V. PARAMETRI COME FUNZIONE DI CIRCONFERENZA E COME VALORI DELLE COORDINATE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "V. PARAMETRI COME FUNZIONE DI CIRCONFERENZA E COME VALORI DELLE COORDINATE"

Transcript

1 V. PAAMETI COME FUNZIONE DI CICONFEENZA E COME VALOI DELLE COODINATE

2 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 1 I PAAMETI DI ELLISSE, IPEBOLE E PAABOLE COME FUNZIONE DI CICONFEENZA Si è visto sin qui che il vantaggio dell uso delle Equazioni di Vag è essenzialmente nel fatto di poter dare ai membri di tale equazione valori opportuni purchè si rispetti la condizione propria di tale equazione. Qui vogliamo far vedere come sia possibile rappresentare i parametri delle Curve classiche mediante valori forniti da una circonferenza. ELLISSE Siano dunque due circonferenze di raggio rispettivamente e r, come da fig., si avrà per un angolo OQ cos e MB XQ rsen posto OX OQ XQ e per un opportuno avremo l Eq. Di Vag: OX OX OX OQ cos BMsen cos cos OQ sen rsen QX r tan tan facendo q = e m = r riavrò la classica equazione parametrica dell Ellisse in funzione delle circonferenze e dell angolo per : OX ( q cos ) cos ( m sen ) sen

3 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. IPEBOLE EQUILATEA OQ ; QA QP tan cos ( 1 sen ) OP cos OPcos cos OPsen tan tan sen ( q m ; ) Si osservi che i valori di x e y sono i valori delle funzioni Parametriche (Goniometriche)Iperboliche (vedi Cap.III "Le Curve" Pag.7). IPEBOLE OQ cos BM MT QP r tan r sen OP cos OP cos cos OP sen r tan r tan sen ( q ; m r; )

4 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 3 PAABOLA Come per l ellisse e l Iperbole anche per la Parabola e possibile il calcolo tramite una circonferenza. In precedenza abbiamo visto che le quattro Parabole fondamentali hanno come distanza di ciascun punto della curva dall origine: p p ( p x); ( p y) cioè un valore positivo uguale o maggiore a p rappresentarlo facendo con p 1 p 1 (p x) oppure (p y) cos cos il che possiamo Dalla figura vediamo OP cos posto p= ( distanza Vertice-Fuoco per definizione) avremo: p 1 ( x); ( y) cos cos cos cos x cos sen y cos per cui In questa ultima Eq. di Vag abbiamo soltanto la distanza OP(distanza di un punto di Parabola dal Fuoco nell Origine) e nessun legame tra gli angoli e per ottenere le quali e le quattro parabole, dobbiamo dare dei valori alle rispettive coordinate ricavandole dall uguaglianza precedente: x parabole aperte a destra e a sinistra cos cos y parabole aperte in alto e in basso cos cos Analizziamo le parabole aperte a destra e a sinistra cioè quelle di valore ( p x) (analogo ragionamento vale per le parabole aperte in alto e in basso). Prendiamo le parabole tipo (p+x) (aperte a destra) e scriviamone l Eq. di Vag: cos x ( ) ( 1 cos ) cos cos cos sen y cos

5 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 4 prendendo x (aperte a sinistra) il valore della y non cos cambia. Dalla prima riga del sistema si può ottenere il valore di arc cos( 1 cos ) e da questo ottenere tramite la seconda riga il valore di y. Volendo possiamo anche fare: y 1 4 ( cos ) cos cos cos y cos ( 1 cos ) cos (cos cos ) cos cos sen cos x ( ) (1 cos ) cos cos y cos 1 cos cos Tale parabola ha il fuoco nell origine e Vertice (-,0). Dividendo i membri dell Eq. di Vag avremo: cos ( 1 cos ) cos ( cos ) tan sen cos ( cos ) 1 1 ( 1 cos ) si stabilisce così il legame tra gli angoli e, e si osservi che: a] ( 1 cos )cos ( cos (1 cos )) sen è Eq. di Vag di una circonferenza di raggio. b] (1 cos )cos ( cos (1 cos ))sen cos cos cos è Eq. Di Vag di una parabola di parametro p=. Prendiamo le parabole tipo (p-x) (aperta a sinistra): x ( ) cos tutto il procedimento visto non sarebbe cambiato se non per il solo valore della x (negativo in questo caso).l Eq. di Vag risultante sarebbe stata:

6 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 5 cos x ( ) (1 cos ) cos cos cos sen y cos 1 cos cos cos cos (1 cos )cos ( cos cos cos (1 cos ))sen Il rapporto tra e non è mutato: cos (1 cos ) tan (1 cos ) cos (1 cos ) (1 cos ) Prendiamo le parabole tipo (p+y) (aperta verso l alto): cos x cos 1 cos cos cos sen y ( ) (1 cos ) cos cos cos tan (1 cos ) cos (1 cos ) cos cos cos 1 cos cos (1 cos )sen cos Prendiamo le parabole tipo (p-y) (aperta verso il basso): cos x cos 1 cos cos cos sen y ( ) (1 cos ) cos cos cos (1 cos ) tan cos (1 cos ) cos cos cos 1 cos cos (1 cos )sen cos

7 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 6 TANGENTE DELLA PAABOLA (DEIVATA) Prendiamo in considerazione i valori dell Eq.Parametrica (p+x): y cos cos 1 cos ; x 1 cos e cerchiamone la derivata prima: dy d cos dx d cos cos cos cos cos cos sen cos cos cos cos sen cos cos sen cos cos cos sen cos 1 cos 1 cos cos cos cos cos cos cos cos 1 cos cos cos sen sen sen sen cos cos cos cos dy tan dx cos cos cos cos cos cos 1 cos 1 cos da quanto visto nei capitoli precedenti si avrà: Caso (p+x): dy p 1 cos cos tan dove dx y sen 1 cos 1 cos cos Caso (p-x): Caso (p+y): Caso (p-y): dy p 1 cos cos tan dove dx y sen 1 cos dy x cos 1 cos tan dove dx p 1 sen cos dy x cos 1 cos tan dove dx p 1 sen cos 1 cos cos 1 sin cos 1 sin cos

8 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 7 EQ. DEL MOTO DEGLI ASTEOIDI Da ciò che abbiamo visto nel precedente Titolo PAABOLA, scriviamo l'eq. della "PAABOLA di Vag": cos x ( ) (1 cos ) a] cos cos cos sen y cos 1 cos cos cos che può anche essere scritta (intendendo =90- cioè cos(90-)= sen): cos x ( ) (1 sen) b] sen sen sen sen y sen1 sen sen sen Entrambe hanno lo stesso significato con la sola differenza che a] parte dal vertice della parabola verso l infinito mentre la b] viene dall infinito verso il vertice. Si osservi la seguente variazione: x (1 cos ) cos 1 y cos 1 cos cos 1 dove ponendo 1= non ci sarà nessuna diversità con le Eq. Di Vag viste sopra. Se però poniamo un limite ad 1: ' '... '... '... '... ' cioè 1= fino al valore dopo di che 1= costante si avrà che nella equazione anche ' e la equazione sarà una parabola fino cos ' al valore 1= dopo di che diventerà una circonferenza di raggio

9 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 8 PAABOLA DEL MOTO TAMITE UNA SUA TANGENTE Sia ρ angolo di una tangente in A(0,) della parabola che vogliamo cercare: il tutto come in figura sopra. La tangente è relativa ad una Parabola riferita al suo Fuoco del tipo (p+x) di cui abbia visto in precedenza. dy p p 1 cos cos tan dx y sen 1 cos 1 cos dove cos e β = ρ (Cap.III Bis Pag.4) quindi il Parametro della parabola è: p=ytan(ρ)= tan(ρ) pertanto possiamo scrivere l' Eq. della parabola cercata: p cos x 1 cos p (1 cos ) sin y p parametro 1 cos sin cos (1 cos ) da cui x 1 cos sin tan tan y analogamente tan x x x tan tan Parabola

10 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 9 Il valore della x, è quello della distanza O'A=(p+x) e la x è l'ascissa del Fuoco con Coordinate O'=F(x,0)=,0. tan In funzione del valore della variabile ρ della tangente in A possiamo ottenere, con lo stesso procedimento qualunque altra parabola. Nella pagina 7, precedente, abbiamo visto come una parabola si possa trasformare in una circonferenza: cerchiamo dunque la circonferenza che passi per un dato punto T (AT= h)il che varrà per tutte le nostre parabole ottenute dalle varie tangenti, le quali rappresentano l'"alzo" nel punto A. Per definizione (p + x)= O'T =O'T'= T (raggio della circonferenza) essendo T' punto della parabola e della nuova circonferenza: abbiamo visto nella pag. precedente che se la variabile α diviene α1 costante la parabola diventa una circonferenza per T cos1 cos1 T x (1 cos ) T (1 cos ) cos 1 y cos 1 cos T cos 1 cos cos 1 l'ultima espressione è l'eq. parametrica della circonferenza di raggio T passante per T.

11 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 10 SCHEMA DEI VALOI DELLE COODINATE - -m O +m +q + (derivate) q cos (q-m)cos + m (mcos- m) (q+m)cos - m m cos m m cos m m cos -q sen -(q-m)sen -m sen -(q+m) sen msen cos msen cos msen cos Si possono prendere in considerazione anche i valori seno e tangente.

12 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 11 Una particolare applicazione per convertire dell espressioni in coordinate parametriche è quella di utilizzare i PAAMETI dell ellisse e dell iperbole. Nel relativo capitolo avevamo descritto le curve ellisse e iperbole partendo dalle equazioni generiche: Ellisse Iperbole Iperboli (I ;II ) con asintoti le rette q e m x q cos y msin x q cos y msin cos x q cos a) y m sin x q cos b) y msin mq mx cos qysin ( mq) ( mx) ( qy) mx yx mq cos qysin mx sin qycos ( mq) ( mx) ( qy) mx mq cos yxsin ( yx) ( mx) ( qy) ( yx) ( mx) ( mq ) Come esempio di applicazione di queste formule si abbia, la generica espressione: ax by non avendo qui importanza se a è maggiore o minore di b, possiamo considerare a=m e b=q e scrivere: mx qy questa espressione raffrontata con la tabellina vista sopra può essere uguagliata alla ellisse per (mq) e dare mq mx cos qysin oppure all iperbole per (yx) e dare yx mx sin qycos : la scelta dipende evidentemente dall uso e significato che vogliamo.

13 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 1 PAAMETI COME VALOI DELLE COODINATE Agli assi x e y è possibile assegnare dei valori secondo quanto visto nel precedente capitolo SCHEMA DEI VALOI DELLE COODINATE. Per esempio posso considerare x=qcos1 e y=mcos e se poi considero cos 1 + cos = 1 posso anche scrivere x=qcos1 e y=msen1 che come Eq. di Vag rappresenta una Ellisse. Analogamente avrei potuto scrivere x=dcos1 e y=(q-m)cos+m e per la medesima considerazione fatta sopra y=(q-m)sen1+m e così via per tutte le altre combinazioni. Tracciamone un esempio: x=(q-m)cos+m e y=d sen, con : Si osservi che per d= l Ellisse è data da: x cos 3 y sin cioè una circonferenza il cui centro è spostato dall origine O di 3.

14 LA GEOMETIA CON L EQ. PAAMETICA DI VAG Parametri Cap. V Pag. 13 LA FIGUA UOVO Manipolando opportunamente la formula parametrica possiamo ottenere diverse e nuove figure. Questa che presentiamo è derivata dalla Ellisse e assume la forma di un UOVO. x (q cos ) cos La formula: y m sin Dove q ed m sono i semi assi dell Ellisse; un qualunque valore.

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori

Dettagli

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4). . Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0 Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

EQUAZIONI CON PARAMETRO

EQUAZIONI CON PARAMETRO Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell

Dettagli

Formule Utili Analisi Matematica per Informatici a.a

Formule Utili Analisi Matematica per Informatici a.a Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Svolgimento degli esercizi sulla circonferenza

Svolgimento degli esercizi sulla circonferenza Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57

Dettagli

Ellisse. DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante"; CONSIDERAZIONI:

Ellisse. DEF: il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante; CONSIDERAZIONI: Ellisse DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi è costante"; CONSIDERAZIONI: Il punto P appartiene all'ellisse se, e solo se, la distanza del punto P dal fuoco

Dettagli

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4).

LA PARABOLA E LE SUE APPLICAZIONI Problema 1 Determinare l'equazione della parabola di vertice V( 2;0) e passante per P(0;4). LA PARABOLA E LE SUE APPLICAZIONI Prolema 1 Determinare l'equazione della paraola di vertice V( 2;0) e passante per P(0;4). y = ax 2 + x + c 1)l'appartenenza del punto P alla paraola, 2)l'appartenenza

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Ellisse riferita a rette parallele ai suoi assi

Ellisse riferita a rette parallele ai suoi assi prof. F. Buratti Liceo della Comunicazione G. Toniolo (versione 0.3.6 venerdì 22 marzo 2007) 1 Premessa Finora abbiamo studiato l equazione di un ellisse riferita al centro e agli assi. Consideriamo ora

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Numero decimale con la virgola -- numero binario

Numero decimale con la virgola -- numero binario Numero decimale con la virgola -- numero binario Parlando del SISTEMA DI NUMERAZIONE BINARIO abbiamo visto come è possibile trasformare un NUMERO decimale INTERO in un numero binario. La conversione avviene

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Cinematica: derivate e integrali che ci servono: appunti

Cinematica: derivate e integrali che ci servono: appunti 1. Cinematica: derivate e integrali che ci servono: appunti Primo esempio: moto uniforme Iniziamo con le derivate. Supponiamo una legge oraria del tipo: x(t) a+bt, dove a, b sono dei coefficienti costanti.

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere

SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE Problema 1: a) y = 4 x 4 x + x = 0 y = x x 1 x 1 C. E.: 4 x 0 x y = 4 x y = 4 x x + y = 4 semiocirconferenza superiore di centro l'origine e raggio C. C.:

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Compito A

Compito A Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente).

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe IIID ESERCIZI ESTIVI 01/1 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Scheda 1. Concavo e convesso

Scheda 1. Concavo e convesso Scheda 1 Concavo e convesso Scheda 2 Concavità Fig.1 Concavità rivolta verso l alto Concavità rivolta verso il basso Fig.3 Concavità rivolta verso l alto Fig.2 Concavità rivolta verso il basso Fig.4 Scheda

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Andamento e periodo delle funzioni goniometriche

Andamento e periodo delle funzioni goniometriche Andamento e periodo delle funzioni goniometriche In questa dispensa ricaviamo gli andamenti delle funzioni goniometriche seno, coseno, tangente e cotangente tra 0 e 360, detti, rispettivamente, sinusoide,

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

MATEMATICA LA PARABOLA GSCATULLO

MATEMATICA LA PARABOLA GSCATULLO MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 24 - Esercitazioni di Algebra e Geometria - Anno accademico CONICHE in A ~ (C) Punti propri (x P,y P ) hanno coordinate omogenee [(x P,y P, )], Punti impropri hanno coordinate omogenee [(l,m, )]. L equazione di una conica in coordinate non omogenee (x,y) C: a,

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli