Un algoritmo rank-revealing per la risoluzione nel senso dei minimi quadrati di sistemi lineari a rango non pieno

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Un algoritmo rank-revealing per la risoluzione nel senso dei minimi quadrati di sistemi lineari a rango non pieno"

Transcript

1 Un algoritmo rank-revealing per la risoluzione nel senso dei minimi quadrati di sistemi lineari a rango non pieno G. Rodriguez Dipartimento di Matematica e Informatica, Università di Cagliari viale Merello 92, Cagliari, Italy in collab. con A. Aricò (Dip. di Matematica e Informatica, Cagliari) Giornate di Algebra Lineare Numerica ed Applicazioni Padova, febbraio 2007

2 Minimi quadrati mediante eliminazione Gaussiana Ax = b, A R m n, rank(a) = n m Metodo di Peters-Wilkinson [1970] [ ] L1 PAQ = U, L 1, U R n n L 2 L T Ly = L T (Pb), U(Q T x) = y Applicato a matrici sparse in [Björck et al. 1988].

3 Minimi quadrati mediante eliminazione Gaussiana Ax = b, A R m n, rank(a) = n m Metodo di Peters-Wilkinson [1970] Metodo della matrice aumentata [Siegel 1965, Bartel et al. 1970, Björck 1992] [ ] [ ] I A r A 0 x = [ ] b, r = b Ax 0 Applicato con successo in [Arioli et al. 1989] e esteso in [Duff et al. 1990] al caso di matrici sparse con pivoting di Bunch-Kaufman.

4 Minimi quadrati e complemento di Schur Metodo proposto per matrici di Toeplitz in [Kailath et al. 1994] e studiato e implementato in [GR 2006] per matrici con struttura di Toeplitz e Cauchy generalizzata. Ax = b M A = I m A 0 A 0 A b 0 I n 0 S m+n (M A ) = (A A) 1 A b = x LS Poiché M A ha struttura di displacement è possibile applicare l algoritmo di Schur generalizzato. Inoltre la matrice pseudoinversa ha struttura di displacement b = I m S m+n (M A ) = A,

5 Calcolo del complemento di Schur di M A Schema di calcolo la struttura viene convertita da Toeplitz a Cauchy generalizzata, mediante trasformate veloci viene applicato l algoritmo di Schur generalizzato

6 Calcolo del complemento di Schur di M A Schema di calcolo la struttura viene convertita da Toeplitz a Cauchy generalizzata, mediante trasformate veloci viene applicato l algoritmo di Schur generalizzato Vantaggi M A, pur avendo struttura di displacement, non è Toeplitz-like, mentre M C è Cauchy-like il passaggio alla struttura di Cauchy consente l uso del pivoting parziale o totale algoritmo fast O(27γ(m + n) 2 ) e bassa occupazione di memoria O(3γ(m + n)) (γ = rank (M A )) facilmente applicabile ad altre strutture di displacement

7 Restrizione del pivoting Nel calcolo del complemento di Schur S r (M), l azione del pivoting parziale (o totale) deve essere ristretta alle prime r righe (e colonne) di M. Infatti se [ ] [ ] [ ] M11 M M = 12 Pr 0 Qr 0, P = e Q = M 21 M 22 0 I m r 0 I n r allora e [ ] Pr M PMQ = 11 Q r P r M 12 M 21 Q r M 22 S r (PMQ) = S r (M).

8 Blocchi parzialmente ricostruibili D t C CD s = G C H C C ij = φ i ψ j t i s j

9 Blocchi parzialmente ricostruibili C ij = φ i ψ j t i s j D t C CD s = G C H C D L M C M C D R = G MC H M C I m C 0 M C = C 0 C, 0 I n 0 D L = D t D s D s, D R = D t D s D t,

10 Blocchi parzialmente ricostruibili C ij = φ i ψ j t i s j D t C CD s = G C H C D L M C M C D R = G MC H M C I m C 0 M C = C 0 C, 0 I n 0 Alcuni blocchi sono parzialmente ricostruibili: D L = D t D s D s, D R = D t D s D t, blocco (3, 2) D s I n I n D s = 0 È necessario memorizzare a parte gli elementi non ricostruibili e tener conto del pivoting.

11 Ottimizzazione dei parametri ξ e η Z ξ,m A AZ η,n = G A HA, ξ, η C \ {0} φ Z φ,k = C k k

12 Ottimizzazione dei parametri ξ e η Z ξ,m A AZ η,n = G A HA, ξ, η C \ {0} D t C CD s = G C H C C ij = φ i ψ j t i s j, t m i = ξ, s n j = η

13 Ottimizzazione dei parametri ξ e η Z ξ,m A AZ η,n = G A HA, ξ, η C \ {0} Posto ξ = 1 e η = e iπϕ, sia Allora C ij = φ i ψ j t i s j, t m i = ξ, s n j = η ϕ = arg max ϕ min t i s j. i,j ϕ = gcd(m, n) m = g m, min t i s j = 2 sin πg i,j 2mn.

14 Ottimizzazione dei parametri ξ e η m=3000, n=1000, φ * = TLLS TLLS no piv φ Matrice KMS (a ij = ρ i j ) con (m, n) = (3000, 1000), ρ =.99, κ =

15 Risultati numerici ρ= ρ= TLLS TLLS no piv. QR Cholesky n Matrice KMS, m = 2n (sin.), α = m n α e n = 2000 (destra)

16 Dipendenza dal condizionamento Condizionamento di x LS rispetto ad una perturbazione in A κ LS = κ(a) + κ(a)2 tan θ η con κ(a) = A A, η = A x Ax [1, κ(a)], and θ = arccos Ax [0, b = (b, Ax) π ] 2 Householder QR è influenzato da κ LS Eq. normali + Cholesky dipende da κ(a) 2 e non da η, θ TLLS?

17 Dipendenza dal condizionamento TLLS QR Cholesky θ (degrees) TLLS QR Cholesky θ (degrees) Matrice KMS, (m, n) = (1500, 500), ρ =.99,.999 κ(a) = , , η 1

18 Complessità computazionale - metodi non strutturati complessita 10 2 tempo di calcolo flops TLLS Householder QR Cholesky n secondi TLLS Householder QR Cholesky n Confronto tra qr e chol di Matlab e la versione MEX di TLLS AMD Athlon , GNU/Linux x86 64, Matlab 64bit Matrice KMS (ρ =.99), m = 2n

19 Complessità computazionale - metodo superfast relative error TLLS TLLS no piv. superfast time in seconds TLLS TLLS no piv. superfast log 2 n log 2 n Confronto tra le versioni Matlab di TLLS e di un algoritmo superfast [Van Barel, Heinig, Kravanja 2003] Matrice rand-toeplitz, m = 2n

20 Complessità: crossover risp. ai metodi non strutturati La dipendenza da m è lineare per i metodi non strutturati e quadratica per TLLS. Cholesky n 2 (m n) Householder QR 2n 2 (m 1 3 n) TLLS 143m mn + 133n 2 Questo significa che per ogni n, all aumentare di m, si arriva ad un punto in cui i metodi non strutturati risultano più efficienti.

21 Complessità: crossover risp. ai metodi non strutturati log 10 n log(complessità/n 2 ) per Householder QR (grid) e TLLS (surf) α

22 Sistema lineare a rango non pieno Eliminiamo l ipotesi che la matrice A sia sovradeterminata e a rango pieno { Ax = b, A R m n m n, rank(a) min(m, n) Applichiamo l algoritmo TLLS I m A 0 M A = A 0 A b S m+n (M A ) =? 0 I n 0 Nel caso a rango pieno si ha x LS = S m+n (M A ) = (A A) 1 A b

23 Fase 1 Applichiamo l algoritmo di eliminazione di Gauss alle prime m colonne. Il pivoting non è indispensabile per il funzionamento dell algoritmo (lo è per la sua stabilità). I m A 0 A 0 A b 0 I n 0 I m A 0 0 A A A b 0 I n 0 Questa fase è equivalente alla costruzione delle equazioni normali. A A in generale è singolare

24 Fase 2 Supponiamo inizialmente che A A sia ben ordinata: [ ] A G11 G A = 12 G 21 G 22 con rank(a) = k e G 11 quadrata k k non singolare. Applichiamo k passi dell algoritmo di Gauss alla sottomatrice I m A 0 [ 0 A A A b A A A ] b I 0 I n 0 n 0

25 Fase 2 Supponiamo inizialmente che A A sia ben ordinata: [ ] A G11 G A = 12 G 21 G 22 con rank(a) = k e G 11 quadrata k k non singolare. Applichiamo k passi dell algoritmo di Gauss alla sottomatrice [ A A A ] G 11 G 12 c 1 b = G 21 G 22 c 1 I n 0 I k I n k 0

26 Fase 2 Supponiamo inizialmente che A A sia ben ordinata: [ ] A G11 G A = 12 G 21 G 22 con rank(a) = k e G 11 quadrata k k non singolare. Applichiamo k passi dell algoritmo di Gauss alla sottomatrice G 11 G 12 c 1 U k Z c 1 G 21 G 22 c 1 I k O n k c 2 0 Y 1 x 1 0 I n k 0 0 Y 2 x 2

27 Risultato dell algoritmo U k Z c 1 0 O n k c 2 0 Y 1 x 1 0 Y 2 x 2 soluzione di base di Ax = b x B = [ x1 x 2 ]

28 Risultato dell algoritmo U k Z c 1 0 O n k c 2 0 Y 1 x 1 0 Y 2 x 2 soluzione di base di Ax = b x B = [ x1 x 2 ] base per il nucleo di A Y = [ Y1 Y 2 ] = [ ] y 1 y n k

29 Risultato dell algoritmo U k Z c 1 0 O n k c 2 0 Y 1 x 1 0 Y 2 x 2 soluzione di base di Ax = b [ ] x1 x B = x 2 = [ G 1 11 c ] 1 0 base per il nucleo di A [ ] Y1 Y = = [ [ ] G 1 y Y 1 y n k = 11 G ] 12 2 I n k

30 Rank revealing? Rango numerico r ɛ = min E 2 ɛ rank(a + E) σ r ɛ > ɛ σ rɛ+1 L algoritmo si arresta quando C è relazione tra ɛ e τ? M rr < τ Rank revealing LU [Chan 1984], [Hwang et al. 1992]. Stime del condizionamento per matrici triangolari [Higham 1987].

31 Pivoting nella fase 2 Nella fase 2 il pivoting (su righe e colonne) è indispensabile Supponiamo di applicare il pivoting totale [ A A A ] [ b PA AQ PA ] b I n 0 Q 0 e poniamo G = PA AQ, Q = [ Q 1 Q 2 ], c = PA b. Allora G 11 G 12 c 1 G 21 G 22 c 1 Q 1 Q 2 0 U k L 1 G 12 L 1 c 1 0 O n k c 2 G 21 G Q 2 Q 1 G Q 1 G11 1 1

32 Pivoting nella fase 2 U k L 1 G 12 L 1 c 1 0 O n k c 2 G 21 G Q 2 Q 1 G Q 1 G soluzione di base di Ax = b x B = Q 1 G 1 11 c 1 = Q [ G 1 11 c ] 1, 0

33 Pivoting nella fase 2 U k L 1 G 12 L 1 c 1 0 O n k c 2 G 21 G Q 2 Q 1 G Q 1 G soluzione di base di Ax = b x B = Q 1 G 1 11 c 1 = Q [ G 1 11 c ] 1, 0 base per il nucleo di A [ Y = Q 2 Q 1 G11 1 G 1 G 12 = Q 11 G ] 12 I n k

34 Pivoting nella fase 1 Nella fase 1 il pivoting non è indispensabile M = I m A 0 A 0 A b 0 I n 0

35 Pivoting nella fase 1 Nella fase 1 il pivoting non è indispensabile, ma è determinante per la stabilità dell algoritmo. γi m A 0 M γ = A 0 1 γ A b 0 I n 0 Il parametro di scala γ regola l entità del pivoting.

36 Pivoting nella fase 1 Nella fase 1 il pivoting non è indispensabile, ma è determinante per la stabilità dell algoritmo. γi m A 0 M γ = A 0 1 γ A b 0 I n 0 Il parametro di scala γ regola l entità del pivoting. Per il metodo della matrice aumentata con equilibratura, è stato dimostrato [Björck 1992] che una buona scelta è γ = 2 1/2 σ n (A) in quanto minimizza κ 2 (M γ ), e quindi la stima in avanti dell errore sulla soluzione.

37 pivoting totale (costoso) Strategie di pivoting

38 Strategie di pivoting pivoting totale (costoso) pivoting parziale + butta via le colonne piccole

39 Strategie di pivoting pivoting totale (costoso) pivoting parziale + butta via le colonne piccole pivoting totale simmetrico (fattorizzazione LDL T )

40 Strategie di pivoting pivoting totale (costoso) pivoting parziale + butta via le colonne piccole pivoting totale simmetrico (fattorizzazione LDL T ) pivoting di Bunch-Kaufman

41 Fattorizzazione LDL T Preserva la simmetria ed è connessa a Cholesky e QR. I m A 0 I m 0 0 I m 0 0 A 0 A b 1 0 A A A b 2 0 D 0 0 I n 0 0 I n x LS Pivoting totale simmetrico se al passo k il massimo è in posizione (l, l) pivot = M ll se il massimo è in posizione (r, s) ( ) Mss M pivot = sr M rs M rr (tile pivot)

42 Da fare... implementazione nel caso strutturato test numerici (matrici con e senza struttura) indagare sulle varie strategie di pivoting confronto con RRQR, UTV, [Chan 1984] soluzione normale, up/down-dating, subset selection... matrici sparse?

43 Fine

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Problemi di accuratezza relativi alla soluzione di sistemi sottodeterminati. In onore di Alfonso Laratta

Problemi di accuratezza relativi alla soluzione di sistemi sottodeterminati. In onore di Alfonso Laratta Problemi di accuratezza relativi alla soluzione di sistemi sottodeterminati In onore di Alfonso Laratta Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory Modena, 13 ottobre 2004 p.1/25

Dettagli

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1

Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria p. 1 Il programma OCTAVE per l insegnamento dell algebra lineare nella Scuola Secondaria R. Vitolo Dipartimento di Matematica Università di Lecce SaLUG! - Salento Linux User Group Il programma OCTAVE per l

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Ripasso di Calcolo Scientifico: Giulio Del Corso

Ripasso di Calcolo Scientifico: Giulio Del Corso Ripasso di Calcolo Scientifico: Giulio Del Corso Queste dispense sono tratte dalle lezioni del Prof. Gemignani e del Prof. Bini del corso di Calcolo Scientifico (2014/2015) dell università di Pisa. Non

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Part I Prefazione 3 Presentazione 5 Elenco degli Autori 27

Part I Prefazione 3 Presentazione 5 Elenco degli Autori 27 Indice Part I Prefazione 3 Presentazione 5 Elenco degli Autori 27 1 Cinematica Teorica 1 1.1 Introduzione 1 1.2 Cinematica del punto 1 1.2.1 Posizione di un punto 1 1.2.2 Tangente ad una curva C 2 1.2.3

Dettagli

Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011

Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011 Corso di Laurea in Matematica, Università di Roma La Sapienza Corso di ANALISI NUMERICA Esercitazioni in Laboratorio, 16 Maggio 2011 Foglio 4: Metodi diretti per i sistemi lineari Scrivere un programma

Dettagli

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Equazione di Keplero (eqz. nonlineari).

Equazione di Keplero (eqz. nonlineari). Equazione di Keplero (eqz. nonlineari). Risolvere col metodo di Newton, col metodo di bisezione e di punto fisso l equazione di Keplero: E = M + e sin(e) dove e è l eccentricità del pianeta, M l anomalia

Dettagli

Dispense del corso di Laboratorio di Calcolo Numerico

Dispense del corso di Laboratorio di Calcolo Numerico Dispense del corso di Laboratorio di Calcolo Numerico Dott Marco Caliari aa 2008/09 Questi appunti non hanno alcuna pretesa di completezza Sono solo alcune note ed esercizi che affiancano il corso di Calcolo

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

MATLAB - Introduzione Enrico Nobile. MATLAB - Introduzione. E. Nobile - DINMA - Sezione di Fisica Tecnica, Università di Trieste

MATLAB - Introduzione Enrico Nobile. MATLAB - Introduzione. E. Nobile - DINMA - Sezione di Fisica Tecnica, Università di Trieste Enrico Nobile I a Parte 1 MATLAB (MATrix LABoratory); Versione 5.2; Basato sul concetto - ampio - di Matrici; Calcolo numerico, visualizzazione etc. Facile utilizzo di librerie per il calcolo numerico

Dettagli

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico

PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico ISTITUTO TECNICO STATALE MARCHI FORTI Viale Guglielmo Marconi n 16-51017 PESCIA (PT) - ITALIA PROGRAMMA DI SCIENZE E TECNOLOGIE APPLICATE 2015/2016 Classe 2ª Sez. C Tecnologico Docente PARROTTA GIOVANNI

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

CALCOLO DEL POLINOMIO DI MIGLIORE APPROSSIMAZIONE Fattorizzazione QR nella risoluzione di problemi ai minimi quadrati

CALCOLO DEL POLINOMIO DI MIGLIORE APPROSSIMAZIONE Fattorizzazione QR nella risoluzione di problemi ai minimi quadrati Università degli Studi di Cagliari Facoltà di Ingegneria Corso di Calcolo Numerico 2, Prof. Giuseppe Rodriguez CALCOLO DEL POLINOMIO DI MIGLIORE APPROSSIMAZIONE Fattorizzazione QR nella risoluzione di

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari

ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO. Parte II: Applicazioni a Matrici e Sistemi Lineari ESERCITAZIONI DI LABORATORIO DI CALCOLO NUMERICO Parte II: Applicazioni a Matrici e Sistemi Lineari Prof. L. Pareschi Dott. Giacomo Dimarco Applicazioni a Matrici e Sistemi Lineari Operazioni matriciali

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

MATLAB:Condizionamento Sistemi Lineari.

MATLAB:Condizionamento Sistemi Lineari. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Condizionamento Sistemi Lineari. Innanzitutto vediamo qual è la funzione Matlab che ci permette di calcolare il

Dettagli

MATEMATICA e COMPLEMENTI di MATEMATICA

MATEMATICA e COMPLEMENTI di MATEMATICA ALLEGATO N.8_b MATEMATICA e COMPLEMENTI di MATEMATICA DESTINATARI gli studenti delle classi: terze e quarte nuovo ordinamento RISULTATI DI APPRENDIMENTO DELL OBBLIGO D ISTRUZIONE, CHIAVE EUROPEA Padroneggiare

Dettagli

Prof. Stefano Capparelli

Prof. Stefano Capparelli APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Capitolo 2. Algebra Lineare numerica 79. a ij x i x j

Capitolo 2. Algebra Lineare numerica 79. a ij x i x j Capitolo 2. Algebra Lineare numerica 79 Se c 0 e c sono nulli, allora la funzione q (x) = x Ax = n i=1 j=1 n a ij x i x j è detta comunemente forma quadratica (omogenea) ed è omogenea di grado 2. 3 A partire

Dettagli

Posizione e orientamento di corpi rigidi

Posizione e orientamento di corpi rigidi Corso di Robotica 1 Posizione e orientamento di corpi rigidi Prof. Alessandro De Luca Robotica 1 1 Posizione e orientamento terne ortogonali destre SR A A p AB B SR B corpo rigido posizione: A p AB (vettore

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Università degli Studi di Cagliari Scuola di Dottorato in Progettazione Meccanica e Ingegneria Industriale

Università degli Studi di Cagliari Scuola di Dottorato in Progettazione Meccanica e Ingegneria Industriale Università degli Studi di Cagliari Scuola di Dottorato in Progettazione Meccanica e Ingegneria Industriale Metodi per il Deblurring di Immagini Esercitazione Finale Test di Caratterizzazione di Metodi

Dettagli

Un nuovo metodo trust-region per sistemi non lineari rettangolari con vincoli semplici

Un nuovo metodo trust-region per sistemi non lineari rettangolari con vincoli semplici Università degli Studi di Firenze Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Specialistica in Matematica per le Applicazioni Anno Accademico 2005-2006 Un nuovo metodo trust-region

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Appunti del corso di Metodi numerici e ottimizzazione

Appunti del corso di Metodi numerici e ottimizzazione Appunti del corso di Metodi numerici e ottimizzazione L A TEX Ninjas Andrea Cimino Marco Cornolti Emanuel Marzini Davide Mascitti Lorenzo Muti Marco Stronati {cimino,cornolti,marzini,mascitti,muti,stronati}@cli.di.unipi.it

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA

UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA UNIVERSITA DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA IDRAULICA, MARITTIMA E GEOTECNICA CORSO DI COSTRUZIONI IDRAULICHE A.A. 00-0 PROF. LUIGI DA DEPPO ING. NADIA URSINO ESERCITAZIONE N : Progetto

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Laboratorio del Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate A.A. 2007/2008 Introduzione a MATLAB INTRODUZIONE A MATLAB 1 Indice 1 Introduzione 1 1.1 Caratteristiche di MATLAB...................................

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Condizionamento di sistemi lineari.

Condizionamento di sistemi lineari. Condizionamento di sistemi lineari. Ángeles Martínez Calomardo e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 10 dicembre 2012 Ángeles Martínez Calomardo

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

DSA e discalculia evolutiva: inquadramento generale. Processi di apprendimento del numero e del calcolo. Alessandria 4.11.2010

DSA e discalculia evolutiva: inquadramento generale. Processi di apprendimento del numero e del calcolo. Alessandria 4.11.2010 Ufficio Scolastico Provinciale di Alessandria DSA e discalculia evolutiva: inquadramento generale. Processi di apprendimento del numero e del calcolo. Alessandria 4.11.2010 Lorenzo Caligaris Insegnante

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Feature Selection per la Classificazione

Feature Selection per la Classificazione 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma Outline Feature Selection per problemi di Classificazione

Dettagli

Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria

Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria Appunti per il Corso di Fondamenti di Algebra Lineare e Geometria Marco A Garuti 4 giugno 9 Questi appunti integrano il testo adottato per il corso (Cantarini - Chiarellotto - Fiorot, Un corso di Matematica,

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA

Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Roberto Ferretti ESERCIZI D ESAME DI ANALISI NUMERICA Dispensa per il corso di Analisi Numerica Dipartimento di Matematica e Fisica, Università Roma Tre 1999 2013 1 ESONERO DI ANALISI NUMERICA (AN2) 16.04.99

Dettagli

Scopo dell esercitazione

Scopo dell esercitazione Corso Integrato di Statistica Informatica e Analisi dei dati Informatica - Esercitazione III Dr Carlo Meneghini Dip. di Fisica E. Amaldi via della Vasca Navale 8 meneghini@fis.uniroma3.it http://webusers.fis.uniroma3.it/~meneghini

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

Precondizionamento per sistemi lineari simmetrici a grande dimensione

Precondizionamento per sistemi lineari simmetrici a grande dimensione Corso di Laurea magistrale in Statistica Per l Impresa Tesi di Laurea Precondizionamento per sistemi lineari simmetrici a grande dimensione Relatore Prof. Giovanni Fasano Laureando Mirko Scavetta Matricola

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Capitolo Acquisizione dati con PC

Capitolo Acquisizione dati con PC Capitolo 2 Acquisizione dati con PC 2.1 Generalità 2.2 Sistema di acquisizione dati analogici monocanale con PC, per segnali lentamente variabili 2.3 Sistema di acquisizione dati analogici multicanale

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

Informatica Teorica. Macchine a registri

Informatica Teorica. Macchine a registri Informatica Teorica Macchine a registri 1 Macchine a registri RAM (Random Access Machine) astrazione ragionevole di un calcolatore nastro di ingresso nastro di uscita unità centrale in grado di eseguire

Dettagli

Matematica con il foglio di calcolo

Matematica con il foglio di calcolo Matematica con il foglio di calcolo Sottotitolo: Classe: V primaria Argomento: Numeri e operazioni Autore: Guido Gottardi, Alberto Battaini Introduzione: l uso del foglio di calcolo offre l opportunità

Dettagli

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Controllo Predittivo (cenni)

Controllo Predittivo (cenni) Controllo Predittivo (cenni) Controllo Digitale - A. Bemporad - A.a. 2007/08 Optimizer Model Predictive Control Plant Reference r(t) Input u(t) Output y(t) Measurements MODEL: è richiesto un modello del

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO

CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL EMPO ing Emanuele Zappa SEGNALI: grandezze di base nel dominio del tempo: Ampiezza picco-picco (pk.pk) Ampiezza massima positiva empo Ampiezza massima

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :

Dettagli

Calcolo di punti quasi ottimali per l interpolazione polinomiale sull intervallo, il quadrato e il disco

Calcolo di punti quasi ottimali per l interpolazione polinomiale sull intervallo, il quadrato e il disco Calcolo di punti quasi ottimali per l interpolazione polinomiale sull intervallo, il quadrato e il disco Candidato : Luca Mezzalira Relatore : Dott. Alvise Sommariva 18 luglio 2011 Padova Calcolo di punti

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli