione Individuale. Problematiche e soluzioni Expo Edilizia - Roma, 14 novembre 2008 I LAVORI IN QUOTA I Dispositivi di Protezione Individuale Problematiche e soluzioni Luigi Cortis via di Fontana Candida 1, 00040 Monte Porzio Catone (Roma) telefono

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Linee guida per il montaggio e smontaggio di. ponti a torre su ruote

Linee guida per il montaggio e smontaggio di. ponti a torre su ruote Opere Provvisionali Linee guida per il montaggio e smontaggio di ANVVFC,, Presidenza Nazionale, dicembre 2008 pag 1 Il DECRETO LEGISLATIVO 9 aprile 2008, n. 81 (Pubblicato sulla G.U del 30 aprile 2008)

Dettagli

SEMINARIO INFORMATIVO SULL EVOLUZIONE DELLA NORMATIVA ANTINCENDIO

SEMINARIO INFORMATIVO SULL EVOLUZIONE DELLA NORMATIVA ANTINCENDIO SEMINARIO INFORMATIVO SULL EVOLUZIONE DELLA NORMATIVA ANTINCENDIO Parma 16 novembre 2012 S.D.A.C. Arch. Fabrizio Finuoli L evoluzione della Prevenzione Incendi 2 Panorama normativo della Prevenzione incendi

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli