MATEMATICA FINANZIARIA
|
|
|
- Massimiliano Vecchi
- 10 anni fa
- Visualizzazioni
Transcript
1 Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso simile alla siuazioe preseaa l imporo ivesio ( 4500 è il capiale C, quello che l operazioe frua è l ieresse I; la somma ra ieresse e capiale è il moae M. Ci soo due modalià di calcolo degli ieressi: L ieresse viee calcolao alla fie di ogi ao sul capiale iiziale. I al caso si parla di capializzazioe semplice L ieresse viee calcolao alla fie di ogi ao sul moae già realizzao. I al caso si parla di capializzazioe composa. Esamiiamo i due casi ell esempio proposo. Capializzazioe semplice: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao 4500*0,0= 10,5 moae = ,5. = 4707 Capializzazioe composa: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao ( ,5 *0,0= 105,8805 moae = ,5+105,8805= 4709,805 Immagiiamo ora di impiegare 4500 per ai e mesi i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? Esamiiamo i due casi el uovo esempio proposo. Capializzazioe semplice: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao 4500*0,0= 10,5 ieresse per mesi ,0 = 5,875 moae = ,5. +5,875= 47,875 Capializzazioe composa: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao ( ,5 0, 0 = 105,8805 ieresse per mesi ( ,5+105,8805 0, 0 7,079 moae = ,5+105,8805+7,079= 476,46 = Esrapoliamo il procedimeo: idicado co il umero di ai, co f la frazioe di ao e co i il asso auo uiario Capializzazioe semplice: moae dopo +f ai M = C + I = C + C i + C i + C i C i f + i + i f Ieresse dopo +f ai I = C i ( + f Capializzazioe composa: moae alla fie del primo ao M = C( 1 moae alla fie del secodo ao M = C( 1+ i + C(1 i (1 moae dopo +f ai M = C( 1+ i + C(1 i f (1+ if
2 Ques ulima procedura viee dea capializzazioe co covezioe lieare. E possibile ache adoare la covezioe espoeziale, ossia calcolare il moae el modo f + f seguee: M (1 Nello specifico esempio si oiee M=4500*(1+0,0 +/ = 476, Geeralizziamo: idicado co il empo oale espresso i ai e co i il asso auo uiario, si ha: Capializzazioe semplice: Ieresse dopo ai I = C i Moae dopo ai M = C( 1+ i Capializzazioe composa: Moae dopo ai M espoeziale ESEMPI N.B Se o idicao espressamee, useremo l ao commerciale = C( 1+ i (covezioe 1 Calcolare il moae di 000, impiegai per 5 ai e 11 mesi, al % auo 11 - i capializzazioe semplice M = 000 (1 + 0,0(5 + = 5, i capializzazioe composa M = 000(1 + 0,0 = 57,44059 Calcolare i quao empo u capiale, al asso del % auo, si raddoppia - i capializzazioe semplice C + i, quidi = 1 + 0,0 ai e 4 mesi - i capializzazioe composa C + 0,0, quidi log =log ( 1+ 0,0 = ai 5 mesi giori (1 + = 0,0 Calcolare quale capiale, impiegao per 7 mesi e 15 giori, al asso del % auo, forisce u ieresse di 0 - i capializzazioe semplice 0 = C 0,0 C= i capializzazioe composa I = M C 0 + 0,0 C 0 = C((1 + 0,0 1 C= 645,7 4 Calcolare a quale asso auo di ieresse 00 dao u moae di 100, se impiegai per ai. - i capializzazioe semplice 100 = 00(1 + i i =0, circa 11,59 % - i capializzazioe composa 100 oppure: log( = log(1 00 i= 0, circa 10,46 % 100 i = 00( i = i = 0,
3 Tassi equivalei Ipoizziamo di ivesire 4500 per ai e mesi i ua operazioe fiaziaria che frua u asso del 6 % auo. Ci chiediamo se il moae realizzao si oerrebbe ugualmee co u asso dello 0,5% (6/ mesile. - i capializzazioe semplice al 6% auo, per,5 ai, si ha: M = 4500(1 + 0,06,5 = 510 oppure allo 0,005 mesile per 7 mesi M = 4500(1 + 0,005 7 = i capializzazioe composa al 6% auo, i covezioe espoeziale, per,5 ai, si,5 ha: M = 4500 (1 + 0,06 = 510,9901 oppure, 7 allo 0,005 mesile per 7 mesi M = 4500 (1 + 0,005 = 5148,688 Si vede che i due assi o soo equivalei, iededo per assi equivalei quelli che, a parià di capiale e di empo, dao lo sesso moae. Applicado quesa defiizioe ad u capiale C, ad u asso auo i e ad u asso mesile i, per u ao, si oiee: - i capializzazioe semplice: M = C( 1+ i 1+ i = 1+ i i = i quidi, per u geerico asso periodico i, si ha i = i Ad esempio per u asso semesrale i = i, per u asso quadrimesrale, i = i - i capializzazioe composa: i = ( 1+ 1 ed ache (1 + i 1 = i i M 1 + i i = (1 i Spesso, i capializzazioe composa si usa il cosiddeo asso auo omiale coveribile, che ha solo valore covezioale; o può essere uilizzao ei calcoli, ma deve essere appuo coverio i asso periodico. Se ad esempio parliamo del 6% omiale coveribile bimesralmee, per fare i calcoli useremo il asso bimesrale dell 1% oeuo dividedo il omiale per 6. I geerale il asso auo omiale è idicao co ESEMPI j ed è i 1 Calcolare il moae realizzao co l impiego di per ai e 5 mesi allo 0,6 % mesile. - i capializzazioe semplice M = 17000(1 + 0, = 6118,8 5 oppure M = (1 + 0,04 (+ = 6118, i capializzazioe composa, M =17000 (1 + 0,006 = 909,0147 oppure, poiché i = (1 + i 1=0, , M = 17000(1 + 0, (+ = 909,0147 Calcolare l ieresse realizzao co l impiego di 1570 per ai 4 mesi e 16 giori al asso auo omiale 5% coveribile semesralmee. = j
4 0,05 Coveriamo il asso: i = j = = 0, 05 è il asso semesrale, quidi: - usiamo il asso semesrale ed esprimiamo il empo i semesri 4 16 (4+ + M = 1570(1 + 0, = 1765,6145 oppure - rasformiamo il asso semesrale i auo equivalee ed esprimiamo il empo i ai i = (1 + i 1=0,05065 e M = 1570(1 + 0, ( USO DI EXCEL = 1765,6145 Il foglio di calcolo può essere usao per risolvere alcui dei problemi precedei, mediae lo srumeo Ricerca obieivo. Ad esempio, dao il problema: Calcolare a quale asso auo di ieresse 00 dao u moae di 100, se impiegai per ai, si possoo digiare i dai i quesa forma Nella cella D si digia la formula =A*(1+C*B e ella cella E si digia la formula =A*(1+C^B ed il valore,elle celle B e B, oeedo Si va sulla cella D, poi dalla barra dei meu, Srumei Ricerca obieivo OK OK Si va sulla cella E, poi dalla barra dei meu, Srumei Ricerca obieivo
5 Il risulao oeuo per il asso è uguale a quello oeuo precedeemee co la risoluzioe di equazioi:
Appunti sulla MATEMATICA FINANZIARIA
INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi
2. Duration. Stefano Di Colli
2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve
Anno 5 Successioni numeriche
Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai
Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016
Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d
Elementi di matematica finanziaria
Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate
SUCCESSIONI E SERIE NUMERICHE
SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua
Interesse e formule relative.
Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del
8. Quale pesa di più?
8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora
Rischio di interesse: Il modello del clumping. Prof. Ugo Pomante Università di Roma Tor Vergata
Rischio di ieresse: Il modello del clumpig Prof. Ugo Pomae Uiversià di Roma Tor Vergaa Problemi dei modelli precedei Repricig gap e duraio gap Ipoesi variazioe uiforme dei assi di ieresse delle diverse
La matematica finanziaria
La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)
MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae
EQUAZIONI ALLE RICORRENZE
Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale
Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la
SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.
Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.
Sintassi dello studio di funzione
Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:
Successioni. Grafico di una successione
Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario
Rendita perpetua con rate crescenti in progressione aritmetica
edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come
1 Limiti di successioni
Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite
Formula per la determinazione della Successione generalizzata di Fibonacci.
Formula per la determiazioe della uccessioe geeralizzata di Fiboacci. A cura di Eugeio Amitrao Coteuto dell articolo:. Itroduzioe......... uccessioe di Fiboacci....... 3. Formula di Biet per la successioe
Limiti di successioni
Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe
Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone
Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema
5 ln n + ln. 4 ln n + ln. 6 ln n + ln
DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio
Esercizi di Matematica Finanziaria
Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)
Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.
Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo
Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)
4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio
LA DERIVATA DI UNA FUNZIONE
LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:
Progressioni aritmetiche
Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si
ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.
ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità
Corso: Economia ed estimo forestale ed ambientale. S. Severini (Università della Tuscia, Viterbo)
Corso: Ecoomia ed estimo forestale ed ambietale. S. Severii (Uiversità della Tuscia, Viterbo) 1 Saggio di iteresse C C I 0 I C r C C C 0 0 C C C r C 1 r M r 0 0 0 C C0 C C C C 0 0 % C capitale al periodo
Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame
Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale
L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08
L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire
52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base
Successioni ricorsive di numeri
Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..
V Tutorato 6 Novembre 2014
1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe
I appello - 29 Giugno 2007
Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (
ESERCIZI SULLE SERIE
ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti
BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015
BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee
SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI
SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI di Massimo FANTINI e Roberto TONELLO MATERIE: ECONOMIA AZIENDALE (classe 5 IT Idirizzo AFM; Articolazioe SIA; Articolazioe RIM; 5 IP Servizi
Sistemi e Tecnologie della Comunicazione
Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche
Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo
Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1
( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0
CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()
LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT
LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità
Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:
Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado
Terzo appello del. primo modulo. di ANALISI 18.07.2006
Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri
Foglio di esercizi N. 1 - Soluzioni
Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >
Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.
Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.
Campionamento stratificato. Esempio
ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete
DISPENSE DI MATEMATICA FINANZIARIA
SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.
Campi vettoriali conservativi e solenoidali
Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile
APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)
ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).
Soluzione La media aritmetica dei due numeri positivi a e b è data da M
Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è
Modelli attuariali per la previdenza complementare
Modelli auariali per la prevideza complemeare Fabio Grasso Diparimeo di Scieze Saisiche Uiversià degli Sudi di Roma La Sapieza fabiograsso@uiroma1i Riassuo Il presee lavoro esamia i profili auariali della
Esercizi riguardanti limiti di successioni
Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse
STATISTICA DESCRITTIVA
STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al
I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa
I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per
SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1
SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:
Teorema 13. Se una sere converge assolutamente, allora converge:
Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e
SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n
SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito
APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO
Moduo 8a 1 APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO 1. Iroduzioe 2. La eoria de cosumo di Dueseberry 3. La eoria de cico viae di Modigiai 2 1. Iroduzioe Dae esperieze dei maggiori sisemi macroecoomici,
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo
Struttura dei tassi per scadenza
Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
Calcolo Combinatorio (vers. 1/10/2014)
Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio
PARTE QUARTA Teoria algebrica dei numeri
Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)
La stima per capitalizzazione dei redditi
La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
5. Le serie numeriche
5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a
Progressioni geometriche
Progressioi geometriche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 6,,, 8, 96 La successioe è tale che si passa da u termie al successivo moltiplicado il precedete per. Si dice
Appunti su rendite e ammortamenti
Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, [email protected] Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme
Calibrazione di tranche CDO con il modello dinamico GPL
Calibrazioe di rache CDO co il modello diamico GPL La calibrazioe di u idice di credio e delle sue rache cosiseemee sulle varie scadeze co u sigolo modello i asseza di opporuià di arbiraggio è u problema
Matematica I, Limiti di successioni (II).
Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete
LA VALUTAZIONE DEGLI INVESTIMENTI: UN APPROFONDIMENTO ATTRAVERSO L ANALISI LIFE CYCLE COST (LCC) NELL IMPRESA AGRARIA 1
A. Fac. Medic. Ve. di Para (Vol. XXVII, 27) pag. 321 - pag. 344 LA VALUTAZIONE DEGLI INVESTIMENTI: UN APPROFONDIMENTO ATTRAVERSO L ANALISI LIFE CYCLE COST (LCC) NELL IMPRESA AGRARIA 1 INVESTMENT VALUATION:
