ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1"

Transcript

1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e t ispetto alle ette e t indicate in Figua. t = 1 = cm = = s = d = s d A# 1

2 1. Deteminazione del aicento della sezione La sezione a T pesenta un asse di simmetia etta veticale, dunque il aicento viene a tovasi su tale asse. Con ifeimento al sistema (, ) indicato in Figua, la coodinata del aicento viene immediatamente individuata essendo pai a: = /. Pe individuae la coodinata del aicento della sezione, espessa sempe nel sistema di ifeimento (, ) indicato in Figua, è oppotuno scompoe la sezione in due ettangoli, pe esempio: uno di lati = 1 e =, l alto di lati = e = 1. Si pocede quindi all individuazione della coodinata del aicento e al calcolo dell aea pe ciascuno dei due ettangoli: Rettangolo A = = 15 5 = 75 cm = = 7.5 cm 5 = = = 17.5 cm Rettangolo ( ) 3 ( 5) 45 = = = A cm = 1 = cm = = = 17. = = 7.5 cm 5 = = = 7.5 cm L aea complessiva della sezione è ovviamente pai a: A = A + A = = 1 cm Si calcola quindi il momento statico della sezione ispetto all asse e ciò sfuttando la popietà additiva del momento statico: Momento statico S ispetto all asse : S = S + S = A + A = = 16 3 A#

3 Si può infine deteminae la posizione del aicento della sezione nel ifeimento (, ) consideato applicando le fomule di seguito ipotate ed esplicitate numeicamente pe il caso in esame, isulta: 3 S 165 cm = = 7.5 cm, = = = cm. A 1 cm = 1 = cm = = = 13.7 A# 3

4 . Deteminazione degli assi pincipali centali di inezia Nota la posizione del aicento della sezione in esame nel ifeimento (, ), gli assi aicentici e sono ance assi pincipali centali di inezia pe la sezione in esame. Rispetto a tali assi infatti il momento di inezia centifugo isulta essee nullo, cioè =. Si icoda infatti ce se una sezione possiede un asse di simmetia etta esso isulta essee pincipale centale di inezia, come pue l asse ad esso otogonale e passante pe il aicento. Di seguito gli assi pincipali centali di inezia saanno indicati con le lettee gece ξ ed η, come specificato in Figua. η = 1 = cm = = ξ = 13.7 A# 4

5 3. Deteminazione dell ellisse centale di inezia L ellisse centale di inezia, ifeita agli assi pincipali centali di inezia ξ e η, a equazione: ξ ρ η + = 1 η ρξ nella quale ρ ξ e ρ η sono i semiassi dell ellisse ce coincidono, com è noto, con i aggi giatoi di inezia della sezione espessi da: ξ η ρξ =, ρη =. A A Nelle elazioni pecedenti: A è l aea totale della sezione in esame; ξ e η sono i momenti pincipali centali di inezia della sezione ce, nel caso in esame, coincidono con i momenti del secondo odine e ispetto agli assi e. 3.1 Calcolo del momento pincipale centale di inezia della sezione ispetto all asse ξ l calcolo dei momenti del secondo odine ξ e η è effettuato avvalendosi della popietà additiva pe i momenti del secondo odine, sfuttando la scomposizione in due ettangoli opeata in pecedenza e applicando, ove necessaio, il teoema del taspoto. l momento di inezia della sezione ispetto all asse ξ è dato dalla somma dei momenti di inezia ispetto all asse ξ dei singoli ettangoli e, cioè: ξ = ξ + ξ A# 5

6 Pe la valutazione di ξ e ξ si applica il teoema del taspoto; nel seguito indica il momento di inezia del ettangolo ispetto ad un asse paallelo all asse ξ e passante pe il aicento, analogamente indica il momento di inezia del ettangolo ispetto ad un asse paallelo all asse ξ e passante pe il aicento. 1 1 = + A ( ) = ξ ( )( ) ( 15 5 ) ( 15 5 )( ) cm 1 + = 1 + = ξ = + A ( ) = ( ) + ( ) ( ) 1 = = ( 3 15 ) + ( 3 15 )( ) = cm 1 Si a in definitiva: 4 ξ = ξ + ξ = = cm. η = 1 = cm = = ξ d = 17. = 13.7 A# 6

7 3. Calcolo del momento pincipale centale di inezia della sezione ispetto all asse η l momento di inezia della sezione ispetto all asse η è dato dalla somma dei momenti di inezia ispetto all asse η dei singoli ettangoli e, cioè: η = η + η Si noti ce pe la valutazione di η e aicentico pe entami i ettangoli. Risulta petanto: = η ( 5 15 ) cm 1 = 1 = η non occoe applicae il teoema del taspoto, essendo η 1 1 = η ( ) ( 15 3 ) cm 1 = 1 = Si a in definitiva: 4 η = η + η = = 144 cm. η = 1 = cm = = ξ = 13.7 A# 7

8 3.3 Ellisse centale di inezia Noti ξ e η, si possono in definitiva calcolae i aggi giatoi di inezia, si a: ξ η 144 ρξ = = = 5.65 cm, ρη = = = 3.46 cm. A 1 A 1 Questi ultimi definiscono l equazione dell ellisse centale di inezia nel ifeimento pincipale ( ξ, η ) pemettendone così la sua individuazione (effettuaile pe punti ad esempio) così come indicato in Figua. ρ ξ η = 1 = cm = = ρ η ξ A# 8

9 L individuazione dell ellisse, noti i semiassi ρξ ρ e ρη ρ, può condusi ance sfuttando una semplice costuzione gafica di seguito illustata e ipotata scematicamente nella Figua seguente. Costuzione gafica di un ellisse noti ce siano i suoi semiassi 1. Tacciae i semiassi dell ellisse e le ciconfeenze di cento aventi pe aggi i semiassi stessi;. Tacciata pe la geneica semietta, condue dalla sua intesezione A con la ciconfeenza intena la etta i paallela al semiasse maggioe, e dall intesezione con la ciconfeenza estena la etta e paallela al semiasse minoe; 3. l punto E intesezione di i e e è punto dell ellisse; 4. Ripetee la costuzione pe un numeo di punti sufficiente alla costuzione dell ellisse. e ρ E A ρ i A# 9

10 4. Deteminazione del nocciolo centale di inezia l nocciolo centale di inezia di una figua piana è il luogo dei centi elativi delle ette del piano ce non tagliano la figua o, nella polaità d inezia di cento il aicento della figua (polaità esistente ta le ette del piano e i simmetici ispetto a dei loo centi elativi), il nocciolo centale di inezia è il luogo degli antipoli delle ette del piano ce non tagliano la figua. l nocciolo è qui di seguito individuato attaveso la costuzione del suo contono e ciò, in paticolae, attaveso la deteminazione della posizione dei vetici dello stesso, deteminati come antipoli delle ette tangenti alla fontiea (o contono) della figua esa convessa. l contono del nocciolo centale di inezia della sezione a T in esame è quindi una figua a 6 vetici ciascuno dei quali appesenta l antipolo di una delle tangenti al contono della sezione esa convessa. 4.1 Metodo analitico Le coodinate dei vetici R i (i =1,,, 6) del nocciolo centale di inezia possono essee calcolate nel ifeimento otogonale (, ) pima consideato pevia deteminazione, nello stesso ifeimento, delle equazioni delle ette i (i =1,,, 6) tangenti al contono della figua esa convessa. Nota infatti l equazione di una etta nel ifeimento (, ), nella foma a+ + 1=, dove e sono da intendesi valutate nel ifeimento (, ) e il pedice è omesso pe comodità, il suo antipolo, nello stesso ifeimento, a coodinate P (, ) da: ( ) ; ( ) = a + A = a + A P P fonite nelle quali compaiono, olte ai coefficienti a e dell equazione della etta consideata, l aea A della sezione e i momenti del secondo odine della stessa sezione ispetto al ifeimento (, ) valutati in pecedenza. n paticolae: pe ette di equazione = 1, cioè paallele all asse, ponendo pe semplicità q = 1, dalle pecedenti isulta: P P P = ; P = qa qa pe ette di equazione = 1 a, quindi paallele all asse, ponendo * q = 1 a si a invece: A# 1

11 P = ; * P * qa = qa. Con ifeimento alla Figua, le ette tangenti al contono della sezione esa convessa anno, nel ifeimento (, ), le seguenti equazioni: etta 1 (paallela all asse ): = = ; etta (passante pe i punti A (, ) e (, ) A A ): a = =, avendo valutato, con ifeimento alla Figua, le coodinate dei punti A e ce isultano: A = = 3 = 1.5 = = 15 = 7.5 A = = = = = 1.5 ed essendo: a = =.14; = =.6. A A A A A A etta 3 (paallela all asse ): = = 7.5; etta 4 (paallela all asse ): = = = 6.5; etta 5 (paallela all asse ): = = 7.5; etta 6 (passante pe i punti C (, ) e D (, ) C C ): D D a = =, 6 6 avendo valutato, con ifeimento alla Figua, le coodinate dei punti C e D ce isultano: C = = 3 = 1.5 D = = 15 = 7.5 C = = D = = 1.5 ed essendo: a = =.14; = =.6. D C C D 6 6 DC CD DC CD A# 11

12 Riepilogando, nel ifeimento (, ), le ette tangenti alla figua esa convessa anno equazioni: 1 : = : = 3 : = : = : = : = 4 = 1 = cm = = D A C 1 A# 1

13 Applicando le fomule pima iciamate, icodando ce nel caso in esame ξ ed η, si possono quindi calcolae le coodinate dei vetici R 1, R, R 3, R 4, R 5 e R 6, antipoli ispettivamente delle ette 1,, 3, 4, 5 e 6. Si calcola: coodinate punto R 1 (antipolo della etta 1 di equazione = 13.75, paallela all asse ): = R cm;.31 ; 1 R cm 1 qa = = qa = = ( ) coodinate punto R (antipolo della etta di equazione ( ) ( ) ( ) ( ) = a + / A= /1 = 1.68 cm; R = a + / A= /1 = 1.9 cm. R a = = ): coodinate punto R 3 (antipolo della etta 3 di equazione = 7.5, paallela all asse ): 144 = R 1.6 cm; ; 3 * R cm 3 * qa = = = qa = ( ) coodinate punto R 4 (antipolo della etta 4 di equazione = 6.5, paallela all asse ): R = = cm; 5.8 ; 4 R = = = cm 4 qa qa coodinate punto R 5 (antipolo della etta 5 di equazione = 7.5, paallela all asse ): 144 R = = = 1.6 cm; ; 5 * R = = cm 5 * qa qa coodinate punto R 6 (antipolo della etta 6 di equazione a = = ): 6 6 ( ) ( ) ( ) ( ) = a + / A= /1 = 1.68 cm; R6 6 6 = a + / A= /1 = 1.9 cm. R6 6 6 A# 13

14 Unendo i punti R i così individuati si ottiene il contono, e quindi il nocciolo centale di inezia della sezione in esame, come illustato in Figua. Si icoda ce i lati del nocciolo sono le antipolai dei vetici della sezione. 4 = 1 = cm = R1 R6 R = R 5 R R Si osseva inolte ce, data la simmetia della sezione ispetto all asse, ai fini della individuazione del contono del nocciolo, è sufficiente deteminae le coodinate di quatto vetici, ad esempio R 1, R, R 3 ed R 4 essendo R 5 ed R 6 i punti simmetici di R 3 ed R ispetto all asse. A# 14

15 4. Metodo gafico n altenativa alla pocedua analitica pima esposta, di seguito si popone un metodo gafico pe l individuazione dei vetici del nocciolo centale d inezia. l metodo è ipotato in sintesi, pe passi opeativi sequenziali e elativamente alla deteminazione di un solo vetice del nocciolo della sezione in esame, essendo la costuzione gafica facilmente ipetiile pe i estanti vetici. La costuzione è quella ce consente, data una figua piana della quale si sia deteminata l ellisse centale d inezia, di individuae l antipolo R di una qualsiasi etta del piano. Essa si asa su una elazione notevole della polaità d inezia di cento, nota come elazione di coniugio, espessa da: nella quale: ρ = R R ' è la etta paallela ad e passante pe il aicento della figua; ρ è il aggio giatoe d inezia ispetto a, definito dal semidiameto dell ellisse appatenente * alla diezione coniugata ad ; R è l antipolo della etta ; R è il coniugato di R ; R e R ' individuano i segmenti ispetto ai quali elazione di coniugio. ρ è medio popozionale, come stailito dalla Si imanda ai lii di testo consigliati pe i fondamenti teoici sui quali si asa la costuzione poposta. A# 15

16 Con ifeimento alla Figua, i passi opeativi della costuzione poposta sono: #1 Nota l ellisse centale di inezia e fissata la tangente, della quale si vuole individuae l antipolo R, si tacciano le tangenti all ellisse paallele a, individuando così i punti di tangenza A e ; # La etta passante pe i punti di tangenza A e è la diezione * coniugata ad, la sua intesezione con è il punto R, coniugato di R ; il aggio giatoe semidiameto (o A ); ρ coincide con il #3 Si uota di 9 sì da dispolo sull otogonale pe alla diezione coniugata *, sia ' il segmento così ottenuto; #4 Si unisce R con e si conduce pe l otogonale a R ' ' sino ad intesecae la diezione coniugata * in R, antipolo della etta consideata e vetice del nocciolo centale di inezia della sezione. R A tg ρ tg * R C Ripetendo la costuzione pe le alte 5 tangenti alla figua esa convessa si individua in modo completo il nocciolo centale di inezia della sezione. A# 16

17 5. Calcolo dei momenti di inezia ispetto alle ette e t Si calcolano infine i momenti di inezia ispetto alle ette e t mostate in Figua. Tali momenti possono essee calcolati utilizzando il teoema del taspoto; nel seguito e indicano i momenti di inezia della sezione ispetto agli assi aicentici e, ispettivamente paalleli alle ette e t. Momento di inezia della sezione ispetto alla etta ( ) ( ) 4 = + A d = = 1768 cm Momento di inezia della sezione ispetto alla etta t t A = + s ( 15 3) 187 cm = + = 4 = 1 = cm = = s = d = s = 13.7 d t A# 17

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1 Esecizi svoli di geomeia delle aee Alibandi U., Fuschi P., Pisano A., Sofi A. ESERCZO n.3 Daa la sezione a doppio T ipoaa in Figua, deeminae: a) gli assi pincipali cenali di inezia; b) l ellisse pincipale

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Lezione 21 - La geometria delle aree. Richiami

Lezione 21 - La geometria delle aree. Richiami Lezione 1 - La geometia delle aee. Riciami [Ultimaevisione: evisione: gennaio gennaio009] In questa Lezione si iciamano sinteticamente alcune nozioni di geometia delle aee, aicento di una figua piana,

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI POLITECNICO DI TORINO Facoltà di Ingegneia I Anno accademico xxxx/xxxx Coso di COSTRUZIONE DI MACCHINE Elettix1 STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

la prospettiva - III 08corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina

la prospettiva - III 08corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina la pospettiva - III 08coso tecnice di appesentazione dello spazio docente c. Emilio i Gistina pospettiva lineae la pospettiva lineae è una poiezione conica eseguita su un piano veticale ciamato quado pospettico

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Curve meccaniche EVOLVENTE SCHEDA DI APPROFONDIMENTO. Costruzione geometrica. Caratteristiche. glossario

Curve meccaniche EVOLVENTE SCHEDA DI APPROFONDIMENTO. Costruzione geometrica. Caratteristiche. glossario SHEDA DI AFNDIMENT uve meccaniche Le cuve meccaniche o cuve cicliche sono oiginate da un punto collegato a una etta o cechio che otola senza stisciae lungo una taiettoia cicolae o ettilinea. Il nome di

Dettagli

Note del corso di Geometria

Note del corso di Geometria Giuseppe ccascina Valeio Monti Note del coso di Geometia ppendice nno ccademico 2008-2009 ii apitolo 1 Richiami di geometia del piano 1.1 Intoduzione Richiamiamo alcuni agomenti di geometia euclidea del

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche unità ostuzioni geometiche ostuzioni di ase nti geometici fondamentali efinizioni Punto nte geometico pivo di dimensioni; è definiile come isultato dell intesezione di due elementi lineai ettilinei o cuvilinei

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. 2 Geometia del piano Test di accetamento dei peequisiti i seguito sono poposte alcune domande di vaie tipologie, pe stabilie la capacità pesonale di affontae gli agomenti svolti in questo capitolo. gni

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche Lezione 7 - Tosione nelle sezioni cicolai ed ellittiche ü [A.a. 11-1 : ultima evisione 7 agosto 11] In questa lezione si applicano i isultati della lezione pecedente allo studio di alcune sezione di foma

Dettagli

ELEMENTI DI GEOMETRIA DELLO SPAZIO

ELEMENTI DI GEOMETRIA DELLO SPAZIO ELEMENTI DI GEOMETRIA DELLO SPAZIO ASSIOMI Lo spazio euclideo è un insieme infinito di elementi (i punti), contiene sottoinsiemi popi ed infiniti (i piani). In ogni piano valgono gli assiomi del piano

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Seconda prova (Tema assegnato alla maturità per geometri, 2007)

Seconda prova (Tema assegnato alla maturità per geometri, 2007) Seconda pova (Tema assegnato alla matuità pe geometi, 007) IL TM Dovendosi ealizzae lavoi di natua planimetica (azionamenti) ed altimetica (spianamenti) in un teeno CD, i cui vetici si susseguono in senso

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

PICCHETTAMENTO DELL ASSE DELLA STRADA

PICCHETTAMENTO DELL ASSE DELLA STRADA PICCHETTAMENTO DELL ASSE DELLA STRADA Una volta completato il pogetto esecutivo della stada, è necessaio mateializzae sul teeno alcuni punti, mediante picchetti, in modo da istuie oppotunamente l impesa

Dettagli

Geometria analitica: assi e punti

Geometria analitica: assi e punti Geometia analitica: ai e punti itema di ai cateiani monometico otogonale è l oigine degli ai cateiani è l ae delle acie : è l ae delle odinate ditanza ta due punti O(0,0): oigine degli ai cateiani : punto

Dettagli

13b. Reattore omogeneo con riflettore. Due gruppi di neutroni

13b. Reattore omogeneo con riflettore. Due gruppi di neutroni b. Reattoe omogeneo con iflettoe ue guppi di neutoni Assumiamo oa una appossimazione in teoia della diffusione consistente in due guppi enegetici: uno elativo ai neutoni temici (guppo temico) ed uno elativo

Dettagli

FONDAMENTI DI AUTOMATICA I LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99)

FONDAMENTI DI AUTOMATICA I LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA INFORMATICA (DM 509/99) LAUREA TRIENNALE IN INGEGNERIA DELL AUTOMAZIONE (DM 509/99) PROVA SCRITTA DEL 05/07/2011 Con ifeimento alla Figua 1, si detemini la f.d.t. / mediante

Dettagli

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE

LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE LE TRASFORMAZIONI CONFORMI E L EQUAZIONE DI LAPLACE Un alto potente metodo pe deteminae le solioni dell eqaione di Laplace si basa slla teoia delle nioni analitiche Anche in qesto caso si tilieà n appoccio

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A.

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A. Insiemistica Se consideiamo un ceto numeo di pesone, cose, animali, piante, mineali, ecc., noi possiamo attibuie loo alcune caatteistiche, che definiamo con il temine di popietà. Le singole entità che

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

TEST PER RECUPERO OFA 25 marzo 2010

TEST PER RECUPERO OFA 25 marzo 2010 TEST PER RECUPERO OFA mazo 010 A 1. Quale ta i seguenti numei, moltiplicato pe, dà come podotto un numeo azionale? A) 0 B) 1+ C) + D) 1 6 E).. Un esagono egolae è inscitto in una ciconfeenza di aggio.

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

CAPITOLO 12 GONIOMETRIA

CAPITOLO 12 GONIOMETRIA CAPITOLO 1 GONIOMETRIA 1.01 - Misua degli Angoli e degli Achi 1.01.a) Unità di Misua degli Angoli o degli Achi Dato un angolo, è possibile scegliee come unità di misua un ulteioe (ovviamente) angolo definito

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

Applicazioni della similitudine Unità 2

Applicazioni della similitudine Unità 2 OBIETTIVI INTERMEDI DI APPRENDIMENTO (I numei e le lettee indicate a fianco contassegnano le conoscenze, le abilità finali specifiche e quelle tasvesali coelate) Una volta completata l unità, gli allievi

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA. di Ezio Fornero

PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA. di Ezio Fornero PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA di Ezio Foneo Indice dei poblemi Tiangolo ettangolo cicoscitto a un cechio di aggio assegnato Deteminae le misue dei cateti del tiangolo sapendo

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica wwwmatematicamenteit Nicola De osa matuità Esame di stato di istuzione secondaia supeioe Indiizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica Il candidato isolva uno dei due

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi Capitolo 7 Costi e minimizzazione dei costi Soluzioni dei Poblemi 7.1 a) 500 b) 30% di 500, ossia 150 c) Senza idue il pezzo e posto che l impesa non possa vendee alte stampanti, il meglio che essa può

Dettagli

Origami: Geometria con la carta (I)

Origami: Geometria con la carta (I) Oigami: Geometia con la cata (I) La valenza atistica, ceativa ed estetica dell'oigami, è omai nota a tutti. Il pof. enedetto Scimemi in [ 1] ipota ta l'alto:...l'appoto educativo di giochi e passatempi

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS/LM IN ECONOMIA CHIUSA

ESERCIZI AGGIUNTIVI MODELLO IS/LM IN ECONOMIA CHIUSA ESERCIZI AGGIUNTIVI MODELLO IS/ IN ECONOMIA CHIUSA ESERCIZIO 1 Illustate gaficamente ed economicamente quali conseguenze ha sul mecato monetaio la decisione della Banca Centale di aumentae il Tasso Ufficiale

Dettagli

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA LEGENDA: H = BM = base monetaia mm = moltiplicatoe monetaio = 1 + c c + (o i) = tasso d inteesse = iseve/depositi c = cicolante /depositi id (D) = tasso

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 PRV RDINMENT 009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità

SPAZIO CARTESIANO E 3 (R) Sia [O,B] un riferimento euclideo nello spazio euclideo E 3 (R). B è una base ortonormale. condizioni di ortogonalità SPZIO CRTESINO E (R) Sia [O,B] un ifeimento euclideo nello spaio euclideo E (R). B è una base otonomale. P P e e e P P condiioni di otogonalità ) etta-etta di paameti diettoi [(l,m,n )],[(l,m,n )] (l,m,n

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

1 Le funzioni reali di variabile reale

1 Le funzioni reali di variabile reale 1.1 Le funzioni Definizione 1 Le funzioni eali di vaiabile eale Una funzione f: A B è una elazione che associa a ciascuno degli elementi di un insieme A (il dominio) uno ed uno solo degli elementi di un

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Classificazione delle linee di trasmissione

Classificazione delle linee di trasmissione Classificazione delle linee di tasmissione Linee TEM (Tansvese Electic Magnetic) Coassiale Stipline Linee non-tem Guida d onda ettangolae Linee quasi_tem Micostip Suspended Stipline Inveted Stipline Linee

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

Il formalismo vettoriale della cinematica rotazionale

Il formalismo vettoriale della cinematica rotazionale Il fomalismo ettoiale della cinematica otaionale Le elaioni della cinematica otaionale assumono una foma semplice ed elegante, se sono iscitte in foma ettoiale. E questo l agomento dei paagafi che seguono.

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare Indice 2 Unità di appendimento 1 IRNFERENZ E ERHI 3 ttività pe iniziae veso le competenze fondamentali 4 1 La ciconfeenza e il cechio Posizioni di un punto ispetto a una ciconfeenza, 5 Posizioni di una

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

La geometria di Schwarzschild

La geometria di Schwarzschild La geometia spaziotempoale dei buchi nei La geometia di Schwazschild In elatività non si pala di campo gavitazionale ma di geometia dello spaziotempo. L attazione ta due copi viene spiegata come effetto

Dettagli

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga RN RNGO DI UN MTRICE Opeazioni elementai di iga Data una matice IR (mn) si dice opeazione elementae di iga ciascuna delle seguenti opeazioni: scambio della iesima iga con la jesima; moltiplicazione della

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

1 Le funzioni reali di variabile reale

1 Le funzioni reali di variabile reale 1.1 Le funzioni Definizione 1 Le funzioni eali di vaiabile eale Una funzione f: A B è una elazione che associa a ciascuno degli elementi di un insieme A (il dominio) uno ed uno solo degli elementi di un

Dettagli